

University of Southampton

IBBRE Technology
A technical case study

David Fowler, Gary Wills, Lester Gilbert
dwf@ecs.soton.ac.uk
School of Electronics and Computer Science
University of Southampton

October 11, 2010

mailto:dwf@ecs.soton.ac.uk

 2

IBBRE Technical Case Study

Contents

1 Introduction .. 4

1.1 Purpose of Document ... 4

1.2 Scope ... 4

1.3 Layout of the document .. 4

2 Introduction to LifeGuide and IBBRE .. 4

3 Technologies ... 5

3.1 Software development technologies .. 5

3.1.1 Grails (Groovy and Rails) ... 5

3.1.2 Programming IDE(s) .. 6

3.1.3 MySQL ... 7

3.1.4 Software version control (Subversion) ... 9

3.1.5 Grails plugins ... 10

3.1.6 Web technologies ... 11

3.1.7 Tools for testing .. 12

3.2 Additional web-based features ... 13

3.2.1 Forums .. 13

3.3 Project monitoring technologies... 14

3.3.1 Informal feedback ... 14

3.3.2 Bug tracking software ... 14

4 Tutorial section ... 16

4.1 Common operations with Grails ... 16

4.1.1 Installation .. 16

4.1.2 Upgrading Grails .. 16

4.1.3 Running Grails applications on your local computer .. 16

4.1.4 Testing applications .. 16

4.1.5 Creating new domain classes, controllers, etc.. 17

4.2 Common operations with SVN .. 17

4.2.1 Installing the Subclipse SVN plugin to Eclipse ... 18

4.2.2 Importing the IBBRE code ... 18

4.3 Project deployment .. 18

 3

4.3.1 Testing the code .. 19

4.3.2 Creating the WAR file .. 19

4.3.3 Copying the WAR file .. 20

4.3.4 Restarting the server (may be optional) ... 20

4.4 Setting up a discussion forum for an intervention ... 21

4.5 Modifying the production database schema .. 22

5 Commonly used Grails features .. 25

5.1 Access Control ... 25

5.1.1 A possible alternative – Shiro.. 25

5.2 Bootstrapping.. 28

5.3 Grails Testing ... 29

6 Recommendations .. 31

6.1 Testing ... 31

6.2 Code refactoring ... 31

6.3 Encourage/enforce the use of bug tracking software .. 31

6.4 Making the source code more widely available ... 31

6.5 Database migrations ... 31

7 Glossary ... 32

8 References and Further Reading... 32

 4

1 Introduction

1.1 Purpose of Document
This document forms one of the deliverables for the IBBRE project, namely: “a technical case study

that outlines the technologies which have been adapted or integrated and the resources involved”

(Wills, 2009)

It also forms part of an “end-to-end development tutorial” as recommended by the SSI report

(Crouch, 2010). However, it deals only with the LifeGuide/IBBRE server, not the LifeGuide Authoring

Tool. The tutorial is aimed at new developers who may continue working with the IBBRE code to add

new features.

1.2 Scope
This document does not cover the Authoring Tool, as it is not strictly part of IBBRE. However, a

similar tutorial approach may also be useful for future Authoring Tool developers.

1.3 Layout of the document
In Section 2, we introduce LifeGuide and IBBRE, giving some definitions of terms. In Section 3, we

describe the technologies used in the project. Section 0 gives a tutorial explaining common tasks,

lessons learned, and possible future directions. The two sections (3 and 0) are only loosely

connected, and can be read independently. Throughout the document are standalone “lessons

learned” boxes, which contain some hard-won knowledge that would have saved much time and

effort. One key conclusion (backed up by experience, if not actual data) is that time spent on testing,

documenting, refactoring code and making code more robust against errors will save much more

time later in (a) tracking down bugs and (b) gaining sufficient understanding of code that other

developers have written, in order to extend it. Such activities should be insisted on, and built into

project plans.

2 Introduction to LifeGuide and IBBRE

The IBBRE website (also known as the LifeGuide Community website) allows behavioural scientists to

upload, experiment with, and discuss behavioural interventions.

Behavioural interventions (BIs) – packages of advice and support for behaviour change – are

arguably the most important methodology and technology employed by behavioural scientists for

understanding and changing behaviour. Internet-Based BIs (IBBIs) are beginning to play a crucial role

in the delivery of BIs, as they can be completed anytime and anywhere. IBBIs can be made available

over the web to most of the population for little more than the cost of development. Interactive

IBBIs can provide information and advice specifically ‘tailored’ to address the particular situation,

concerns, beliefs, and preferences of the individual, by adapting their path through the information

space.

The aims of the project were to develop a VRE to enable behavioural scientists creating IBBIs to

collaborate in sharing and reviewing components of internet-delivered interventions, and to analyse

if the VRE could be flexibly used to support collaborations within and outside the university.

 5

3 Technologies

The technologies used in IBBRE can be classified as (a) those used for developing the server software

and website, and (b) those used for project monitoring. The category (a) technologies are used

exclusively by developers in ECS, whereas the category (b) technologies are used jointly by the

project managers and the developers.

3.1 Software development technologies
Under the category of software development technologies, we include all those used for creating,

extending, testing and monitoring the software.

3.1.1 Grails (Groovy and Rails)

The majority of the IBBRE software is written using Grails1, which combines the Groovy scripting

language with the Rails framework. The Groovy language is based on Java, but includes many

syntactic shortcuts. These shortcuts can simplify coding a lot, but can also contain pitfalls for the

unwary. For example, type checking is much less strict, and errors that would be spotted at compile

time with Java may only be revealed at run time with Groovy.

