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B-factories help attain an important milestone

o CKM constraints using expts. [eg, b = ule, Amyg, S/ Ay

I lattice + phenom. = {sin23)sus k@i—ﬂ#ﬂ 7?,1/( /O
e acp(B — ¥wK") [BELLE/BABAR/CDF....] = sin28 = 023+ 67{_ DB
055 = CKM phase is the dominant contributor to a. e —

= CP-odd phase(s) due BSM (v 5sis) may well cause only small
deviations from SM in B-Physics

Search must go on

Search for CP-odd phase(s) [y msa] due BSM-physics is espe-
cially well motivated as there are essentially compelling reasons that

they exist:

Extensions of SM invariably lead to new phase(s), be-
sides baryogenesis is difficult to account for by the CKM
paradigm



Lightning recap to SM-CKM paradigm of CPV
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CKM matrix relates weak and mass eigenstates of quarks
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Four physical parameters; fundamental constants of the SM

Complex elements allow (only source of) CP violation in SM
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Unitarity triangle

Represent as “Unitarity Triangle™ in LDII'[[JIE‘& p.n plane

To O(A*). use corrected values: p = p(1-A"/2), 77 =n(1-A*/
n
Apex is 2l b, —argl NV & Yr_p-y
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Theoretical Underpinnings (see e.g. Ciuchini et al, hep-ph/0012308)

e CP wviolation in the kaon systemn which is expressed by |eg|

lex| = C. A2 7 [—mS(z.) + 728(xe) (A*AY (1 — p)) + maS(z., z¢)| Br .

(2.4)

where P )
T F T T g
C. = — .
64 2m2 A M p
S(xz;) and S{x;,x;) are the appropriate Inami-Lim functions [27] of =z,

2

(2.5)

-inéfm'l_{,-. including the next-to-leading order QCD corrections [28, 30]. The

most uncertain parameter is By

e The BY— BY time oscillation period which can be related to the mass difference

between the light and heavy mass eigenstates of the BY — BY svstemn

G5 . N
A - P9 N A26 71 =12, =27 . 2 oy Y
Amg = mﬂlﬁf neS(xe) AA” [(1 — p)° + 77| mp, deBgd . (2.
where S(x;) is the Inami-Lim function (27| and x; = mi/M3,. my is the M S
top mass, mM%(mM), and 5. is the perturbative QCD short-distance NLO

8 = = - 3] — = . = -
correction.  The remaining factor, fp Bpg,. encodes the information of non-

perturbative QCD. Apart for g and 7, the most uncertain parameter in this

expression is fg, "-,-"":BBd' The value of 7. = 0.554£0.01 has been obtained in [28]

and we used m; = (167 £ 5) GeV . as deduced from measurements of the mass

by CDF and DO Collaborations [29].



e The limit on the lower value for the time oscillation period of the BY — B!

system 1s transformed into a limit on Am, and compared with Amy

A1y _ ?ﬂBdfgdBBd A (1 — )2 —'3] (2.3)
JA 2 T 1 — A2/2 \ P Tl Y
"]‘?15 mBSst BES -"II Fd
The ratio & = fg. 1"» BEs_fJfBa' "lk-"';..BBd 15 expected to be better determined from

theory than the individual quantities entering into its expression. In our anal-
vsis, we accounted for the correlation due to the appearance of Amyg in both
Equations (2.2) and (2.3).

e The relative rate of charmed and charmless b-hadron semileptonic decayvs which
allows to measure the ratio
Vi A

aﬁ () )
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Overall CKM agreement S &) A KSB N 70/
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3rd family, before the discovery of charm and tau, its framework is
vindicated in detail through exhaustive experimentation ~35 years later!!

Celebration II: A beautiful theory paper which not only suggested the need for th

652

Progress of Theoretical Physics, Vol. 49, No. 2, February 1973

CP.Violation in the Renormalizable Theory
of Weak Interaction

Makoto KOBAYASHI and Toshihide MASKAWA

Department of Physics, Kyoto University, Kyoto

(Received September 1, 1972)

In a framem:ﬂrk of the renormalizable theory of weak interaction, problems of CP-violation
are studied. It is concluded that no realistic models of CP-violation exist in the quartet

schem:s: without introducing any other new fields. Some possible models of CP-violation are
also discussed.
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And of course we must not forget the C!

UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo
CERN, Geneva, Switzerland
(Received 29 April 1963)

We present here an analysis of leptonic decays
based on the unitary symmetry for strong inter-
actions, in the version known as “eightfold way,™
and the V-A theory for weak interactions.®? Qur
basic assumptions on Jy, the weak current of
strong interacting particles, are as follows:

“}_‘:I;.e transforms according to the eightfold
representation of SU,. This means that we neg-
lect currents with AS=-Ag, or Al=3/2, which
should belong to other representations. This
limits the scope of the analysis, and we are not

able to treat the complex of K leptonic decays,
or Z*—p +e”+v in which AS=-AQ currents play
a role. For the other processes we make the
hypothesis that the main contributions come from
that part of J u which is in the eightfold represen-
tation.

(2) The vector part of J,, is in the same octet as
the electromagnetic current. The vector contri-

bution can then be deduced from the electromag-
netic properties of strong interacting particles.
For A5=0, this assumption is equivalent to vector-

031
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Should 10% tests be good
enough?

Vital Lessons from our past

« LESSON #1: Remember &

+ Its extremely important to reflect on the severe and tragic
consequences if

Cronin et al had decided in 1963 that O(10%) searches for € were good
enough!

Imagine what an utter disaster for our field that would have been.

Note also even though CKM-CP-odd phase is O(1) (as we now know)
in the SM due to this O(1) phase only in B-physics we saw large effects...
in K (miniscule), D(very small), t(utterly negligible).

Understanding the fundamental SM parameters to
accuracy only of O(10%) would leave us extremely
vulnerable ..... Improvement of our understanding
should be our crucial HOLY GRAIL!

CPV: SM&Beyond......A.Soni 17



Lesson #2

Remember m,

Just as there was never any good reason for m, =0
there is none for BSM-CP-odd phase not to exist

Am2 ~1eV2 ~ 1980 -> Am2~10-4eV2 97
Osc. Discovered....
Similarly for BSM-CP-odd phase, we

may need to look for much smaller
deviations than the current O(10%)

demanding precision from expt. & theory

CPV: SM&Beyond......A.Soni 18



Prospects for improved
exptal precision
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Integrated luminosity (ab)

Proposed schedule
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SuperB @ INFN

PEP-II SuperB
Oz 1cm 1cm
01/ 0 25 mrad
Ox 100 um 2.7 um
ot 1cm 40 um
By 0.8 cm 80 um
Oy 4 um 12 nm
&y 0.07 < 0.07
£ ~1034 ~1036

Aaron Roodman @DPF06
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Prospects for
Improved lattice
calculations
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~25 years of By

C. Bernard, A. Soni/ Weak matrix elements on the lattice 16

10.0

7.5

5.0

(Gev)*
2.5

00 02 ©4 06 08 10
m? (GeV)?
FIGURE 4

The amplitude {K°|{As = 2)pp| K"} x 10* vs. m*. The solid
line is a naive (uncorrelated) fit to the data.

CPV: SM&Beyond......A.Soni

{K%(As = 2)pL|K") with Wilson fermions has been pro-
posed in Ref. 32. One starts by writing the CPTh form for
the matrix elements of the continuum (physical) operator and
for its Wilson lattice counterpart:

(KO(8s =2)Lo|K°)*™ =x(px - pg) + -+

(R°|(As=2)1|K%)'™ =a+ fm® + +'(pxc - pg) + -+,

(8)

where the a and # terms in the lattice amplitude (and the
change from ~ to <"} are due to *bad” chirality operator:
such as O, which have not been correctly removed by per-
turbation theory. MNote that for K, K at rest, px -pg =
m?; while for the crossed amplitude {A°K°|(As = 2)12|0)
P -Pr = —m?®. Both the original K% - K%amplitude and the
crossed amplitude are then computed at rest on the lattics
for various values of m, and the 4 term is extracted by a fi
to the data. Finally, with the assumption « = 7' (see below

for a critique), the order m? term in the continuum ampli

Lattice ‘88

Bernard & A.S.

