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Task A1 – Automatic tuning of generator resonant frequency(imperial) 
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Overview 

Task A1 – Automatic tuning of generator resonant frequency  

• Resonant frequency tuning using MEMS Variable Reluctance 
Link (VRL) 

• Resonant frequency tuning using Potential Well technique 
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MEMS  Variable  Reluctance  Link 

Tuning concept of generator system:  
• Variable Reluctance Link(VRL) 

• Use permanent magnet, linked to oscillating proof mass by low reluctance   
path to pole piece 

• Vary reluctance of this path by introducing a variable air gap 

• MEMS Comb drive actuator controls variable air gap of  VRL 
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Process flow for MEMS VRL 
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Process flow for MEMS VRL 
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(i) 2mm ring on supporting wafer 

(ii) 300 m deep cavity wafer 

(iii) oxidation of supporting wafer

(v) Device wafer sandwiched on supporting 

(vii) Detaching the supporting  wafer

(vi) DRIE of silicon to release nickel structure

(iv) Device wafer to  mount on 
 supporting wafer

Silicon

(viii) Strip DRIE resist 

Nickel Silicon Oxide Gold Chrome Copper Resist

MEMS process  to release the VRL structure from the back side wafer 
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MEMS Tunable System  for Micro Generator 

Variable Reluctance Device, design:  
• Magnetic flux will pull link into low reluctance position with high force 

• To reduce required actuation force, balance this magnetic effect against 
suspension stiffness of variable link 

• Electrostatic comb drive to limit power consumption of actuator 
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Potential well technique with sharp wedge shape 
pole piece on both generator and tuning system 
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untuned resonant frequency (45Hz) 
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Task A2 – Interface circuitry for 

vibration‐driven Energy Harvesters 

 
Main challenges 

• Interface circuit design 

• Matching circuit behaviour to harvester (impedances) 

• Maximum power point tracking 

• Tracking amplitude, frequency and load changes 

• Very low power implementations 
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Interface circuit design 
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Interface circuit 

• Rectification and Voltage Boosting  

• The harvester generates low-amplitude (<1V) AC voltage 

• The load requires 2V – 4.5V DC voltage 

• Zero energy start-up 
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• Maximum power is extracted at matched impedances 

• Harvester impedance is a function of the frequency 

• Complex conjugate impedance matching requires high quiescent power 
for implementation 

• Power close to the theoretical maximum can be extracted when the 
emulated resistance matches the magnitude of the source impedance 

 

 

 

 

Matching circuit input impedance to harvester 
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• The input impedance of the converter is a function of the instantaneous 
input and output voltages  

• For maximum power extraction the impedance should be fixed during the 
harvester cycle and equal to the optimum  

 

 

 

 

Converter control 
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Maximum power transfer tracking 
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• The power delivered to the load is a function of the extracted power and 
the conversion efficiency  

• The optimum operating point is a function of the excitation magnitude 
and the output voltage  

 N
o

rm
al

is
ed

 o
u

tp
u

t 
p

o
w

er
 

(P
o

u
t/

P
m

ax
) 

Duty ratio (δ) Duty ratio (δ) 

1.8V 
4V 

Output power as a function of the duty ratio at 
different output voltages, acceleration is constant 

(200 mg) 

Output power as a function of the  
acceleration  averaged over output voltage 

levels from 1.5 to 2.5 V 

 N
o

rm
al

is
ed

 o
u

tp
u

t 
p

o
w

er
 

(P
o
u

t/
P

m
ax

) 



holistic
e n e r g y   h a r v e s t i n g

Low power implementation 
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• All functional requirements should be implemented at very low power 
which will allow for miniaturization of the harvester 

• To achieve low-power operation: 

• The quiescent consumption should be as low as possible 

• The conversion efficiency should be maximised 

 

 

 Implementation of 
high-efficiency ultra-
low-power adaptive 
interface circuitry for 
energy harvesting 


