
   

A DSP-Based Audio Signal Processor

This project uses a low-cost DSP board and serves both as an introduction to DSP 
techniques and as a useful station accessory.

By Johan Forrer, KC7WW, 26553 Priceview Drive, Monroe, OR 97456

This article presents the theory of operation and implementation details of a digital signal processor-based (DSP) audio 
signal processor (ASP). Such an ASP may be used with a communication receiver or incorporated as an integral part of a 
home-brew receiver project.

The ASP consists of several components: a digital beat-frequency oscillator (BFO), selectable band-pass filters for CW, 
SSB and other digital modes, a denoiser based on the least-mean-squares (LMS) technique and a Wiener-filter autonotcher 
(removing carriers or heterodynes). Several advanced concepts are applied in this project, such as multirate processing, 
adaptive filtering and frequency shifting. These all are of fundamental importance to anyone wishing to learn more about the 
finer points of DSP. These principles may be considered the “tools of the trade” for working with DSP. This not only applies to 
audio signal processing, but also is becoming evident in contemporary digital radios. 

The DSP platform used for this project is a low-cost evaluation module by Analog Devices called the EZ-KIT Lite. [1] 
However, any DSP platform with modest memory and processor speed may be used. The EZ-KIT Lite was considered ideal 
for this project because of its 16-bit audio interface, 33 million instruction per second (MIPS) ADSP-2181 DSP, 32k words of 
on-chip memory, included software development tools and low cost.

This article describes a number of components that make up an ASP, their functionality and how they are engineered and 
implemented. The objective is to expose the reader to the background that is essential for future involvement in DSP as there 
is no substitute or reward greater than trying it yourself. 

Background
The W9GR DSP project that appeared in QST nearly four years ago encouraged many to build kits or to try their hand at 

DSP development. [2] Since then, several offerings of low-cost DSP evaluation modules (EVM) have brought powerful, yet 
affordable, DSP to the amateur experimenter. The EZ-KIT Lite used in this project is an example of contemporary EVMs that 
offer substantial amounts of on-chip memory combined with high clock rates—these modules are capable of doing serious 
DSP work. 

A major hurdle for newcomers to DSP is the steep learning curve associated with DSP theory. In addition, implementation 
details for a typical DSP platform often seem a formidable prospect. The situation has improved a lot over the four years since 
the W9GR article was first written. Those interested in DSP now have access to reasonably good DSP filter design tools, 
simulation packages, and a wealth of literature and software examples, much of which is available on the Internet.

ASP Architecture

Module Descriptions
Fig 1 shows a top-down overview of the different modules of the ASP and their interconnectivity. It shows that there are 

several ways to interconnect modules depending on the type of processing required.

Input always passes through the digital BFO and may subsequently be routed “straight through” to the output combiner 
when no signal processing is desired. Otherwise, a specific filter may be placed in line, either with or without further 
processing. If filtering only is desired, the filter output is routed directly to the output combiner; the denoiser or autonotcher 
modules—or both—may be selected and placed in the signal path for further signal processing. 
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Fig 1—Outline of the audio signal processor (ASP) architecture. Each module has one output node and at least one 
input node. Module interconnections are user selectable and configured by software.

Digital BFO 
Fine frequency resolution is a desirable feature for any receiving system. For example, changing received CW pitch to fall 

within a narrow-filter passband or adjusting an SSB signal for better clarity may be desired. It may also be an advantage to 
provide an alternative means to provide finer frequency resolution when working with a receiver that does not provide small 
frequency stepping. Such fine frequency resolution is essential for tuning RTTY, WEFAX or SSTV signals.

The digital BFO uses a Hilbert transformer to implement frequency shifting of signals received in the audio passband. The 
technique is an old one and is also used for other purposes such as the phasing method of SSB modulation/demodulation. 
Before the advent of DSP, such frequency shifting hardware was very difficult to build and tune. DSP achieves this nearly 
impossible feat with the Hilbert transform, which has the ability to do a perfect shift of a band of frequencies such that a 
constant group delay is exhibited thoughout the whole band. 

Refer to references 10 to 12 for an in-depth treatment of the Hilbert transform, which is an essential part of the BFO. The 
operation of the BFO may further be formalized as follows.