L=




Chiral Symmetery & fine tuning
AS=2 G540 C“‘>(\/- A) X (V-#)
666\1\{ S
- (+c 3 )(S)L* W.@_ 00 -

ler"

YA V\)\\A\RO g Chin B
)e /QU/W METLI
\V\)O ) —=>0 ) <{’\\ ?XV“Q‘—? Coucl
DL (“‘6(30

Accurate evaluation of O,, requires precise knowledge of C’s
-> SEARCHING FOR A NEEDLE IN A HAYSTACK




AS=1, a deathbed w/o chiral
symmetry

2.q. @XM é") (D;)M&L/

& \ Mix | g W7y J/Mééﬁgagf
MIKING WITH LD O W\@ o
, 22 ;- ST Simdon 5 BS=2
- 12 U PHIL TASK
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EXACT CHIRAL SYMMETREY ONTHE LATTICE

Conventional fermions do not preserve chiral-flavor
symmetry on the lattice (Nielsen - Ninomiva T heorem)
= AS =1, A = 1/2 case mixing with lower dim.
(power-divergent) operators & or mixing of d-gquark
operators with wrong chirality ones makes lattice
study of K — 7 phvysics virtually impossible.

Domain Wall Fermions (Kaplan, Shamir, Naravanan
and Neuberger)

¥
Right

L=t o Fe.—1

-

—
—5th dimm. —

Practical viability of DWF for QCD demonstrated
(96-97) Tom Blum & AL S

Chiral symmetry on the lattice, ¢ == 0! Huge
improvement

= MNow widespread use at ENL and elsewhere



RBC-UKQCD’s 2+1 dynamical DWQ
hep-ph/0702042

Final Result for BK

. a =0 extrmpolaton, 24 10 {RBC-UKCCD)

i .' Iwasaki + DWEF 2411 (RBC-UKOCDY
0 AsgTad staggered 24 1 [{HPOCD-UKOCD)
DEW?2 + DWEF 2 {RBC)

DEW?2 + DWEF O {RBC)
Iwasaki + DWF O {CPPACS)

Wilson + DWEF Of (RBC)
06—

L X: b T e

OO

I'I_vl"j_':l —

1 @@

il l | l | l |
0 (.005 0.01 0.015
3 3

a (fm)y”

Bk'm'{E GeV) =0.557(12)(29) extrapolated to continuum {t
- 1.4
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NATIONAL LABORATORY

e o
hiah =ne o gt

Brief (~25 years) History omeK

W
~’83 DGH use K* lifetime + LOChPT + SU(3)-> MCONTROLLABLE _7
B« ~0.33... no error estimate, no scale dependence/.. A PPK())([ MAT/D/\/—

~'84 Lattice method for WME born...many attempts
& improvements for B, evaluations

— S

~’98 JLQCDstaggered B, (2GeV)= 0.628(42)quenched(~110).

~'97 1st B, with DWQ(T.BIum&A.S),0.628(47) quenched.
~'01 RBC By with DWQ, quenched=0.532(11) quenched

~05 RBC, nf=2, dyn. DWQ, B, =0.563(21)(39)(30)
~'06 Gimnez et al (HPQCD; stagg.) 2+1, B, =0.618(18)(19)(30)(130)

~07,RBC-UKQCD DWQ 2+1 ..... 0.557(12)(29)
DWQ Ilower By -> requiring larger CKM-phase

~’08 Target 2+1 dyn. DWQ, B, with total error 5%

CPV: SM&Beyond......A.Soni 29
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Tantalizing (possible)
signs of a BSM-CP phase

CPV: SM&Beyond......A.Soni



— ﬁ_§ V\S
[ Grossman & Worah PLB’97;
- London and A.S. PLB’97
Ly
<~ Y Syr.=0
= R A
. 0 T3 ¢ C
A OSC S y 2; { g



Testing the SM with penguin
dominated modes

« AS=C,,; O(N) , expect C,,p ~ O(1)

« Sigificant deviation from this expectation
Is a sign of BSM-CP-odd phase!