The Rails framework is a way of organising projects using the Model View Controller pattern. Files

are organised as models (describing data), controllers (programs that specify how the data is

manipulated), and views (how the users can see and interact with the data).

For an example, interventions in IBBRE are modelled using the domain class Intervention, which is

stored in the Groovy file Intervention.groovy. The controller is InterventionController, (in the

file InterventionController.groovy). There are several views, one for each display or interaction,

for example, the view for editing an intervention is in the file edit.gsp which is stored in the folder

views/Intervention.

For long term storage of data, Grails uses GORM (Grails Object Relation Mapping). GORM maps

domain classes to tables in a database, and handles the storage and retrieval of instance data. It

aims to be transparent, so that the developer can think in terms of classes and objects without

knowing about how the tables are actually arranged. (However, this ideal scenario is not always

realisable, and the developer sometimes needs to delve into the inner workings of the database, and

to have some idea of how the tables relate to the logical data objects.)

There are many resources available on the web dealing with Grails, in particular the reference

documentation2. The book “Grails in Action” (Smith & Ledbrook, 2009) is also highly recommended.

1
 Grails: http://www.grails.org/

2
 The Grails Framework - Reference Documentation http://grails.org/doc/latest/

http://www.grails.org/
http://grails.org/doc/latest/

 6

Lesson learned: defensive programming

As it is not advisable to restart the LifeGuide server outside the weekly “at risk” period (see Section
4.3 for more on this), it is very important to minimise the frequency of errors. Also, by taking a few
minutes to add safeguards and validation to the code will save much more time later in tracking
down bugs.

As a case in point, the following lines of code were used for sending SMS (text) messages to users:

 def acc = ApplicationHolder.application.getClassForName

 ("InterventionSmsAccount").findByIntervention(message.intervention)

 MessageServiceProvider provider = acc?.provider?.newProviderInstance();

 boolean sent = provider.sendMessage(message)

 return sent

The problem here is that if provider is null, the provider.sendMessage(message) invocation will
(and did) throw an exception. By simply adding a check, this could have been avoided:

 def acc = ApplicationHolder.application.getClassForName

 ("InterventionSmsAccount").findByIntervention(message.intervention)

 boolean sent = false;

 if (provider != null) {

 sent = provider.sendMessage (message)

 }

 return sent

Groovy’s safe dereference operator ?. is also very useful, and can be seen in the code above (for
example, if acc is null then acc.provider would cause an exception, but acc?.provider is just
null).

3.1.2 Programming IDE(s)

Most modern programming is carried out with the help of an Integrated Development Environment

(IDE), which gathers together many tools (e.g. editors, compilers, debuggers, access to version

control software, etc).

A typical IDE is Eclipse (http://www.eclipse.org/), which was probably the most useful for IBBRE, as

the Authoring Tool builds on the Eclipse framework (to minimise disruption for developers that work

on the Authoring Tool as well). Figure 1 shows Eclipse being used to work on IBBRE – other features

that can be accessed from Eclipse will be discussed in later sections.

http://www.eclipse.org/

 7

Figure 1: The Eclipse IDE, showing part of the Grails project structure (left) and a Grails file (right).

3.1.3 MySQL

In order to store all the data for users, interventions, comments, etc, a relational database was used

– in IBBRE we used MySQL3. This was installed as a database server on an ECS virtual machine. The

database can be manipulated via SQL commands via a command line, or by a graphical tool such as

MySQL Query Browser or MySQL Workbench4. The example screenshots (Listing 1 to Listing 3) use

the command line, but the graphical tools may be preferable.

3
 http://www.mysql.com/

4
 http://dev.mysql.com/downloads/workbench/

http://www.mysql.com/
http://dev.mysql.com/downloads/workbench/

 8

[dwf@octopussy ~]$ mysql --user=root --password=******** IBBRELifeGuideProd

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 84348

Server version: 5.0.45 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;

+------------------------------+

| Tables_in_IBBRELifeGuideProd |

+------------------------------+

| announcement |

| app_config |

| arbitrary_file |

| arbitrary_file_type |

| arbitrary_file_types |

| category |

| chat |

| comment |

| forum |

| intervention |

| intervention_email_template |

| intervention_folder |

| intervention_folder_user |

| intervention_overview |

| intervention_pageids |

| intervention_report |

| intervention_session |

| intervention_sms_account |

| intervention_statistic |

| intervention_type |

| intervention_user |

| invitation |

| message |

| newsletter |

| post |

| report |

| requestmap |

| role |

| role_people |

| role_user |

| sms_service_provider |

| topic |

| user |

| user_announcement |

| user_followed_interventions |

| user_intervention |

| user_shared_folders |

| user_shared_interventions |

| workshop |

+------------------------------+

39 rows in set (0.00 sec)

mysql>

Listing 1: Listing the tables in the IBBRE database.

