Gauge-Higgs Unification with Kinetic Brane Terms

J. Lorenzo Diaz Cruz

jldiaz@fcfm.buap.mx

FCFM-BUAP, Puebla (Mexico)

Outline

- Introduction (EWSB and SM parameters),
- Phenomenological EW-Higgs Unification^a,
- 6D Gauge-Higgs unification with $SU(3)_W$,
- Brane Kinetic Terms and θ_W , b,
- Higgs mass with Brane Kinetic Terms,
- Conclusions,

^aBased on work donde with A. Aranda and A. Rosado, MPL(2006)

^bBased on work donde with A. Aranda, PLB(2006)

Introduction

- EWSB needed to generate SM gauge and fermion masses.
- SM Higgs doublet $\Phi(x)$ has the potential: $V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$
- One unknown parameter λ determines M_H
- Exp. and precision analysis seems to prefer a "light" Higgs boson, i.e. $116 \le m_h \le 180$ GeV.
- LHC is expected to detect at least one Higgs boson, while its precise nature will be tested at LC.

Hierarchy Problems

- Large Hierarchy: a severe fine tuning problem, Scalars get quad. rad. corrs.: $\delta M_H^2 \sim C_i \Lambda^2$ A mechanism should protect Higgs mass when $\Lambda >> m_W$, i.e. $C_i \to 0$,
- Little Hierarchy

Higgs mass should not be far from Λ_{eff} , Global fits suggest $\Lambda_{eff} \sim 400$ GeV, EW precision measurements imply, $\Lambda_{eff} \sim 5-10$ TeV

Models of EWSB

- Traditional solutions to EWSB problems:
 - Weak/perturbative theories, e.g. SUSY,
 - Strongly-interacting dynamics, e.g. TC
- New approaches proposed recently are based on:

```
New Dynamics: - Little/Fat Higgs,
```

- String motivated.....

Extra Dimensions: - EWSB by O.B.C.

- -Higgsless EWSB, Warped-AdS/CFT,
 - Gauge-Higgs unification

SM Parameters

- Gauge parameters (dimensionless)
 - Gauge couplings: g_3, g_2, g_Y
 - Strong phase: θ_{QCD}
- Higgs (dimensionfull) parameter: μ^2
- Higgs self-coupling: λ
- Yukawa Couplings Y_{ij}^f
- Could it be possible to express all SM parameters in terms of gauge parameters?

Phenomenological EW-Higgs Unification

- Higgs self-coupling should be related to EW gauge couplings,
- This relation could take a generic form: $\lambda = f(g_1, g_2)$
- To simplify we mposse a linear (I) or quadractic (II) relation at a high scale,
- The quadractic relation (case II) takes the form: $g_i^2 = k_H \lambda$,
- The normalization factor k_H is taken as: $0.1 < k_H < 10$

Phenomenological EW-Higgs Unification

- What is the high scale? We take it where $g_1 = g_2$,
- Result depends on hypercharge normalization, i.e. $g_1^2 = k_Y g_Y^2$,
- We considered $k_Y = \frac{5}{3}, \frac{3}{2}, \frac{7}{4}$,
- Use RGE to get λ at EW scale and determine the Higgs mass.
- We obtain the result: $m_h \simeq 180$ GeV.

XD and Gauge-Higgs Unification

• Basic idea: Identify the Higgs as a component of a higher dimensional gauge field $(A_{\hat{\mu}})$

$$A_{\hat{\mu}} \rightarrow A_{\mu} = 4D$$
 gauge bosons $A_M = 4D$ scalars

• 5D Models:

Generally predict a very small Higgs mass

• However, in **6D Models**:

Quartic coupling present at tree level Higgs mass prediction is better But EWSB stability must be verified

Consider and SU(3) theory compactified in T^2/\mathcal{Z}_N

$$\mathcal{L}_{6D} = -\frac{1}{4} F^{\hat{\mu}\hat{\nu}} F_{\hat{\mu}\hat{\nu}}$$

Consider and SU(3) theory compactified in T^2/\mathcal{Z}_N

$$\mathcal{L}_{6D} = -\frac{1}{4} F^{\hat{\mu}\hat{\nu}} F_{\hat{\mu}\hat{\nu}}$$

- $\hat{\mu} \hat{\nu} = 0, 1, 2, 3, 5, 6$
- $F_{\hat{\mu}\hat{\nu}} = \partial_{\hat{\mu}}A_{\hat{\nu}} \partial_{\hat{\nu}}A_{\hat{\mu}} ig_6[A_{\hat{\mu}}, A_{\hat{\nu}}]$