 Unfortunately C,, is a (QCD) model
dependent coefficient

CPV: SM&Beyond......A.Soni
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TABLE I: Some expectations for AS in the cleanest modes.

Mode | QCDF+FSI[20,21] | QCDF [23] | QCDF [24] | SCET [25]

K 0.0040 0.01+0.01 | 0.014+0.02 | —0.019 +0.009
~0.010 + 0.001

oK" 0.0310 0] 0.02+0.01 | 0.02+0.01

KoK K" 0.02

CLEANEST MODES

CPV: SM&Beyond......A.Soni 34
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Current situation

sm(2[3 ) = Si n(2¢

b—rccs World Average

o K° Aveﬁage | *

n' K’  Avefage

@ « Reference value
ICHEP 2008
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0(\(\ H\Q .\SS\KQ/ 0/&/ &AXLN\bd\\ﬂw\V\ a0 d¢eN
FYTRACT frow Darid Logont AS PLBYOT, 6) (199)

\ , (
W \\Q 0e (Yl K¢ oncl ey \Demﬂ o\fommahi fmw{es PN ljl’phqwgd-
To smm up this pomt, CP asymmetries in b — s penguins do indeed measure the CP

angle 3. The tree contributions to these decays are quite small. at most a few percent. i

—_——

is therefore possible to add up the measured CP asymmetries in all these modes to obtain

em— ————

wul. [f the valne of 3 extracted i this way ditfers by more than about 10%
from that found m WK, then it 15 a clear signal of new physies. with new phases. n the
b — s FCNC. If the difference is less than about 10%, it could in principle be due to the
tree contamination. However, this can be checked by using only the final states oK 5 and

Fgr ' . y
1 Ks (to a very good approximation).

However, call from Stockholm will demand conclusive evidence for AS>0.10
in several separate modes




It is extremely important to understand
that basically it is a very good test of the SM.
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FIG. 15. Experimental cross sections at two energies
compared with a simple 1/m® continuum. 39



Christenson,Hicks,LLederman,Limon,Pope & Zavattini
PRD 8,2016 ‘72

8 OBSERVATION OF MUON PAIRS IN HIGH-ENERGY HADRON... 2029

mass range of 3-5 GeV/c?, there is a distinct ex-
cess of the observed cross section over the refer
ence curve. If this excess is assumed (certainly
not required) to be the production of a resolution-
broadened resonance, the cross-section-branch-
ing-ratio production ¢B would be approximately
6x107% e¢m?®, subject to the cross-section uncer-
tainties discussed above. Alternatively the exces
may be interpreted as merely a departure from
the overly simplistic (and arbitrarily normalized)
1/m® dependence. In this regard, we should re-
mark that there may be two entirely different
processes represented here: a low-@? part which
has to do with vector mesons, tail of the p,
bremsstrahlung, etc., and a core yield with a
slower mass dependence, which may be relevant
to the scaling argument discussed below.

The “heavy photon” pole that has been postu-
lated® to remove divergence difficulties in quan-

cles produced in the initial proton-uranium colli~-
sion. In principle, these secondary particles could
also create muon pairs. In this case, the observed
spectrum would represent the inseparable product
of the spectrum of the secondary particle and its
own yield of muon pairs. In exploratory research
of this kind this disadvantage is largely offset by
the fact that the variety of initial states provides

a more comp:.ete exploration of dimuon production
in hadron collisions.

2, Real Photons

Real photons produced in the target (presumably
from the decay of neutral pions) yield muon pairs
by Bethe-Heitler or Compton processes. Esti-
mates were made for the photon flux on the basis
of pion-production models,?"*2® and this method of
calculating the flux was checked against the exper-
imental data of Fidecaro ef al.’® The argument
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Errar on AS

Sensitivity to new CP
phases

Estimated error in the measurement of
time dependent CP violation
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So far 3 numbers

* Expt [e4, B-mixing, b->uev...] + Lattice WME
-> sin2f3¢), =0.79+-0.10

* BF measurements [B -> "p” K;]=0.674+-0.026

 BF measurements [B-> (¢, n'...) Ks]=0.52+-.05

» -> Deviations 2.8 -3.5 sigmas
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Last but quite significant #

Ao (8= KTTT) = _AT7+12 %
A (B SKT?) = A47x2C7.