 9

mysql> DESCRIBE intervention;

+----------------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------------------+--------------+------+-----+---------+----------------+

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | | |

| allow_public_debug | bit(1) | NO | | | |

| deployed_date | datetime | NO | | | |

| description | varchar(255) | YES | | NULL | |

| directory | varchar(255) | NO | | | |

| expiry_date | datetime | YES | | NULL | |

| exported_fields | longtext | YES | | NULL | |

| filename | varchar(255) | NO | | | |

| long_name | varchar(255) | NO | | | |

| name | varchar(255) | NO | UNI | | |

| owner_id | bigint(20) | NO | MUL | | |

| type_id | bigint(20) | NO | MUL | | |

| email_template_id | bigint(20) | YES | MUL | NULL | |

| containing_folder_id | bigint(20) | YES | MUL | NULL | |

+----------------------+--------------+------+-----+---------+----------------+

15 rows in set (0.00 sec)

mysql>

Listing 2: A description of the Intervention table

mysql> SELECT id, long_name, deployed_date FROM intervention ORDER BY id LIMIT 10;

+----+-------------------------+---------------------+

| id | long_name | deployed_date |

+----+-------------------------+---------------------+

| 10 | Randomisation Example 1 | 2009-11-26 17:21:00 |

| 13 | Randomisation Example 2 | 2009-12-02 15:22:00 |

| 14 | Randomisation Example 3 | 2009-12-03 11:52:00 |

| 20 | email test | 2009-12-14 13:12:00 |

| 21 | email test 2 | 2009-12-14 13:32:00 |

| 28 | Container Demo | 2010-01-14 17:15:00 |

| 31 | Calculation Example | 2010-01-18 10:33:00 |

| 38 | email test1 | 2010-01-19 11:25:00 |

| 40 | test email | 2010-01-19 11:51:00 |

| 55 | all together 3 | 2010-01-28 10:24:00 |

+----+-------------------------+---------------------+

10 rows in set (0.00 sec)

mysql>

Listing 3: An extract from the Intervention table.

3.1.4 Software version control (Subversion)

In order to allow several developers to work on the project simultaneously, it is typical to use a

software version control system. We used Subversion (http://subversion.apache.org/), which was

already installed as an ECS service.

In order to commit code to the repository, and to check out existing code, either a separate SVN

client can be used (for example Tortoise SVN5), or a plugin to Eclipse (such as Subclipse).

An issue that was raised in the SSI report is the possibility of replicating the codebase on

SourceForge6. In theory, it should be possible to maintain the ECS Forge version, with a mirrored

5
 TortoiseSVN: http://tortoisesvn.tigris.org/

6
 SourceForge: http://sourceforge.net/

http://subversion.apache.org/
http://tortoisesvn.tigris.org/
http://sourceforge.net/

 10

copy on SourceForge (so that any modifications to the ECS version are automatically reflected on

SourceForge). This was tried (using the svnsync command), but proved impossible due to the setup

of ECS Forge. Eventually we resorted to making the code available via ftp, but this was not ideal. In

future, it may be best to move all the code once and for all to SourceForge.

3.1.5 Grails plugins

Much useful functionality is provided by plugins to Grails. The main ones used in IBBRE are:

 Spring Security (formerly acegi) – provides mechanisms for security, logging in,

finding the current user, etc. See Section 5.1 for more details on access control.

 Quartz – scheduling tasks (e.g. sending emails). In LifeGuide, reminder emails are

sent to intervention users at various times in the future. Quartz allows you to specify

a job that executes at set intervals. The class MessageSenderJob (see Listing 4) runs

every five minutes, and sends any messages that have become due since the last

execution.

 Geb and Spock are related plugins used for functional testing (see Section 5.3 for

more details).

To see which plugins are available, and which are currently installed, use the command:

grails list-plugins

To install a plugin, use:

grails install-plugin <plugin name>

Finally, to uninstall a plugin:

grails uninstall-plugin <plugin name>

import uk.ac.soton.ecs.lifeguide.messaging.MessageCenter

class MessageSenderJob {

 def timeout = 1000L * 60L * 5L // execute job once in 5 mins

 def sessionFactory

 def execute() { //Send messages which haven't been sent, and are due

 def messages = Message.findAllByDateToSendLessThanAndSentDate(

 new Date(), null)

 messages.each { message ->

 if (MessageCenter.sendMessage(message))

 message.sentDate = new Date()

 sessionFactory.currentSession.flush()

 }

 //clean up message queue by removing sent messages (over 2 weeks old)

 def messagesToDelete =

 Message.findAllBySentDateIsNotNullAndSentDateLessThan(new Date()-14)

 messagesToDelete.each { message -> message.delete() }

 }

}

Listing 4: The Quartz task that sends LifeGuide messages.

 11

3.1.6 Web technologies

For laying out web pages, and for special interactive effects, it is often necessary to make use of web

technologies such as CSS7, Javascript libraries, and Ajax. For example, the intervention commenting

system (Figure 2) makes use of Javascript to render the resizable comment panes and Ajax to post

the comments. More information, and tutorials, can be found on the web, and in Chapter 6 of

“Grails in Action” (Smith & Ledbrook, 2009).

A very useful tool for testing and debugging web pages is Firebug8 (see Figure 3), which allows you to

compare the HTML and CSS code with the actual web page layout in your browser.

Figure 2: The intervention commenting system.

7
 Cascading Style Sheets: http://www.w3.org/Style/CSS/

8
 Firebug: http://getfirebug.com/

http://www.w3.org/Style/CSS/
http://getfirebug.com/

 12

Lesson Learned: Test web layouts in different browsers

The majority of LifeGuide users tend to use a version of Internet Explorer for browsing (however,
this is a subjective opinion and may be skewed, as we tend to get more problems with IE, and
therefore we hear more from these users). It is very important to make sure that any web pages look
good (and that, e.g., Javascript functionality works) in IE as well as other popular browsers. It is easy
to slip into the habit of using your favourite browser, but not checking others.

You should also make sure that you do not use non-standard HTML tags that work in one browser
but not others.

Figure 3: Using Firebug to examine web page contents.

3.1.7 Tools for testing

In addition to the functional testing provided by the Geb and Spock plugins (see Sections 3.1.5 and

5.3), Grails provides facilities for unit and integration testing, based on the JUnit framework. Some

use was made of these in IBBRE, but not enough. Grails will create test stubs for each domain class

automatically, and the developer should add code here to check that, for example, validation is

performed correctly (see Listing 5 for an example of a unit test for the User class).

