
Motivation 
Bounded Model Checking (BMC) techniques based on Boolean Satisfiability (SAT) or Satisfiability Modulo Theories (SMT) have been 
successfully applied to verify single and multithreaded programs and to find subtle bugs in real programs. The idea of the BMC 
techniques is to check the negation of a given property at a given depth, i.e., to find bugs in a program up to a limit of iterations k.  
Typically, the BMC techniques are only able to falsify properties up to a given depth k; they are not able to prove the correctness of 
the system, unless an upper bound of k is known, i.e., a bound that unfolds all loops and recursive functions to their maximum 
iteration.  

We are looking at interval and complex hull analysis linked with k-induction (loop unrolling) to try and automate loop verification by 
induction. Interval analysis can automatically imply termination conditions; k-induction can simplify loop invariants to the extent 
that they can be guessed syntactically. 

 

 

Handling Loops in Bounded Model 
Checking using k-Induction and Interval Analysis 
Mikhail Y. R. Gadelha. Supervisors: Denis A. Nicole, Genarro Parlato 

Mikhail Yasha Ramalho Gadelha 
Email: myrg1g14@soton.ac.uk 
Postgrad OpenDay 15th June 2015 

Fibonacci Example 
 
integer fib(integer n) { return n < 3 ? 1 : fib(n-2)+fib(n-1); } 
 
integer myfib(integer n) { 
  integer c=1; p=1; i=2; 
  while(i<n) { 
    integer t=p+c; 
    p=c;  
    c=t;  
    i++;  
  } 
  assert (c == fib(n)); // Post condition 
  return c;  
} 
 
 

The ESBMC Model Checker 
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Base Case for k <= 3 
 
integer myfib(integer n) { 
  assume( n <= 3 ); 
  integer c = 1, p = 1, i = 2; 
  if( i < n ) { 
    integer t = p + c; 
    p = c;  
    c = t; 
    i++; 
    assume( i < n + 1 );  
    assert( c == fib(i) ); 
  }  
} 
 
The invariant (bold) is generated by interval analysis, and it 
will lead to the post condition i == n. 

Inductive Step for k = 2 
 
integer myfib(integer n) { 
  integer c = *, p = *, i = 2; 
  { 
     assume( c == fib(i) ); 
     integer t = p + c; 
     p = c;  
     c = t;  
     i++;  
  } 
  {  
    assume( c == fib(i) ); 
    integer t = p + c; 
    p = c; 
    c = t;  
    i++; 
  } 
 
  assert( c == fib(i) ); 
} 
 
We get the candidate invariant by substituting i for n in the 
post condition. 
 
The candidate invariant will only works for k >= 2 because it 
will take at least two loop unwindings to know all the needed 
values of the variables. 