Let the audio signal be represented by the time-domain signal x(t). This is a real signal, ie, it has identical positive and 
negative frequency components. For the frequency-domain representation, let Fp(X) represent the positive frequencies and 
Fn(X) represent the negative frequencies. Thus:

( ) ( ) ( )F x F x F xn p= + Eq 1

The signal is subsequently band-limited by the codec’s antialias filter and sampled at 18.9 ksps by the codec. The digitized 
signal is then passed through the Hilbert transformer as the first step in producing a special signal, called an analytic signal. 
The Hilbert transformer has the unique property that it delays all positive frequencies by +90° and all negative frequencies by 
–90°. Eq 2 shows this phase shifting (note the use –j and +j to indicate phase shifting) in the frequency domain.

( ) ( ) ( )$F x = jF x + jF xp n−
Eq 2

To form the time-domain representation, z(t), a complex signal, we combine x(t), the real part, with the output of the Hilbert 

transformer, ( ) ( )$x t H x= , the complex part, as shown in Eq 3. This is known as an analytic signal.
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( ) ( ) ( )z t = x t jx t+ $
Eq 3

Eq 3 has interesting properties—it contains only positive frequencies. This is shown in Eqs 4, 5 and 6.

( ) ( ) ( )Z t F t jF t= + $
Eq 4

( ) ( ) ( ) ( ) ( )[ ]Z x = F x F x + j jF x + jF xp n p n+ −
Eq 5

( ) ( )Z x = 2F xp Eq 6

This property of Eq 6, that it only contains positive frequencies, is of great significance when working with phasing-type 
modulation schemes in communication systems. For example, selective cancellation of certain frequencies is possible without 
the need for additional filtering. Use of this property is made in the following section. 

The next step is to do the actual frequency-shifting operation. What we are after is a real signal, y(t), that has both positive 
and negative frequencies, with the positive frequencies shifted up in frequency—and the negative frequencies shifted down in 
frequency—by an amount determined by the BFO. This frequency shift is obtained by mixing (multiplying) a signal generated 
using a numerically controlled oscillator (NCO), which is our BFO, with the analytic input signal, z(t), as shown in Eq 7.

( ) ( )[ ]y t = R z t ee
j tω

Eq 7

The NCO frequency is represented in complex notation as e jwt. Note that we need to take the real part of the result, as after 
the frequency shifting is done we want to process only real numbers. Substituting and expanding Eq 7 results in Eq 8.

( ) ( ) ( ) ( )( )[ ]y t R I jQ t j te= + +cos sinω ω
Eq 8

where I and Q refer to the in-phase and quadrature component signals of the analytic input signal. Eq 8 then reduces to our 
wanted signal as shown in Eq 9.

( ) ( ) ( )y t = I t Q tcos sinω ω− Eq 9

A diagram of the processing is shown in Fig 2. Note that the negative sign produces the upper sideband (USB), or 
frequency up-shift. If a down-shift in frequency is desired, the sign should be a positive, in which case the lower sideband 
(LSB) results. The frequency response of the Hilbert transformer design used in the project is shown in Fig 6. See Notes 11 
and 12 for details on determining the Hilbert transform coefficients.
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Fig 2—Hilbert transformer-based BFO. An analytic input signal is formed and mixed with a numerically controlled 
quadrature output oscillator (NCO). The real-valued output of the difference between the upper (in-phase or “I” 
branch) and lower (out-of-phase or quadrature “Q” branch) produce the upper sideband (USB). This corresponds to 
shifting the band of input frequencies up in frequency.

Filters
The ASP includes the passband-shaping filters listed in Table 1. Digital filters can be tailored to meet specific criteria, such 

as the nature of their transition zones (filter skirts), stop-band rejection (adjacent-channel suppression) or pass- or stop-band 
ripple. Several interacting factors are involved: the sampling rate, steepness of the transition zones and the desired bandwidth. 
The designer can experiment with filter order as a means to achieve the desired effects, however, more often than not, some 
compromises must be made either in the final bandwith, transition zones and/or amount of stop-band rejection.

Filter requirements also vary. CW filters, for example, need steep skirts and good adjacent-channel rejection, typically in 
the order of –60 dB or better. Too narrow a filter is hard to use in practice because, if the signal is just slightly off frequency, 
the operator may have a hard time locating and placing it in the filter’s passband. Two CW filters are provided, one wide and 
the other very narrow. Filters for SSB need a wider bandwidth, with somewhat relaxed adjacent-channel rejection requirements 
than for CW or RTTY. Stop-band rejection on the order of –40 to –50 dB is usually adequate. RTTY filters, like CW, also 
require good adjacent-channel rejection, the optimal bandwidth being determined by the baud rate and FSK shift. It’s always a 
good idea to allow a little extra bandwidth for operator convenience—there usually is little degradation is performance by 
allowing a small amount of frequency tolerance.