 13

import grails.test.*

class UserTests extends GrailsUnitTestCase {

 void testConstraints() {

 def existingUser = new User(username: "fred",

 userRealName: "Fred Bloggs",

 passwd: "abcd123",

 enabled: true,

 receiveEmailAnnouncements: false,

 email: "fred@nowhere.com")

 mockForConstraintsTests(User, [existingUser])

 def testUser = new User()

 assertFalse testUser.validate()

 assertEquals "nullable", testUser.errors["username"]

 assertEquals "nullable", testUser.errors["userRealName"]

 assertEquals "nullable", testUser.errors["passwd"]

 assertEquals "nullable", testUser.errors["email"]

 testUser = new User(email: "whatever")

 assertFalse testUser.validate()

 assertEquals "email", testUser.errors["email"]

 testUser = new User(username: "fred")

 assertFalse testUser.validate()

 assertEquals "unique", testUser.errors["username"]

 testUser = new User(username: "alice",

 userRealName: "Alice Bloggs",

 passwd: "abcd123",

 enabled: true,

 receiveEmailAnnouncements: false,

 email: "alice@nowhere.com")

 assertTrue testUser.validate()

 }

}

Listing 5: A Grails unit test for the User class.

3.2 Additional web-based features

3.2.1 Forums

Forums can be set up for particular interventions, or possibly groups of related interventions (there

is no strictly enforced connection, but typically a forum is intended for discussion by participants and

owners of an intervention).

We used phpBB9 for setting up forums. Rather than installing a new copy of phpBB for each forum, it

is possible to use a single installation of phpBB to host multiple forums, which reduces setup time to

just a few minutes (see Section 4.4 for details).10

9
 phpBB Free and Open Source Forum Software: http://www.phpbb.com/

10
 The original online discussion describing the solution that we adapted can be found at

http://www.phpbb.com/community/viewtopic.php?t=272407 [accessed 11 October 2010]

http://www.phpbb.com/
http://www.phpbb.com/community/viewtopic.php?t=272407

 14

3.3 Project monitoring technologies
There are several ways in which the project progress is monitored (new features requested, bugs

reported). These include:

 informal feedback (emails, word of mouth, forums)

 prioritisation list

 GANTT chart

 meeting agendas and minutes, with actions

 server logs, including automated emails to admin

 bug tracking software

3.3.1 Informal feedback

Many requests come via email, word of mouth, or a forum. For reporting bugs, this is typically done

by email. However, this is not always ideal, as it is difficult to see quickly which tasks are

outstanding, and what progress has been made on each. It is often difficult for the originator of the

bug report to know which developer to send it to, so he or she tends to send it to all developers.

3.3.2 Bug tracking software

For bug tracking and for feature requests, we experimented with FlySpray (http://flyspray.org/), a

system that allows tasks to be added and monitored for a project. The software is open-source,

written in PHP, and was installed on a local ECS server.

Figure 4: The IBBRE task list in FlySpray

FlySpray was used fairly intensively after we adopted it, but the usage tailed off towards the end of

the project. Although it was very useful in alerting developers to new problems and tasks (an email

http://flyspray.org/

 15

alert is sent to the relevant developer), after a while new problems and tasks were no longer being

added, and the informal approach of directly emailing the developers was reverted to.

The main advantage of using FlySpray is that it allows tabular summaries of tasks, sorted by priority,

and with a clear depiction of how much progress has been made on each task. This is much easier

than searching through past emails to find outstanding tasks, or searching through notes made in

meetings.

The main drawback is that it is more effort to create a new task in FlySpray than to send an email

directly or to report a problem verbally. It seems that the initial overhead of going to the FlySpray

website and creating a new task is too high, or perceived to be too high, even though the end

benefits are quite good. Some way of reducing this initial effort, or of making the end benefit more

visible, may be needed. As well as, or instead of this, simply insisting that end users report problems

or request new features via FlySpray before they are dealt with may be a solution.

Figure 5: Details of a single task in FlySpray

 16

4 Tutorial section

In this section, we describe how to perform common tasks with the IBBRE server, and give some

guidance on future development and testing of the IBBRE software. This section will be of interest to

future developers of IBBRE, but it may also give some ideas for developers of similar systems.

4.1 Common operations with Grails
In this section we list just the most common Grails operations. For details of other operations,

consult the Grails website, or type:

grails help

at the command line for a quick list (after installing Grails as described in section 4.1.1 below).

4.1.1 Installation

To install Grails on your machine, follow these steps:

 Download the latest version of Grails from http://www.grails.org/Download.

 Set the GRAILS_HOME environment variable to refer to your downloaded directory.

 Add $GRAILS_HOME/bin to your system path, so that you can run Grails scripts from

your command line console.

4.1.2 Upgrading Grails

To upgrade your version of Grails to the latest version, use the command:

grails upgrade

4.1.3 Running Grails applications on your local computer

To run the Grails application in development mode (i.e. on your local machine, with a temporary

database), first change directory to that of the application, for example:

cd workspace/LifeGuide

and then:

grails run-app

You can then point your web browser to http://localhost:8080/LifeGuide/ and use the application.