Consider and SU(3) theory compactified in T^2/\mathcal{Z}_N

$$\mathcal{L}_{6D} = -\frac{1}{4} F^{\hat{\mu}\hat{\nu}} F_{\hat{\mu}\hat{\nu}}$$

- $\hat{\mu} \hat{\nu} = 0, 1, 2, 3, 5, 6$
- $F_{\hat{\mu}\hat{\nu}} = \partial_{\hat{\mu}}A_{\hat{\nu}} \partial_{\hat{\nu}}A_{\hat{\mu}} ig_6[A_{\hat{\mu}}, A_{\hat{\nu}}]$
- Spacetime (for N=2): $A^{\mu} \rightarrow A^{\mu}$, $A^{M} \rightarrow -A^{M}$, M=5,6.
- Gauge: for the generators of SU(3), $t_a \to \Theta^{-1}t_a\Theta$, where

$$\Theta = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right) .$$

Under the combination of the two, the invariant states become

Under the combination of the two, the invariant states become

•
$$A_{\mu} = \sum_{a=1,2,3,8} A_{\mu}^{(a)} \frac{\lambda_a}{2}$$

•
$$H_M = \sum_{a=4,5,6,7} A_M^{(a)} \frac{\lambda_a}{2}$$
; $M = 5,6$

We can write the fields in matrix notation as

We can write the fields in matrix notation as

$$A_{\mu} = \frac{1}{2} \begin{pmatrix} A_{\mu}^{(3)} + \frac{1}{\sqrt{3}} A_{\mu}^{(8)} & A_{\mu}^{(1)} - i A_{\mu}^{(2)} & 0 \\ A_{\mu}^{(1)} + i A_{\mu}^{(2)} & -A_{\mu}^{(3)} + \frac{1}{\sqrt{3}} A_{\mu}^{(8)} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} A_{\mu}^{(8)} \end{pmatrix}$$

$$= \frac{1}{2} \begin{pmatrix} W_{\mu}^{(3)} + \frac{1}{\sqrt{3}} A_{\mu}^{(8)} & \sqrt{2} W_{\mu}^{+} & 0\\ \sqrt{2} W_{\mu}^{-} & -W_{\mu}^{(3)} + \frac{1}{\sqrt{3}} A_{\mu}^{(8)} & 0\\ 0 & 0 & -\frac{2}{\sqrt{3}} A_{\mu}^{(8)} \end{pmatrix}$$

In matrix notation

In matrix notation

$$H_{M} = \frac{1}{2} \begin{pmatrix} 0 & 0 & A_{M}^{(4)} + iA_{M}^{(5)} \\ 0 & 0 & A_{M}^{(6)} + iA_{M}^{(7)} \\ A_{M}^{(4)} - iA_{M}^{(5)} & A_{M}^{(6)} - iA_{M}^{(7)} & 0 \end{pmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & H_M^{*+} \\ 0 & 0 & H_M^0 \\ H_M^- & H_M^{0*} & 0 \end{pmatrix}$$

Introducing the field expansions and integrating over the extra dimensions we obtain (for the zero modes):

Introducing the field expansions and integrating over the extra dimensions we obtain (for the zero modes):

$$\mathcal{L}_{4}^{(0)} = -\frac{1}{4} (F_{\mu\nu}^{a})^{2} - \frac{1}{4} (B_{\mu\nu})^{2} + \left| \left(\partial_{\mu} - ig_{4} W_{\mu}^{a} \frac{\tau^{a}}{2} - ig_{4} \tan \theta_{W} \frac{1}{2} B_{\mu} \right) \mathcal{H} \right|^{2} - \frac{g_{4}^{2}}{2} |\mathcal{H}|^{4}$$

Introducing the field expansions and integrating over the extra dimensions we obtain (for the zero modes):

$$\mathcal{L}_{4}^{(0)} = -\frac{1}{4} (F_{\mu\nu}^{a})^{2} - \frac{1}{4} (B_{\mu\nu})^{2} + \left| \left(\partial_{\mu} - ig_{4} W_{\mu}^{a} \frac{\tau^{a}}{2} - ig_{4} \tan \theta_{W} \frac{1}{2} B_{\mu} \right) \mathcal{H} \right|^{2} - \frac{g_{4}^{2}}{2} |\mathcal{H}|^{4}$$

$$\bullet \quad \mathcal{H} = \left(\begin{array}{c} H_M^{*+} \\ H_M^0 \end{array} \right)$$

- $\tan \theta_W = \sqrt{3}$
- $V_{class}(\mathcal{H}) = \frac{g_4^2}{2} |\mathcal{H}|^4$

Quantum fluctuations generate $V_{quant}(\mathcal{H})$

Quantum fluctuations generate $V_{quant}(\mathcal{H})$

- Gauge invariant quantities: local and non-local
- Non-local: Size controlled by the compactification scale 1/R

