University of Southampton, 22nd May 2015

The Unnaturally Split Composite Higgs

inc. arXiv:1409.7391
J. Barnard, P. Cox,
T. Gherghetta,
T. Sankar Ray, A. Spray

Outline

Introduction

- Naturalness, Unnatural Models and SUSY
- Composite Higgses

General Features of Split Composite Higgs Models

- Flavour and Precision Electroweak Constraints
- Gauge Unification
- Proton Stability and Dark Matter

* An Explicit Model

- The SU(7)/SU(6) x U(1) Theory
- Collider Phenomenology
- Conclusions

Introduction

- * Standard Model is an Effective Theory with Cut-Off $\Lambda_{\rm UV}$
- * Integrating out physics at $\Lambda_{\rm UV}$ contributes to SM terms:

$$---- \sim \frac{\Lambda_{UV}^2}{(4\pi)^2}$$

* To avoid large accidental cancellations, expect

- * Standard Model is an Effective Theory with Cut-Off Λ_{UV}
- * Integrating out physics at $\Lambda_{\rm UV}$ contributes to SM terms:

* To avoid large accidental cancellations, expect

- * Standard Model is an Effective Theory with Cut-Off $\Lambda_{\rm UV}$
- * Integrating out physics at $\Lambda_{\rm UV}$ contributes to SM terms:

$$---- \sim \frac{\Lambda_{UV}^2}{(4\pi)^2}$$

* To avoid large accidental cancellations, expect

- * Standard Model is an Effective Theory with Cut-Off $\Lambda_{\rm UV}$
- * Integrating out physics at $\Lambda_{\rm UV}$ contributes to SM terms:

* To avoid large accidental cancellations, expect

Facing the Evidence

olulus.	1110112010			_			$\int \mathcal{L} dt = (1.0 - 20.3) \text{ ID}^{-2}$	$\sqrt{s} = 7, 8$ lev Reference
M	Model	<i>ℓ</i> , γ	Jets	E ^{miss} T	$\int \mathcal{L} dt [fb^{-1}]$	Mass limit		
ADD	$G_{KK} + g/q$	_	≥1j	Yes	20.3	5.25 TeV	n=2	1502.01518
ADD	non-resonant <i>ll</i>	2e,µ	_ ,	_	20.3	4.7 TeV	n = 3 HLZ	1407.2410
ADD	$QBH \rightarrow \ell a$	1 e.u	1 i	_	20.3	5.2 TeV	n = 6	1311,2006
ADD	QBH	_	2 i	_	20.3	5.82 TeV	n = 6	1407,1376
ADD	BH high N_{trk}	2 µ (SS)	_,	_	20.3	4 7 TeV	$n = 6$, $M_{\rm D} = 3$ TeV, non-rot BH	1308 4075
ADD	BH high $\sum p_{\tau}$	>1eu	>2i	_	20.3	5.8 TeV	$n = 6$ $M_{\rm D} = 3$ TeV non-rot BH	1405 4254
ADD	BH high multijet		2 i	_	20.3	5.8 TeV	$n = 6$, $M_D = 3$ TeV, non-rot BH	Preliminary
BS1 ($G_{KK} \rightarrow ll$	2 e. u	_ ,	_	20.3	2 68 TeV	$k/\overline{M}_{\rm el} = 0.1$	1405 4123
BS1 ($G_{KK} \rightarrow \gamma\gamma$	2γ	_	_	20.3	ss 2 66 TeV	$k/\overline{M}_{\text{Pl}} = 0.1$	Preliminary
Bulk	$BS \; G_{VV} \to ZZ \to gall$	2 e u	2i/1.1	_	20.3	SS 740 GeV	$k/\overline{M}_{\text{pl}} = 0.1$	1409 6190
Bulk F	$BS G_{KK} \rightarrow WW \rightarrow aaly$	1 e µ	2i/1.l	Ves	20.3	s 700 GeV	$k/\overline{M}_{\text{pl}} = 1.0$	1503 04677
Bulk			2]/10 4.h	-	10.5	s 590.710 GeV	$k/\overline{M} = 1.0$	ATLAS-CONE-2014-0
Bulk	$PS = \frac{1}{2} + \frac{1}{2} +$	1	40 >1b >11/2	Di Vaa	20.2		R = 0.025	
	$10 g_{KK} \rightarrow ll$	2 e u (SS)	>1b, 210/2	-j ies Voo	20.3		DIT = 0.323	Preliminary
2020		2 ε, μ (00)	≥ 1 0, ≥ 1 j	tes	20.3	900 Gev		Flemminary
SSM	$Z' \to \ell \ell$	2 e, µ	-	-	20.3	2.9 TeV		1405.4123
SSM	$Z' \rightarrow \tau \tau$	2τ	_	_	19.5	2.02 leV		1502.0/1//
SSM SSM	$W' \to \ell \nu$	1 e, µ	-	Yes	20.3	s 3.24 TeV		1407.7494
EGM	$W' \to WZ \to \ell \nu \ell' \ell'$	3 e, µ	_	Yes	20.3	s 1.52 TeV		1406.4456
EGM	$W' \to WZ \to qq\ell\ell$	2 e, µ	2j/1J	_	20.3	s 1.59 TeV		1409.6190
HVT	$W' \to WH \to \ell \nu bb$	1 e, µ	2 b	Yes	20.3	s 1.47 TeV	$g_V = 1$	Preliminary
LRSN	$A W'_R \to t \underline{b}$	1 e, µ	2 b, 0-1 j	Yes	20.3	s 1.92 TeV		1410.4103
LRSM	$\Lambda W'_R \to tb$	0 e, µ	≥1b,1J	-	20.3	s 1.76 TeV		1408.0886
Cl qq	99	-	2 j	-	17.3		12.0 TeV $\eta_{LL} = -1$	Preliminary
Cl qq	ll	2 e, µ	-	-	20.3		21.6 TeV $\eta_{LL} = -1$	1407.2410
Cl uu	tt	2 e, μ (SS)	\geq 1 b, \geq 1 j	Yes	20.3	4.35 TeV	$ C_{LL} = 1$	Preliminary
EFT [D5 operator (Dirac)	0 e, µ	$\geq 1 j$	Yes	20.3	974 GeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$	1502.01518
EFT [D9 operator (Dirac)	0 e, µ	1 J, ≤ 1 j	Yes	20.3	2.4 TeV	at 90% CL for $m(\chi) < 100 \text{ GeV}$	1309.4017
Scala	r LQ 1 st gen	2 e	$\geq 2 j$	-	1.0	660 GeV	eta=1	1112.4828
Scala	ır LQ 2 nd gen	2 μ	≥ 2 j	-	1.0	685 GeV	eta=1	1203.3172
Scala	ır LQ 3 rd gen	1 e, μ , 1 τ	1 b, 1 j	-	4.7	534 GeV	eta=1	1303.0526
VLQ	$TT \rightarrow Ht + X, Wb + X$	1 e, µ	\geq 1 b, \geq 3 j	Yes	20.3	785 GeV	isospin singlet	ATLAS-CONF-2015-0
VLQ	$TT \rightarrow Zt + X$	2/≥3 e, µ	>2/>1 b	_	20.3	735 GeV	T in (T,B) doublet	1409.5500
VLQ	$BB \rightarrow Zb + X$	2/≥3 e,µ	>2/>1 b	_	20.3	755 GeV	B in (B,Y) doublet	1409.5500
b VLQ	$BB \rightarrow Wt + X$	1 e, µ	≥ 1 b, ≥ 5 j	Yes	20.3	640 GeV	isospin singlet	Preliminary
$T_{5/3}$ -	$\rightarrow Wt$	1 e,μ	\geq 1 b, \geq 5 j	Yes	20.3	ss 840 GeV		Preliminary
co Excite	ed quark $a^* \rightarrow a\gamma$	1γ	1 i	_	20.3	3.5 TeV	only u^* and d^* . $\Lambda = m(q^*)$	1309.3230
Excite	ed quark $q^* \rightarrow qg$	_	2 j	_	20.3	4.09 TeV	only u^* and d^* , $\Lambda = m(q^*)$	1407.1376
Excite	ed quark $b^* \to Wt$	1 or 2 e, µ	1 b, 2 j or 1	j Yes	4.7	870 GeV	left-handed coupling	1301.1583
Excite	ed lepton $\ell^* \to \ell \gamma$	2 e, μ, 1 γ	-	_	13.0	2.2 TeV	$\Lambda = 2.2 \text{ TeV}$	1308.1364
Excite	ed lepton $v^* \to \ell W, vZ$	3 e, μ, τ	-	-	20.3	1.6 TeV	$\Lambda = 1.6 \text{ TeV}$	1411.2921
LSTC	$a_T \to W\gamma$	1 e. // 1 v	_	Yee	20.3	960 GeV		1407 8150
I RSM	/ Maiorana v	2 e u	2 i	-	21	1 5 TeV	$m(W_{\rm P}) = 2$ TeV no mixing	1203 5420
Hinne	striplet $H^{\pm\pm} \rightarrow \ell\ell$	2 6 11 (99)	-1	_	20.3	551 GeV	DY production BR($H^{\pm\pm} \rightarrow \ell\ell$)=1	1412 0237
D Hinne	striplet $H^{\pm\pm} \rightarrow \ell\tau$	3 e 11 T	_	_	20.3		DY production BR($H^{\pm\pm} \rightarrow \ell\tau$)=1	1411 2021
Mono	iton (non-res prod)	1 Δ μ	1 h	Vec	20.0	visible narticle mass 657 GeV	a = -0.2	1410 5404
Multi-	charged narticles	ι e, μ	I D	162	20.3	arried particle mass 785 CoV	$a_{non-res} = 0.2$	Preliminary
Magn	letic mononoles	_	_	_	20.3	e mass 862 CoV	DY production $ q = 3e$	1207 6/11
	10110 110110 0000	_	-		2.0	002 002	Di bioggenoui, R - TRD	1207.0411

*Only a selection of the available mass limits on new states or phenomena is shown.