4.1.4 Testing applications

To run all unit, integration, and functional tests in sequence, use the command:

grails test-app

For individual types of test, you can use (for example):

grails test-app –functional

(In fact, in the current setup, the environment for functional tests seems to conflict with that of

other tests, so it is advisable to run functional tests separately – otherwise the functional tests will

fail, even when they shouldn’t). The results from testing are stored in html files that can be viewed

in a browser (see Figure 6).

http://www.grails.org/Download
http://localhost:8080/LifeGuide/

 17

4.1.5 Creating new domain classes, controllers, etc

Although it is possible to write classes and controllers from scratch, using a text editor (or more

likely, an IDE such as Eclipse), it is usually easier to use the commands:

grails create-domain-class <class name>

grails create-controller <class name>

These produce the skeleton code that can be filled in later. To create views, you can use:

grails generate-views <class name>

The views will generally require much tailoring to suit your needs. For more details, please see the

web resources or the Grails in Action book.

Figure 6: Automated test results in Grails.

4.2 Common operations with SVN
For more background information on SVN, see the online book “Version Control with Subversion”

(Collins-Sussman, Fitzpatrick, & Pilato, 2010).

 18

To check out (or import) the IBBRE code from the SVN repository into Eclipse, you need to have the

Subclipse plugin installed in Eclipse.

4.2.1 Installing the Subclipse SVN plugin to Eclipse

In order to install SVN, follow these steps:

 Inside your eclipse IDE, Go to: Help ->Software Updates;

 Change to the Available Software tab;

 Click on Add Site;

 Paste the update site URL (http://subclipse.tigris.org/update_1.0.x) and click OK;

 Restart Eclipse.

4.2.2 Importing the IBBRE code

In order to reuse IBBRE source code for your own development, follow these steps:

 From Eclipse’s File menu, choose Import to display the import manager. Choose

Checkout Projects from SVN, then click Next;

 On the Select/Create Location panel, we need to create a new location (since we

don't have any configured yet), so click Next to continue. If the Next button is

disabled, switch to the Use existing repository location option, then back to Create a

new repository location to enable the Next button;

 In the next section add the repository URL (in our setup this is

svn+ssh://yourname@svn.forge.ecs.soton.ac.uk/projects/Lifeguide) to the URL field,

and then click Next. After a moment, Eclipse prompts you for your password. Check

the Save Password box, and click OK;

 Expand branches/ibbre-branch/LifeGuide and click OK.

To update your code (i.e. to import any changes that other users have made to the code), right click

on the file(s) or folder(s) that you wish to update, and select “Team/Update to HEAD”.

To commit changes, right click the file(s) or folder(s) and select “Team/Commit”.

To compare your version of a file with the repository, select “Compare With/Latest From

Repository”. This gives a display of both versions of the file, with the differences highlighted.

4.3 Project deployment
Warning – the commands in the following section will briefly shutdown the server, meaning that any

logged in users will be unable to use the system. We use a specified time each week (Wednesdays

from 9-10am), when the server is “at risk”, so that impact on users is minimised.

As I cannot use the main server for experimentation, the example screenshots will generally be for

the “beta” server, with explanations as to how to modify the commands for the main server.

http://subclipse.tigris.org/update_1.0.x

 19

If new code has been committed in SVN, the server has to be updated in order to use the code. To

do this:

 the new code should be tested, to reduce the chances of errors (see section 4.1.4);

 a WAR file has to be generated from the Grails project;

 the WAR file must be copied to the correct location on the server;

 the server container can be restarted (this is not always necessary, as just copying

the WAR file is usually sufficient)

4.3.1 Testing the code

The testing is done by the command

grails test-app

or grails test-app –unit (or –integration or –functional) for specific types of tests (the

current setup for functional tests is incompatible with the setup for unit and integration tests, so it is

best to do the functional tests separately to avoid misleading results).

4.3.2 Creating the WAR file

Creating the WAR file is done on the developer’s machine (Figure 7 and Figure 8), using the

command:

grails –Dgrails.env=production war

For other environments (usually the beta server, where the staging environment is used), you can

change “production” to the name of the environment, for example:

grails –Dgrails.env=staging war

You will almost certainly not need any environments other than production and staging for building

WAR files (as the development and test versions are run without building a WAR file).

Figure 7: Creating the WAR file (you will see many diagnostic messages after entering the command)

 20

Figure 8: Checking that the WAR file was created.

4.3.3 Copying the WAR file

Using ftp (for example, the psftp program that is bundled with putty11) you need to copy the WAR

file to the server. The location in our setup is /projects/lifeguide/tomcats/staging/webapps

The example screenshot here (Figure 9) uses psftp:

First make sure that the local directory is where the newly compiled WAR file is. By default the

remote directory will be your home file directory on the server, and there is no need to change this.

put LifeGuide-0.1.war

Figure 9: Copying the WAR file to the server

4.3.4 Restarting the server (may be optional)

Depending on your web server setup, the action of copying the the WAR file to the webapps

directory may be enough for deployment to start. In other cases, you will need to restart the server

using the instructions here. There is no harm in restarting the server if you are not sure.

Using putty (or a similar SSH client) log on to the server. Change directory to the webapps directory

for the server container. Copy the WAR file from your home directory to the webapps directory.

sudo cp ~/LifeGuide-0.1.war .

11
 PuTTY: A Free Telnet/SSH Client: http://www.chiark.greenend.org.uk/~sgtatham/putty/

http://www.chiark.greenend.org.uk/~sgtatham/putty/

 21

To restart the server, use the following command (details may vary depending on your local setup):

sudo /sbin/service tomcat_lifeguide_production restart

If desired, you can monitor the server startup process by viewing the server log file:

tail –f ../logs/catalina.out

4.4 Setting up a discussion forum for an intervention
Occasionally, an intervention owner will request that a forum is set up for discussion of the

intervention – this could be discussion between researchers on the intervention (see Figure 10), or

possibly for discussions between the end users of the intervention. We used phpBB for the forums,

which seems to work well. To avoid having to make a new installation of phpBB for each forum, we

adopted a procedure that allows multiple forums to be hosted with one installation of phpBB. As

new forums are not requested very frequently, it is a good idea to have a written record of the steps

involved, as they are easy to forget.

