
ESBMC: Model-checking C programs

Bernd Fischer, Omar Inverso, Jeremy Morse, Denis Nicole and Gennaro Parlato

Cyber Security Centre

University of Southampton

Model checking ESBMC for multi-threaded C

Many of the most intractable C errors are race conditions that

appear during executions of multithreaded C code. ESBMC is

especially capable in dealing with these cases. It adopts an

explicit state approach by constructing all necessary

interleavings of thread execution and building an SMT

expression for each. This large collection of SMT challenges can

then, if necessary, be evaluated on the Universty’s Iridis 3

supercomputer. If any are satisfiable, the program is erroneous

and an explicit failing example interleave is displayed.

The C programming language continues to be popular for the

programming of a wide variety of desktop, embedded and server

systems. It is well-known that programming errors in C can create

dangerous vulnerabilities, such as potential buffer overflows, in

critical software systems. Careful coding standards, checking and

extensive testing can help reduce these and related vulnerabilities.

Testing, however, can only attempt to explore a representative

sample of program behaviours in a few situations; there is thus a

need for a more effective approach to tool support.

Recent advances in algorithms and in processor performance

have made it possible to perform an exhaustive analysis of all the

possible behaviours of a moderate-sized C program.

ESBMC is a state-of-the-art bounded model checker for C which

has a world leading ability to investigate multi-threaded

(concurrent) C programs.

ESBMC for sequential C

ESBMC uses a sequence of transformations to turn a C program

into a set of mathematical constraints:

• Library components are bound to the program text.

• The C control flow is converted into a simplified GOTO form.

• The GOTO program is converted into a single static assignment form. At

 this stage we have moved from a representation of C variables into one

 which associates a new (constrained) algebraic unknown with each

 execution of an assignment.

• We introduce additional constraints between the unknowns that can only

 be satisfied if there is a program error.

• A satisfiability modulo theory (SMT) solver is invoked to investigate

 whether all the constraints can be satisfied at once. Any success is a

 program error.

• If the SMT solver succeeds (i.e. the program fails) we use its successful

 assignment of values to unknowns to deduce the erroneous path through

 the program.

An example, the program:
#include <stdlib.h>

int

main()

{

 unsigned int size = nondet_int();

 char *hunk = malloc(size);

 unsigned int pos = nondet_int();

 hunk[pos] = 0;

 return 0;

}

generates the report:
Violated property:

 file test.c line 10 function main

 dereference failure: dynamic object upper bound

 !(__ESBMC_is_dynamic[POINTER_OBJECT(hunk + pos)] && DYNAMIC_SIZE(hunk +

pos) <= POINTER_OFFSET(hunk) + pos)

VERIFICATION FAILED

Sequentialisation: Cseq-ESBMC

Improvement by competition

ESBMC is a C language tool. It relies on SMT solvers developed

by others; currently the best performance is achieved using

Microsoft’s SMT solver Z3.

The field of C model checking research is now big enough to

support annual competitions; perhaps the best known is that held

in conjunction with the International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS).

The team is proud to report that ESBMC v1.17 won the Gold

Medal in the "SystemC" and "Concurrency" categories and the

Bronze Medal in the overall ranking of the first International

Competition on Software Verification at TACAS 2012.

CSeq(T,R)

T: MAXTHREADS

R: MAXROUNDS

Concurrent

C program with

POSIX threads

Sequential

non-deterministic

C program

 Code-to-code translation (from concurrent to sequential C)

 Symbolic modeling of thread interleaving (using non-determinism + arrays)

 ESBMC for bounded model-checking on the sequentialised version

ESBMC

HEADER
 extra functions for non-det context switch etc.

 extra variables to simulate rounds etc.

 convert global variables into arrays:

 int x; int x[MAXROUNDS];

 (the index of the array simulates the round)

FUNCTIONS
 convert global variable read or write

expressions:
 z = 10; z[ROUND] = 10;

 non-deterministic context-switches for each

statement:
 <s>; cs(); <s>;

MAIN()
 initial values guessing for global variables

 original code for thread creations etc.

 thread-wrapping code:

 check that for each global variable its value

 at the end of round (i) is equal to its value

 at the beginning of round (i+1)

 checks: reachability, deadlock, …

HEADER

FUNCTIONS

MAIN()

We are also investigating a second technique for model-checking

multithreaded C Programs:

For further information, publications, and

downloads, see:

 http://www.esbmc.org/

ESBMC is a collaboration between the

University of Southampton and the

Federal University of Amazonas, Brazil.

Validating specifications

By default, ESBMC checks for violations of an ISO/ANSI C

programming standard: for language errors. Of course, a program

may be correct C but may still do the wrong thing. It is therefore

possible to include additional specifications for the program in the
form of C assert calls or as linear temporal logic specifications.

These too are coded into appropriate SMT constraints.

The development of ESBMC was supported by EPSRC

under the NOTOS project, grant EP/E012973/1.