Quantum fluctuations generate $V_{quant}(\mathcal{H})$

- Gauge invariant quantities: local and non-local
- Non-local: Size controlled by the compactification scale 1/R
- **Local:** Even powers of $F_{\mu\nu}$ in the bulk \rightarrow New divergences come out at 1-loop due to $F_{\mu\nu}^2$ (quadratic) y $F_{\mu\nu}^4$ (log)
- Arbitrary powers of $F^p_{5,6} \rightarrow p = 1$ (quadratic) p = 2 (log)
- Unique quadratic divergence to the Higgs potential → tadpole

Quantum fluctuations generate $V_{quant}(\mathcal{H})$

- Gauge invariant quantities: local and non-local
- Non-local: Size controlled by the compactification scale 1/R
- Local: Even powers of $F_{\mu\nu}$ in the bulk \to New divergences come out at 1-loop due to $F^2_{\mu\nu}$ (quadratic) y $F^4_{\mu\nu}$ (log)
- Arbitrary powers of $F^p_{5,6} \to p=1$ (quadratic) p=2 (log)
- Unique quadratic divergence to the Higgs potential \rightarrow tadpole

Approximately

$$V_{quant}(\mathcal{H}) = -\mu^2 |\mathcal{H}|^2 + \lambda |\mathcal{H}|^4$$

- Suppose $\mu^2 > 0$
- Use $\langle |\mathcal{H}| \rangle = v/\sqrt{2}$
- $v = \mu/\lambda$

- Suppose $\mu^2 > 0$
- Use $\langle |\mathcal{H}| \rangle = v/\sqrt{2}$
- $v = \mu/\lambda$
- $\lambda = g^2/2$

$$m_H = \sqrt{2}\mu = \sqrt{2\lambda}v$$
, $m_W = \frac{1}{2}gv$

- Suppose $\mu^2 > 0$
- Use $\langle |\mathcal{H}| \rangle = v/\sqrt{2}$
- $v = \mu/\lambda$
- $\lambda = g^2/2$

$$m_H = \sqrt{2}\mu = \sqrt{2\lambda}v$$
, $m_W = \frac{1}{2}gv$

$$\rightarrow \frac{m_H}{m_W} = \frac{2\sqrt{2\lambda}}{g} = 2^a$$

^aC.A. Scrucca, M. Serone, L. Silvestrini, A. Wulzer, JHEP **0402** (2004) 049; A. Wulzer, hep-th/0405168; C. Biggio, M. Quirós; hep-ph/0407348

In order to fix the value of $\tan \theta_W$ we introduce brane kinetic terms by considering the following possibilities:

• **A:**
$$\mathcal{L}_{TCB} = -\frac{1}{4} c \, \delta(x_5) \, \delta(x_6) \, F^{\mu\nu} F_{\mu\nu}$$

In order to fix the value of $\tan \theta_W$ we introduce brane kinetic terms by considering the following possibilities:

- **A:** $\mathcal{L}_{TCB} = -\frac{1}{4} c \, \delta(x_5) \, \delta(x_6) \, F^{\mu\nu} F_{\mu\nu}$
- **B:** $\mathcal{L}_{TCB} = -\frac{1}{4} (c_5 \delta(x_5) F^{mn} F_{mn} + c_6 \delta(x_6) F^{st} F_{st}),$ m, n = 0, 1, 2, 3, 6; s, t = 0, 1, 2, 3, 5

In order to fix the value of $\tan \theta_W$ we introduce brane kinetic terms by considering the following possibilities:

- **A:** $\mathcal{L}_{TCB} = -\frac{1}{4} c \, \delta(x_5) \, \delta(x_6) \, F^{\mu\nu} F_{\mu\nu}$
- **B:** $\mathcal{L}_{TCB} = -\frac{1}{4} (c_5 \delta(x_5) F^{mn} F_{mn} + c_6 \delta(x_6) F^{st} F_{st}),$ m, n = 0, 1, 2, 3, 6; s, t = 0, 1, 2, 3, 5
- **C:** $\mathcal{L}_{TCB} = -\frac{1}{4}\delta(x_5)\delta(x_6) \left[c_1 \left(F_{\mu\nu}^{(a)} \right)^2 + c_2 \left(F_{\mu\nu}^{(8)} \right)^2 \right]$ a = 1, 2, 3

C:

$$\mathcal{L}_{4}^{(0)} = -\frac{1}{4} (F_{\mu\nu}^{a})^{2} - \frac{1}{4} (B_{\mu\nu})^{2} + \left| \left(\partial_{\mu} - i \frac{g_{4}}{\sqrt{Z_{1}}} W_{\mu}^{a} \frac{\tau^{a}}{2} - i \frac{g_{4}}{\sqrt{Z_{2}}} \sqrt{3} \frac{1}{2} B_{\mu} \right) \mathcal{H} \right|^{2} - \frac{g_{4}^{2}}{2} |\mathcal{H}|^{4}$$