Having some idea of filter requirements, practical implications need to be considered next. Finite impulse response filters 
(FIR) are used in this application. These were designed using the Parks-McClellan algorithm (Remez exchange, equiripple) 
using Matlab. [8] An excellent public-domain program is available as an alternative (Note 9), however, the reader may use one 
of any number of filter-design software packages. The magnitude responses for the six filters are shown in Figs 3 to 5 and 
comply with the specifications for bandwidth and stop-band rejection described in Table 1.

Table 1—Passband-shaping filters used in the audio signal processor. These are all finite-impulse 
response (FIR) filters. The associated frequency responses, passband bandwidth (BWp), stop-band 
bandwidth (BWs), and filter order are shown. The sampling frequency is 18.9 ksps. CW filters are centered 
at 800 Hz, SSB filters assume a voice-grade channel, and RTTY is for high-tone pair standard (2125/2295 
Hz). The various stop-band bandwidth values were obtained by trial-and-error for the given sample rate 
and filter order.
Filter Freq.Response (Hz) Bandwidth (Hz) Sample Rate (kSPS) Filter Order
CW 100 Hz 750-850 BWp 100 2.3625 60
 BWs 400 2.3625
 
CW 500 Hz 550-1050 BWp 500 2.3625 60
 BWs 700 2.3625
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SSB narrow 300-2700 BWp 1200 9.4500 120
 BWs 1400 9.4500
 
SSB narrow 300-1500 BWp 2400 9.4500 120
 BWs 2600 9.4500
 
RTTY 50 baud 2075-2345 BWp 270 9.4500 120
 BWs 465 9.4500
 
RTTY 200 baud 2030-2390 BWp 360 9.4500 120
 BWs 560 9.4500

 

The codec is programmed to run at 18.9 ksps. At this rate, filter order becomes an important concern as it determines 
whether there will be sufficient clock ticks between samples to execute all of the DSP code. For example, a CW filter with 
stop-band rejection of –60 dB would require an extraordinarily large filter order to match the filter shown in Fig 3 and may be 
starving for clock cycles. However, the use of multirate processing reduces this computational load substantially. In the case of 
the CW filter, decimation by eight reduces the sample rate to 2.3625 ksps and only requires a filter order of 60 to meet the –60 
dB stop-band rejection requirement. 

Multirate processing requires additional overhead due to a low-pass filter at the decimating front end and a similar 
low-pass filter at the interpolating output stage. Note that CW operation normally does not require the noise processing 
functions because of the narrow bandwidth. Autonotching should also be bypassed for CW as the autonotcher would attempt 
to null out every CW signal in the passband!

For SSB and RTTY, a decimation factor of two is applied. These filters may optionally be used with noise reduction or 
autonotching. However, digital data signals may suffer waveform distortion effects and possibly other timing-related problems, 
so it usually is not a good idea to use such processing with data signals.

 

Fig 3—CW filter centered at 800 Hz. The left-hand figure has a 100-Hz bandwidth and the right-hand figure has a 
500-Hz bandwidth. The sample rate is 2.3625 ksps and the filter order is 60.
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Fig 4—SSB filters. SSB filters assume a voice grade channel (300-3000 Hz). The left-hand figure is 1200 Hz wide and 
the right-hand figure is 2400 Hz wide. The sample rate is 9.45 ksps and the filter order is 120.

 

 

 

Fig 5—FSK filters. The FSK filters are the standard high-tone pair centered at 2210 Hz. The filter in the left-hand figure 
is designed for 50-baud operation and the filter in the right-hand figure is for 200-baud operation. The sample rate is 
2.3625 ksps and the filter order is 60.
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Fig 6—Magnitude response of the Hilbert transform of order 65. When used with a causal filter, it will have 
approximately unity gain, a group delay of (65-1)/2 samples, and approximately 90°°°° phase shift. 

Denoiser
Denoising using DSP may be achieved by several means: least mean squares (LMS), autocorrelation and spectral 

subtraction. [3, 5] The effectiveness of each of these depends on the nature of the noise and, to some extent, the nature of the 
signal. There also appear to be some psychological effects—operators often prefer one technique over another as a matter of 
taste. In certain instances it also appears that using a combination of these techniques may have advantages. This subject is 
beyond the scope of this article, and the reader is encouraged to study the references listed in Notes 2, 3, 4, 7 and 11 for the 
LMS technique and Notes 3, 5 and 6 regarding the spectral subtraction technique.