- Naturalness is an Argument from Aesthetics
 - * Fine-tuned theories are consistent, unlike breaking gauge invariance/unitarity
 - * How much fine-tuning is too much? 1%? 0.001%? v_{EW}/M_{Pl} ?

- Naturalness is an Argument from Aesthetics
 - Fine-tuned theories are consistent
 - * How much fine-tuning is too much? 1%? 0.001%? v_{EW}/M_{Pl} ?
- Irrelevant Operators in the EFT?
 - T Parameter
 - * Flavour-changing operators $\epsilon_K \sim (\bar{s}_R d_L)^2 \Rightarrow \Lambda_{UV} > 10^{3-4} \text{ TeV}$

 $T \sim |H^{\dagger}D_{\mu}H|^2 \Rightarrow \Lambda_{UV} > 10 \text{ TeV}$

- Naturalness is an Argument from Aesthetics
 - Fine-tuned theories are consistent
 - * How much fine-tuning is too much? 1%? 0.001%? v_{EW}/M_{Pl} ?
- Irrelevant Operators in the EFT?
 - * T Parameter $T \sim |H^{\dagger}D_{\mu}H|^2 \Rightarrow \Lambda_{UV} > 10 \text{ TeV}$
 - * Flavour-changing operators $\epsilon_K \sim (\bar{s}_R d_L)^2 \Rightarrow \Lambda_{UV} > 10^{3-4} \text{ TeV}$
- Multiverse arguments for Electroweak Scale
 - * Anthropic selection of v_{EW}

- Naturalness is an Argument from Aesthetics *
 - Fine-tuned theories are consistent *
 - How much fine-tuning is too much? 1%? 0.001%? v_{EW}/M_{Pl} ? **
- Irrelevant Operators in the EFT?
 - $T \sim |H^{\dagger} D_{\mu} H|^2 \Rightarrow \Lambda_{UV} > 10 \text{ TeV}$ **T** Parameter **
 - Flavour-changing operators $\epsilon_K \sim (\bar{s}_R d_L)^2 \Rightarrow \Lambda_{UV} > 10^{3-4} \text{ TeV}$ •
- Multiverse arguments for Electroweak Scale
 - * Anthropic selection of v_{EW}

What happens without Naturalness?

Not Fine

Fine-tuned

- Dark Matter
 - Must be non-SM physics
 - * The WIMP miracle still holds

- Dark Matter
 - Must be non-SM physics
 - The WIMP miracle still holds
- Baryogenesis
 - Must be non-SM physics

- Dark Matter
 - Must be non-SM physics
 - The WIMP miracle still holds
- Baryogenesis
 - Must be non-SM physics
- Gauge Unification

- Dark Matter
 - Must be non-SM physics
 - The WIMP miracle still holds
- Baryogenesis
 - Must be non-SM physics
- Gauge Unification
- Flavour Physics

Reasons for Unnatural New Physics

- Dark Matter
 - Must be non-SM physics
 - The WIMP miracle still holds
- Baryogenesis
 - Must be non-SM physics
- Gauge Unification
- Flavour Physics
- Simpler Models!

Mini-Split Supersymmetry

- Without Naturalness, SUSY still has:
 - Dark Matter (R-Parity)
 - Consistent with Leptogenesis
 - Improved Unification (Gauginos)
- Gauginos light by R-symmetry
- Split Spectrum avoids Flavour, LHC problems
- Long-lived gluino signal
- Arvatanki et al 1210.0555, Feldstein et al 1210.7578, Arganda et al 1211.0163, Arkani-Hamed et al 1212.6971, Arganda et al 1301.0708, Hisano et al 1304.3651, Eliaz et al 1306.2956, Kim et al 1405.3700, Nomura et al 1407.3785, D'Eramo et al 1409.5123, Cheung et al 1411.7329, Wang et al 1501.02906

Split Composite Higgses

Resonances

χ

t

- Without Naturalness, still have: \diamond 7.00 Dark Matter (Baryon Triality) 5.00 * Т 3.00 (TeV) **Consistent with Leptogenesis** * 2.00 1.50 S Ξ Improved Unification (Top Exotics) 1.00 *** 0.70 0.50 Theory of Flavour * 0.30 Goldstones light by shift symmetry 0.20 • 0.15 h 0.10 Split Spectrum avoids Flavour, LHC problems **
 - Long-lived SU(3) triplet signal