C:

$$\mathcal{L}_{4}^{(0)} = -\frac{1}{4} (F_{\mu\nu}^{a})^{2} - \frac{1}{4} (B_{\mu\nu})^{2} + \left| \left(\partial_{\mu} - i \frac{g_{4}}{\sqrt{Z_{1}}} W_{\mu}^{a} \frac{\tau^{a}}{2} - i \frac{g_{4}}{\sqrt{Z_{2}}} \sqrt{3} \frac{1}{2} B_{\mu} \right) \mathcal{H} \right|^{2} - \frac{g_{4}^{2}}{2} |\mathcal{H}|^{4}$$

•
$$\mathcal{Z}_{1,2} = 1 + \frac{c_{1,2}}{\pi^2 R_5 R_6}$$

C:

$$\mathcal{L}_{4}^{(0)} = -\frac{1}{4} (F_{\mu\nu}^{a})^{2} - \frac{1}{4} (B_{\mu\nu})^{2}
+ \left| \left(\partial_{\mu} - i \frac{g_{4}}{\sqrt{Z_{1}}} W_{\mu}^{a} \frac{\tau^{a}}{2} - i \frac{g_{4}}{\sqrt{Z_{2}}} \sqrt{3} \frac{1}{2} B_{\mu} \right) \mathcal{H} \right|^{2}
- \frac{g_{4}^{2}}{2} |\mathcal{H}|^{4}$$

- $\mathcal{Z}_{1,2} = 1 + \frac{c_{1,2}}{\pi^2 R_5 R_6}$
- Study parameter space consistent with $\tan \theta_W$
- Check the Higgs mass

Weinberg Angle: Defining
$$g = g_4/\sqrt{\mathcal{Z}_1}$$
 and $g' = \sqrt{3}g_4/\sqrt{\mathcal{Z}_2}$

Weinberg Angle: Defining $g = g_4/\sqrt{\mathcal{Z}_1}$ and $g' = \sqrt{3}g_4/\sqrt{\mathcal{Z}_2}$

$$\tan \theta_W = \frac{g'}{g} = \sqrt{\frac{3\mathcal{Z}_1}{\mathcal{Z}_2}}$$

Weinberg Angle: Defining $g = g_4/\sqrt{\mathcal{Z}_1}$ and $g' = \sqrt{3}g_4/\sqrt{\mathcal{Z}_2}$

$$\tan \theta_W = \frac{g'}{g} = \sqrt{\frac{3\mathcal{Z}_1}{\mathcal{Z}_2}}$$

Higgs Mass:
$$\frac{m_H}{m_W} = 2\sqrt{\mathcal{Z}_1}$$

• Idea of unifying gauge and Higgs parameters is a powerfull drive,

- Idea of unifying gauge and Higgs parameters is a powerfull drive,
- Phenom. EW-Higgs unification predicts a reasonable Higgs mass, i.e. $m_H \simeq 180$ GeV,

- Idea of unifying gauge and Higgs parameters is a powerfull drive,
- Phenom. EW-Higgs unification predicts a reasonable Higgs mass, i.e. $m_H \simeq 180$ GeV,
- SU(3) in 6D is an interesting possibility for extended EWSB

- Idea of unifying gauge and Higgs parameters is a powerfull drive,
- Phenom. EW-Higgs unification predicts a reasonable Higgs mass, i.e. $m_H \simeq 180$ GeV,
- SU(3) in 6D is an interesting possibility for extended EWSB
- More work is needed in order to get realistic models of EWSB with less speculation

- Idea of unifying gauge and Higgs parameters is a powerfull drive,
- Phenom. EW-Higgs unification predicts a reasonable Higgs mass, i.e. $m_H \simeq 180$ GeV,
- SU(3) in 6D is an interesting possibility for extended EWSB
- More work is needed in order to get realistic models of EWSB with less speculation
- Once new data from LHC and ILC comes out we will probably learn (again) that we were really off the target, *or perhaps Not*!!

- Idea of unifying gauge and Higgs parameters is a powerfull drive,
- Phenom. EW-Higgs unification predicts a reasonable Higgs mass, i.e. $m_H \simeq 180$ GeV,
- SU(3) in 6D is an interesting possibility for extended EWSB
- More work is needed in order to get realistic models of EWSB with less speculation
- Once new data from LHC and ILC comes out we will probably learn (again) that we were really off the target, *or perhaps Not*!!