 22

Figure 10: A phpBB forum for discussion of the GRACE INTRO intervention.

The steps required are (some locations of files may be different in your setup):

1. Choose the name for the forum (eg forum1) and configure it in

/etc/httpd/conf.host/ibbre.conf, adding an Alias and a ProxyPass line:

ProxyPass /forum1 !

Alias /forum1 /var/www/html/phpBB3

2. reload Apache:

sudo /sbin/service httpd reload

3. Go to /var/www/html/phpBBinstaller and empty the config.php file;

4. Browse to http://octopussy.ecs.soton.ac.uk/phpBBinstaller, and run the installation, with

the database name as phpBB3 and using the table prefix of the forum name from step 1

followed by an underscore (e.g. forum1_).

<?php

// phpBB 3.0.x auto-generated configuration file

// Do not change anything in this file!

//NO REALLY, DON'T DELETE THIS. I DID IT ONCE - DON'T DO IT AGAIN.

// -- ACO, 20/09/10

//$fName=substr($_SERVER["REQUEST_URI"], 1, strlen($_SERVER["REQUEST_URI"])-2);

//echo "<!--\n";

//echo $_SERVER["REQUEST_URI"] . "\n";

//echo strpos($_SERVER["REQUEST_URI"], "/", 2). "\n";

//echo substr($_SERVER["REQUEST_URI"], 1, strpos($_SERVER["REQUEST_URI"], "/", 2)

-1) . "\n";

//echo "-->";

$dbms = 'mysqli';

$dbhost = '';

$dbport = '';

$dbname = 'phpBB3';

$dbuser = 'root';

$dbpasswd = 'octopussy';

$table_prefix = substr($_SERVER["REQUEST_URI"], 1, strpos($_SERVER["REQUEST_URI"],

"/", 2) -1) . '_';

$acm_type = 'file';

$load_extensions = '';

@define('PHPBB_INSTALLED', true);

// @define('DEBUG', true);

// @define('DEBUG_EXTRA', true);

?>

Listing 6: The config.php file for multiple forums. Do not modify this (except for the dbname, dbuser, etc, database
settings, which should be set once initially according to your setup)

4.5 Modifying the production database schema
A common programming task involves adding an extra field to a domain class. To persist the domain

objects to a database will require some modification (usually just an extra column in a table). In the

development and staging environments, this is not a problem, as the databases are created from

scratch each time. But as the production database is not cleared, you will get errors (Figure 11)

created by trying to access the missing column in the table. The simplest option is often to modify

the production database schema by hand.

 23

Figure 11: An error message returned, indicating a problem with the database schema.

You need to be very careful when doing these operations. Make a backup of the database first (you

can use the mysqldump command, as in the box “Lesson learned: use real data for testing” in

Section 5.2.

In the example (Listing 7), I use a recent case where I needed to insert a column “last_modified_on”

to the intervention_folder table.

mysql> DESCRIBE intervention_folder;

+----------------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------------------+--------------+------+-----+---------+----------------+

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | | |

| folder_name | varchar(255) | NO | UNI | | |

| owner_id | bigint(20) | NO | MUL | | |

| main_intervention_id | bigint(20) | YES | MUL | NULL | |

+----------------------+--------------+------+-----+---------+----------------+

5 rows in set (0.00 sec)

mysql> ALTER TABLE intervention_folder

 -> ADD last_modified_on DATETIME NOT NULL DEFAULT "2010-12-01";

Query OK, 28 rows affected (0.07 sec)

Records: 28 Duplicates: 0 Warnings: 0

mysql> DESCRIBE intervention_folder;

+----------------------+--------------+------+-----+---------------------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------------------+--------------+------+-----+---------------------+----------------+

| id | bigint(20) | NO | PRI | NULL | auto_increment |

| version | bigint(20) | NO | | | |

| folder_name | varchar(255) | NO | UNI | | |

| owner_id | bigint(20) | NO | MUL | | |

| main_intervention_id | bigint(20) | YES | MUL | NULL | |

| last_modified_on | datetime | NO | | 2010-12-01 00:00:00 | |

+----------------------+--------------+------+-----+---------------------+----------------+

6 rows in set (0.00 sec)

mysql> SELECT * FROM intervention_folder LIMIT 3;

+----+---------+-----------------+----------+----------------------+---------------------+

| id | version | folder_name | owner_id | main_intervention_id | last_modified_on |

+----+---------+-----------------+----------+----------------------+---------------------+

| 2 | 8 | Adrian's Folder | 27 | 763 | 2010-12-01 00:00:00 |

| 4 | 36 | POWeR | 13 | 805 | 2010-12-01 00:00:00 |

| 13 | 2 | NCSCT | 21 | NULL | 2010-12-01 00:00:00 |

+----+---------+-----------------+----------+----------------------+---------------------+

3 rows in set (0.00 sec)

mysql>

Listing 7: An example of modifying the production database schema.

5 Commonly used Grails features

In this section, we describe features of Grails that are used in IBBRE, that are used frequently, and

may be counter-intuitive. Also, we describe features that should be used in future, but are currently

underemployed. The book by Smith and Ledbrook (Smith & Ledbrook, 2009) is highly recommended.

5.1 Access Control
Security and access control is a very important feature, as certain users (administrators) should be

able to access features that other users can’t. To do this, we use the Spring Security (formerly called

Acegi Security) plugin for Grails12. Domain classes called User, Role and Requestmap are created

with this plugin.