This project implements the LMS method as described by Hershberger. [2, 4] The architecture for the LMS algorithm is 
shown in Fig 7. A delayed version of the input signal is passed through a tunable filter and then compared to the unprocessed 
input signal. The difference signal is then used to tune the variable filter in order to drive the difference signal to zero. The 
premise is that speech signals exhibit a substantial amount of coherence. That is, the delayed signal will have high correlation 
with the raw input. Noise, on the other hand, tends to have a random nature and will not show the same degree of correlation. 

The variable filter thus becomes a time-varying filter. An FIR structure is used as given in Eq 10.

y b k xk n k n
n

L
= −

=
∑ ( )

0 Eq 10

The algorithm effectively tunes the set of coefficients, bn(k), in order to drive the difference signal, or error signal, e, as 
small as possible. The LMS algorithm uses the method of steepest descent. In this case the set of coefficients may be 
considered a vector, Bk, at instant k, that needs to be updated for a minimum mean squared error (MMSE). The usual 
procedure for minimizing a function, in this case the error squared, ε2, is followed. An estimate of the amount that the 
coefficient vector Bk needs to change is determined from the gradient, given in Eq 11.

[ ]
∇ =k

k

E

B

∂ ε

∂

2

Eq 11

September QEX: A DSP-Based Audio Signal Processor - Page 7



   
Here, E refers to the “expected value,” or mean.

Since we are dealing with a system where there potentially may be many local minima on the error surface, and 
subsequently little chance for achieving an absolute MMSE, the algorithm only makes small adjustments at a time to the 
coefficient vector, Bk, in order to steer it towards MMSE. This correction is shown in Eq 12.

B Bk k k+ = −1 µ∇ Eq 12

Here, the factor, µ, determines the rate of change. The gradient given in Eq 11 is difficult to compute for a dynamic system. 
However, it may be estimated from the instantaneous error as shown in Eq 13.

( )$∇ = =
−∂ε

∂
ε

∂
∂

k

k
k

k k

kB
x y

B

2
2

Eq 13

Where xk is the reference (or input signal in our case), and yk represents the output of the time-varying filter. Since xk, the 
input signal, is independent of the output of the time-varying filter, it may be considered a constant and we may drop it from the 
partial derivative. If we then substitute Eq 10 for yk, Eq 13 simplifies to:

$∇ = −k k kX2ε Eq 14

where Xk, is the L-element input vector (input delay line buffer). The estimated coefficient vector, Bk+1, in Eq 12 then 
becomes:

B B Xk k k k+ = +1 2µε Eq 15

Eq 15 is the classic LMS formula. It is evident that the dynamics of the tuned filter depend on several factors; the rate at 
which the coefficients can be adapted, the sampling rate and the feedback loop factor, 2µ. 

Reyer and Hershberger further suggest the use of a “decay” factor to allow the filter to return to a quiet setting for situations 
where there is no input signal.4 The final form for adapting the variable filter’s coefficients is shown in Eq 16.

B d B Xk k k k+ = − +1 1 2( ) µε Eq 16

 

Fig 7—Generalized adaptive filter architecture for implementing the least-mean-square (LMS) denoiser.
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Autonotcher
The autonotcher is based on a Wiener filter, which is basically identical to the LMS denoiser except that coherent signals 

are subtracted from the input. [2, 4] This is achieved by simply using the same algorithm except for where the output is taken. 
This would correspond to the point in Fig 7 labeled ERROR. This makes code implementation really simple. 

The working parameters such as the amount of delay in the signal path and the decay and convergence factors, and d and 
µ, respectively, are different for denoising than for auto-notching functions. These factors are maintained and adjusted 
separately.

A useful feature in this implementation allows for both the LMS denoiser and Wiener autonotcher to be placed in series. 
This is useful when monitoring SSB transmissions as it helps in removing heterodynes and reduces listening stress by 
removing background noise. Mileage, however, varies and much remains subject to personal preferences.

Software
Software for the ASP is available for downloading. [13] The software package consists of several modules—a control 

program that resides on the PC and DSP code for downloading to the EZ-KIT. Source code for both the PC control program, 
written in C, and the DSP, written in assembly language, is provided and may be used as a basis for further experimentation. I 
encourage you to explore and modify the code—remember that there is no greater reward than trying and succeeding in doing 
it yourself. 
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