*@44-32‘7)/ fh
ng &f 7%\/\%@7@?(/7

- O\/(\%I(%;t & (W) #/
(Noively) SM predich AAcp«;O CAVEAT]
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Summary so far

 The CKM-paradigm of CP violation
accounts for the observed CP
patterns to an accuracy ofabout 15%!

« Remarkably in the past few years
several B-factories results exhibit 2.5
-3.5 0 deviations from the SM-CKM
paradigm!!
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WHODUNIT?

CPV: SM&Beyond......A.Soni




Honest answer &

* Don't really know (too many possibilities...)

» But theoretically the most interesting
possibility is that we may be witnessing

Dawning of the age of

“Warped Quantum Flavordynamics”
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Figure 1: Warpad geometry with flavor from fermion localization. The Higes field resides on the
TeV-brane. The size of the extra dimension is . ~ M5".
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Some other noteable effects
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P = oy mewsrements fiom B factottes — Mikihiko Makao —p.13
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Direct CP asymmetry
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Summary of CDF Results on BY

A. Abulencia et al., hep-ex/0609040, accepted by Phys. Rev. Lett.
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Two Higgs Doublet Models with Natural Flavor Conservation

The charged Higgs boson interactions with the quark sector are governed
by the Lagrangian

- 4 + [17 A 71 — ~d. 4+ V.. AT AT b o~ Vo hoe
L= —2\@}{“’ H ['l” My At (1 vs )d; + Vi Tiri.r;_J.”l”r_Ht{ | + ,,1}1’1}] + h.e.,

where g is the usual SU(2) coupling constant and V}; represents the appropriate
CKM element. In model I, A, = cot 3 and A; = —cot 3, while in model II,

A, = cot 3 and A; = tan 3, where tan 3 = v, /v; is the ratio of vev

Part of SUSY
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T2HDM: 2HiggsDM for the top quark

[see Das,Kao('96);Kirers,Wu,AS('99)...]

« 2"d doublet couples only to top (1st
doublet

to all else), so that with V,/V, >>1,
natural

way to get a very heavy top
T2HDM Possibly disproves SUSY?
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AC}’Z

_ZqulEzR_ QLfﬁbleR_ QL(EI Gl(l)?f-‘fﬁ

— O, b>G1Pu i+ H.c.,

Here ¢, are the two Higgs doublets; E, F and G are 3
X 3 Yukawa matrices giving masses respectively to the
charged letptons, the down and up type quarks; I} =
diag(1,1,0) and I'*) = diag(0,0,1) are the two orthog-
onal projectors onto the 1st two and third family respec-
tively. Or and L; are the usual left-handed quark and
lepton doublets.

(b) T2HDM should be viewed as LEET that parametrizes
through the yukawa interactions some high energy dy-
namics which generates the top quark mass as well as
the weak scale...

(c) In addition to largish tan 3 the model has restrictive FCNC

(since it belongs to type IIl) amongst only the up-type

95



H* phenomenology in T2HDM

H*- interactions with Uzand D,
ffﬂmﬂmﬁ( ¢ i% 3 i L—%v;g Fil—fmm)
V2 Viacot ey + ealVig  Viseot* Bleq + eaéVeg Vipcot® ffey
EXTENSWE ANALYSIS: [UNCHI +AS (TAP)
IMPPARANETERS mars, tan . & = [elese g AN
CLERN INPUTY PROCESSES