The class User is self-explanatory, representing a single user of the system, with a name, email,

encrypted password, and so on. It can easily be extended by added other fields as required.

Role represents a level of access and which users belong to each role.

Requestmap represents which URLs can be accessed by users from which roles. These can be set

up in the Bootstrap.groovy file for the development, testing and staging environments (Listing 8).

However, remember that the Bootstrap.groovy works differently depending on the environment. In

our setup, the Requestmaps are created for the development environment, but not for the

production environment (the production database is not wiped between restarts, so we do not want

to repeatedly add data that is already there). So, you will also need to add the new Requestmap to

the production database by hand (see Listing 10).

// Let moderators modify users
new Requestmap(url: '/admin/user/**', configAttribute: "ROLE_MODERATOR").save()
new Requestmap(url: '/manager/user/**', configAttribute: defaultRole).save()

Listing 8: An extract from Bootstrap.groovy, showing the Requestmap mechanism for access control.

A grails service called AuthenticateService is also provided that allows you to find the current

user, and which access role(s) they have. For example, in Listing 9 (part of

InterventionController.groovy) authenticateService is used to find the logged-in

user, and also to check if the user has administrator rights.

5.1.1 A possible alternative – Shiro

As an alternative to Spring Security, it may be worth considering the use of Apache Shiro13. This uses

a similar mechanism of users and roles, but the access control is specified in each controller –

removing the need for setting up Requestmaps in the Bootstrap.groovy file or in the database. See

Listing 11 for an example, and refer to the Grails documentation for more details.

12
 See http://www.grails.org/AcegiSecurity+Plugin+-+Basic+Tutorial+with+Annotations for a basic tutorial.

13
 Apache Shiro: http://shiro.apache.org/

http://www.grails.org/AcegiSecurity+Plugin+-+Basic+Tutorial+with+Annotations
http://shiro.apache.org/

 26

class InterventionController {

 AuthenticateService authenticateService

// …

def delete = {

 def intervention = Intervention.get(params.id)

 def user = authenticateService.userDomain()

 if (!intervention) {

 flash.message = "Intervention not found with id ${params.id}"

 redirect(action:list)

 }

 boolean userIsAdministrator = false;

 synchronized (this) {

 userIsAdministrator = authenticateService.ifAllGranted("ROLE_ADMIN");

 }

 if(intervention.owner.id != user.id && !userIsAdministrator) {

 flash.message = "Only the owner of an intervention can delete it"

 redirect(action:list)

 }

 else { //…

Listing 9: Checking user access in Groovy, with AuthenticateService.

 27

Listing 10: Adding a row to a database manually.

 28

class ExampleController extends JsecAuthBase {

 static accessControl = {

 // All actions require the 'Observer' role.

 role(name: 'Observer')

 // The 'edit' action requires the 'Administrator' role.

 role(name: 'Administrator', action: 'edit')

 // Alternatively, several actions can be specified.

 role(name: 'Administrator', only: ['create', 'edit', 'save', 'update'])

 }

 …

}

Listing 11: An example using Shiro from the Grails framework reference

5.2 Bootstrapping
Commands to initialise test data are contained in the file BootStrap.groovy. This typically creates

some users and interventions in order to provide data for experimentation (as the development and

staging databases are usually set to be wiped when at server restart). Such data can be satisfactory

for basic testing, but for better results you should consider using a copy of real data (see the box

“Lesson learned: use real data for testing”).

However, for the production database, it is clearly not advisable to wipe the database when the

server is restarted. The Bootstrap.groovy file therefore contains if statements that check the

current environment, and take actions accordingly. For example, Listing 12 shows an extract from

the Bootstrap.groovy file that creates new Roles (see Section 5.1) for non-production environments.

//…

if (!GrailsUtil.environment.equals("production")) {

 def defaultRole = authenticateService.securityConfig.security.defaultRole

 new Role(description:"default user group", authority:defaultRole).save()

 new Role(description:"admin group",authority:"ROLE_ADMIN").save()

 new Role(description:"moderate other users",

 authority:"ROLE_MODERATOR").save()

 new Role(description:"researcher",authority:"ROLE_RESEARCHER").save()

//…

Listing 12: An extract from the IBBRE Bootstrap.groovy file

 29

Lesson learned: use real data for testing

The Bootstrap.groovy file is very useful for creating small amounts of data to try out the LifeGuide
server. However, we learned that for improved testing it was necessary to use more realistic data.
The advantages of this include:

Views that require pagination of list results are easier to test
There are a wider range of users, with different amounts of data to view
Server performance problems (e.g. memory leaks) can be more easily traced

One solution is to use a copy of the production database for testing. (Of course, in the early stages of
building and testing a new system, such data won’t exist. But for testing a new feature in a working
system, this approach is very useful). For mySQL, the database copy can be made using the
mysqldump command on the server, for example:

mysqldump --user=<username> --password=<password> productiondbname > file.sql

This may take some time, but the resulting file can be used many times, with new dumps performed
only if an updated copy is needed. The dump file (file.sql here) should then be copied to your
local machine with ftp (compressing the file before copying it will save a lot of time).

For testing, start the local copy of the server using grails run-app as usual. When it is running,
you can restore the backed up copy of the database with:

mysql --user=<username> --password=<password> localdbname < file.sql

Finally, to log in as different users, you will have to modify some passwords in the local database.
Using a graphical database tool such as MySQL Query Browser or MySQL Workbench
(http://dev.mysql.com/downloads/workbench/) is easiest for this task. Find your own account in the
database, and copy the encrypted password field to the rows for any other users that you wish to
test for. Following this, you will be able to log in as any other user, and get the same views that they
would see.