|Vub/vcb| AMB /AMBC” Uy Ky €K B — X&’T: B — 1v
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Figure 5: Plot a. mpy+ dependence of the branching ratio B — X7 in units of 10™*, Selid,
dashed, dotted and dotted-dashed lines correspond to (tan 8, £) = (10,0), (50,0), (50, 1) and
(50,—1), respectively. There is no appreciable dependence on &. The two horizontal dashed
lines are the experimental 68%C.L. allowed region. The blue region represents the theory
uncertainty associated to the solid line (similar bands can be drown for the other cases). Plot
b. Portion of the (tan 3, mpg+) plane excluded at 68%C.L. by the B — X, measurement. The
shaded area corresponds to £ = 0. The dotted and dashed lines show how this region changes
for £ =1 and —1, respectively.
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Figure 10: Plot a. mpg+ dependence of the T2HDM contributions to Amp, /ﬁm_gi e Dee
the caption in Fig. 9. Plot b. Excluded region in the (¢, mg=) plane. The solid and dashed
contours correspond to tan 5 =30 and 50, respectively.
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Figure 11: Plot a. my+ dependence of the T2HDM contributions to Amp. Solid, dashed
and dotted lines correspond to |€£'| = 0.1, 0.2 and 0.5, respectively. We fix tan § = 50. The
horizontal dashed line is the experimental upper limit. Plot b. Portion of the (££, my+) plane
excluded by Amp. The shaded area corresponds to tan § = 30. The dashed line to tan 5 = 50.
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Direct CP violation in Radiative B decays in and beyond the

SM

Kiers,soni and Wu hep-ph/0006280 (some input from refs.
/ { é s( A)
4

below)
T (%)
Model Aoy (%) ASy Y (%)
SM 0.6 -16
2HDM (Model 11) ~ 0.6 ~ —16
3HDM -3 to +3 -20 to +20
T2HDM ~ 0 to +0.6 ~~ -16 to +4
Supergravity[*] ~ -10 to +10 .-[5 - 45) and (2
SUSY with squark mixing[+] |~ -15to +15
SUSY with R-parity violation[+*] |~ -17 to +17

* . T. Goto et al hep-ph/9812369; M. Acki et al, hep-
ph/9811251. + : C.-K Chua et al hep-ph/9808431; Y.G.Kim
et al NPB544,64(99); Kagan and Neubert,hep-ph/9803368. 62




B-Factory Signals for a WED
[Agashe,Perez,Soni,hep-

0h/0406101(PRL);0408134(PRD)]

 RS1 with a WARPED EXTRA DIMENSION (WED)
provides an elegant solution to the HP

* In this framework, due to warped higher-dimensional
spacetime, the mass scales (i.e. flavors) in an
effective 4D description depend on location in ED.
Thus, e.g. the light fermions are localized near the
Plank brane where the effective cut-off is much higher
than TeV so that FCNC’s from HDO are greatly
suppressed.. The top quark,on the other hand is
localized on the TeV brane so that it gets a large 4D
top Yukawa coupling.

 Thus, KK-masses >~ 3TeV become possible.
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Key features of WED

 Amielorating the Flavor Problem. This
provides an understanding of hierarchy
of fermion masses w/o hierarchies in
fundamental 5D params. Thus “solving”
the SM flavor problem.

Most flavor-violating
effects arise due to the violation of RS-
GIM mechanism by the large top mass.

This originates from the fact that (t,b), is
localized on the TeV brane.
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Contrasting B-Factory Signals
from WED with those from the

CNA
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BSM implications for
edm’s

CPV: SM&Beyond......A.Soni
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Neutron EDM: a classic “null” test

In the SM NEDM cannot arise at least to two
loopsinEW........ expect < 107! ecm

Long series of experiments now place

¢« a90% CL bound, <6.3 X 10-° ecm (Harris et
« al,’99)

 Innumerous BSM, including SUSY, Warped
e extra-dimensions, ...... neutron edm close

* to current bound 1s expected

.
SHOULD BE PURSUED wwilh veny high pandly
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Top quark EDM: a clean “null” test

Top 1s so heavy compared to other quarks that
GIM mechanism 1s super-etfective -> all SM

CP violation effects are vanishingly small.