5.3 Grails Testing
One key recommendation of the SSI report is to create a suite of functional unit/integration tests.

While some steps have been taken in this direction in IBBRE, there remains much to be done.

http://dev.mysql.com/downloads/workbench/

 30

Lesson learned: functional testing

Peter Ledbrook, co-author of the book “Grails in Action” (Smith & Ledbrook, 2009), suggested on the
IBBRE blog (http://blogs.ecs.soton.ac.uk/ibbre/) that we use the Geb and Spock plugins for
functional testing. This seems a promising approach, and is very useful for automating security tests
(e.g. making sure that regular users cannot access parts of the website that should be restricted to
administrators). It is very easy for the addition of new features to cause existing features to break –
and therefore it is important to be able to quickly check that this does not happen.

The installation of the plugins is currently done with the commands:

 grails install-plugin geb

 grails install-plugin spock 0.5-groovy-1.7-SNAPSHOT

(You should check if the version of Spock should be changed.)

Tests are kept in the test/functional directory, and are written in a fairly simple language. A small
example is:

 def "Test regular user CANNOT access restricted stuff"() {

 given:

 login "demo_bob", "demo_bob"

 when:

 go "admin/user/index"

 then:

 verifyUnauthorised()

 }

There are three main sections to most tests, an optional setup section (“given”), a mandatory
stimulus section (“when”), and a mandatory response check section (“then”). In this test, login

and verifyUnauthorised are separate helper functions to simplify coding.

There are also useful shorthands that allow testing on multiple sets of data. For example, the next
test is performed twice for different users:

def "Test user CAN see owned or shared folder"() {

 given:

 login username, username

 when:

 go "manager/interventionFolder/show/1"

 then:

 $().text().contains("Owner")

 $().text().contains("bob")

 where:

 username << ["bob", "steve"]

 }

http://blogs.ecs.soton.ac.uk/ibbre/

 31

6 Recommendations

6.1 Testing
Testing should be improved, and be planned for in project schedules. Before performing the weekly

server update, the tests should be run to improve the confidence in the code. Improving test

coverage will take some time – it is recommended that whenever a problem is reported (for

example a user cannot access a page that they should be able to), then a new functional test is

added for that issue. In addition, other tests should be added as time permits. It is important to run

the tests after each major code change, and to keep the tests up to date as necessary.

6.2 Code refactoring
Refactoring of repeated elements in the code needs to be done. In particular, checking of access

permissions is repeated in several places. In the early stages of coding, the permission checking was

not too complex, but with the addition of intervention folders, and of demo and tutorial intervention

types, the checking takes several lines of code, which is replicated. It is very easy to make a mistake

in this code, which may not be spotted for some time. Functional testing should reveal most of these

errors, but it is better to simplify the code.

6.3 Encourage/enforce the use of bug tracking software
It seems that using a central bug tracker reduces confusion over which tasks are to be done by

whom, and what progress has been made on each. If email or word of mouth is used, tasks will be

forgotten, or the exact requirements for tasks will be lost. However, most users will be reluctant to

report bugs or request features using a bug tracker, preferring email instead.

6.4 Making the source code more widely available
The source code should be either mirrored or transferred to an open source repository such as

SourceForge. Attempts were made during the project to set up a mirror of the code on SourceForge,

so that changes made in the ECS code repository were also made in the SourceForge version, but

this proved impossible to set up. It may be best to simply transfer the entire code to SourceForge for

long term stability, and thereafter use it as the only version. This will enable other institutions to

easily get a copy of the system to run on their servers.

6.5 Database migrations
The schema of the production database that is used in IBBRE has gradually been modified as the

domain classes have changed during the project. Sometimes these changes will lead to errors or

involve troublesome modifications of table schemas by hand. If other institutions want to use our

code on their servers, they need to make sure that their database schema matches ours. Some

plugins for Grails, such as Liquibase14, may help in automating these tasks.

14
 Liquibase: http://www.liquibase.org/manual/grails

http://www.liquibase.org/manual/grails

 32

7 Glossary

Term Explanation

Grails environment Grails can be run in different modes, for
example, development, testing, staging, and
production. Each will access different databases,
and be configured in different ways. The
development environment is generally for trial
running on a local machine, whereas the
production environment is the main server
configuration that is seen by users.

Grails A development framework that uses the Model
View Controller pattern and many ancillary
technologies for developing web applications.

GORM Grails Object Relational Mapping. The
mechanism that persists Grails objects to a
relational database. It uses Hibernate to
implement this. It is mostly transparent to the
developer, although it can cause some
unexpected problems.

Quartz A scheduler that can be used as a plugin to Grails
to execute tasks at specific times/intervals.

Spring security Another Grails plugin, that provides an access
control and security mechanism for web
applications.

WAR Web Archive – a single file that can be copied
into a web container such as Tomcat, which will
then run the web application.

8 References and Further Reading

Collins-Sussman, B., Fitzpatrick, B. W., & Pilato, C. M. (2010). Version Control with

Subversion. Retrieved from http://svnbook.red-bean.com/.

Crouch, S. (2010). LifeGuide Software Evaluation.

Smith, G., & Ledbrook, P. (2009). Grails in Action (p. 520). Manning Publications. Retrieved

from http://www.amazon.co.uk/Grails-Action-Glen-Smith/dp/1933988932.

Wills, G. (2009). A VRE to support cross-disciplinary and cross-institutional collaboration in

internet-based behavioural research (IBBRE project proposal). University of

Southampton.