As one concrete 1llustration 1s the top quark
Electric dipole moment....In the SM you need to
Go to 2 loops in EW

CPV: SM&Beyond......A.Soni
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extended Higgs sector}
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Top quark dipole moment form factors in BSM scenarios
{Atwood, Bar-Shalom, Eilam & A.S, Phys. Reports '01}

type of moment VG Standard nentral Higgs charged Higgs Supersymmetry
(e—em) 1 || (GeV) Ul Model | ;=100 -300 | myy =200-500 | ;=200 500
R00 A1 -20)x 1070 [ (1 -21) =10 = [(33-09) =107

Sm(d] )| < 107
1000 (09-08)x 107" | (157 - L0y = 107% | (1.2-0.8) = 1071
500 (03081077 [ (33415« 107% [ (03-09) « 1077

|Re(d] )| < 107"
1000 (07-02)%107% | (03-27)x107% | (11-03) = 107"
F00 (L1-02)x 107" | (158 -28) = 1077 | (11-03) = 107"

Sm(d? )| < 107"
1000 02-02) %107 | (92-12)=107% | (04-03) = 1071
500 (L6—02) % 1077 [ (220 -08) = 1077 [ (0.1 - 0.3) « 1077

| Re(dy )| <107
1000 (02-14)% 107" | (06-19) =107 | (04-01) « 107"

[ARGE tedmale i RS

CPV: SM&Beyond......A.Soni
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Table 5: Attainable 1-o sensitivities to the CP-wolating dipole moment form factors in units of

e-cm, weth (P = £1) and without (F, = 0) beam polarization. my = 180 GeV. Table
taken, from [175/.
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Summary & Outlook

 Asym. B factories + Lattice -> KM phase is the
dominant contributor to observed CP

« Search for BSM-CP-odd phase imposes greater
demands of precision on expt. & on theory

* AS test of the CKM-paradigm extremely tantalizing
with ~2.5 -3.50 deviations-> EXCITING

* Given that such effects occur quite naturally in
most BSMs the expt. situation needs to be
clarified at the highest priority.

 Most of the BSMs also exhibit nedm ~ 1026 ecm

& tedm ~ 10-1° ecm; should pursue both
vigorously.

. B-factories are hinting an exciting LHC-era!
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EXTRAS
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Basics of the framework

between the relevant models considered below. The basic set-up of our models
iz the RS1 framework [1]. The space time of the model is described by a slice of
ADS; with curvature scale, & ~ M 5. the 4010 Planck mass. The Planck brane
12 located at @ = 0, where £ 13 the compact extra dimension coordinate. The
TeV brane is located at @ = 7. The metric of BS51 can be written as:

. 1 . :
(ds)? = T [ et dx” — (d2)?] , (1)

where kz = <% We assume that kmr,. ~ log (Mp,/TeV) to solve the hierarchy

problem.,
1 l,_:h.i‘r*rr:"_= .
TR = )= z T = e . (2)
where z,, ~ TeV—1.

The gauge group of the models under study is given by [9, 10] SL7{(3),. =
SUN 2 = SU 2 g = Uill)g—r. The gaunge symmetrv is broken on the Planck
brane down to the SM gauge gcroup and in the TeV brane it is broken down
to ST (3. = SU2)p = Ull)g_p. SU(2)p is the diagonal subgroup of the two
STN(2)'s present in the bulk.

A
| A

CPV: SM&Beyond......A.Soni
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NP Contributions due WED

There are essentially 3 types of top quark
dominated FCNC contributions:

1) Contributionsto  FCNC processes
arise

from a relatively large dispersion in the

doublets 5D masses, specifically large
coupling of (t,b), to gauge modes due
to

heaVIneSS Of theP\t:-SM&Beyond A.Soni 75



i) Contributionsto FCNC
processs (mostly semi-leptonic)

These arise from contribution of i) and mixing
between the zero and KK states of the Z
due to EWSB.

i) Contribution to radiative B-decays via

dipole operators arise from large 5D Yukawa
required to obtain m,

CPV: SM&Beyond......A.Soni 76
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Table 3: The known quark masses and CKM mixing implies relation between the
model flavor parameters, f,q, (11,12), The value of f 3, Asp is determined by requiring
the theory is perturbative (13,14).



Notable FCNC characteristic
(see table)

[~ apart from the ones
that the model has
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Fig. 1: Contributions to AF = 2 processes from KK gluon exchange.
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