Composite PNGB Higgs

Kaplan et al, Phys. Lett. **B136** 183; Kaplan et al, Phys. Lett. **B136** 187; Dugan et al, Nucl. Phys. **B254** 299; Contino et al, hep-ph/0306259; Agashe et al hep-ph/0412089

- New, strongly-coupled sector
- * Global Symmetry $G \supseteq G_{SM}$
- * Confines at $\Lambda \approx g_{\varrho} f$
- * Symmetry breaking $G \to H \supset G_{SM}$

Higgs is among associated pseudo-Goldstones

Fermion Masses

D. Kaplan, Nucl. Phys. B365 259

Fermions mix with confining sector (Partial Compositeness)

$$\mathcal{L} \supset \frac{c_f}{\Lambda^D} \psi_f \mathcal{O}^f \sim \psi_f \quad \longrightarrow \quad \mathcal{O}^f$$

- * Strong coupling \rightarrow Large anomalous dimensions D
- * Mixings generate Yukawa couplings:

* 0(1) parameter variation generates Yukawa hierarchy

Higgs Potential

- When SM couplings vanish:
 - PNGBs → Goldstones
 - Goldstone potential vanishes **
- * So Higgs potential $V = V(g, \lambda)$
 - "Calculable"
 - Loop-level:

Loop-level:
$$v_{EW} \sim \frac{\Lambda}{4\pi} \sim f$$
 Intrinsic Fine-Tuning $\Delta \sim \frac{v_{EW}^2}{f^2}$
 (gauge vs fermion loops)

General Features of Split Composite Higgs

- Peskin-Takeuchi parameters (Peskin & Takeuchi, PRL 65 964)
 - * S: new neutral current physics (Contino, 1005.4269)
 - Vector boson mixing
 - Higgs coupling shifts

- Peskin-Takeuchi parameters (Peskin & Takeuchi, PRL 65 964)
 - S: new neutral current physics (Contino, 1005.4269)
 - Vector boson mixing
 - Higgs coupling shifts

 $f \gtrsim 0.8 {
m TeV}$

- Peskin-Takeuchi parameters (Peskin & Takeuchi, PRL 65 964)
 - * S: $f \gtrsim 0.8 \text{ TeV}$
 - T: new isospin violation (Kaplan & Georgi, Phys. Lett. B136 183, Csaki et al hep-ph/0303236, Agashe et al hep-ph/0308036, Giudice et al hep-ph/0703164, Bertuzzo et al 1206.2623)

$$\mathcal{L}_{eff} \supset \frac{c_T}{2f^2} |H^{\dagger} D_{\mu} H|^2 \quad \Rightarrow \quad \Delta T \sim c_T \frac{v^2}{f^2} \quad \Rightarrow \quad f \gtrsim 6 \text{ TeV}$$

Nearly all modern models use custodial SU(2)
 (Though problem still exists in non-flat cosets *H*, Bertuzzo *et al* 1206.2623)

- Peskin-Takeuchi parameters (Peskin & Takeuchi, PRL 65 964)
 - * S: $f \gtrsim 0.8 \text{ TeV}$
 - T: new isospin violation (Kaplan & Georgi, Phys. Lett. B136 183, Csaki et al hep-ph/0303236, Agashe et al hep-ph/0308036, Giudice et al hep-ph/0703164, Bertuzzo et al 1206.2623)

$$\mathcal{L}_{eff} \supset \frac{c_T}{2f^2} |H^{\dagger} D_{\mu} H|^2 \quad \Rightarrow \quad \Delta T \sim c_T \frac{v^2}{f^2} \quad \Rightarrow \quad f \gtrsim 6 \text{ TeV}$$

- Nearly all modern models use custodial SU(2)
 (Though problem still exists in non-flat cosets *H*, Bertuzzo *et al* 1206.2623)
- Unnatural models can avoid this: SIMPLER

Partial Compositeness generates 4-fermion operators:

Partial Compositeness generates 4-fermion operators:

♦ BUT! result ∝ Yukawas

Partial Compositeness generates 4-fermion operators:

Partial Compositeness generates 4-fermion operators:

Partial Compositeness generates 4-fermion operators:

Add flavour symmetry

Partial Compositeness generates 4-fermion operators:

Add flavour symmetry

* Or unnatural \rightarrow SIMPLER

Calculable Gauge Unification

Agashe et al, hep-ph/0212028, hep-ph/0403143, hep-ph/050222

- * Unification scale $M_{GUT} \gg f, \Lambda$
- Confining sector charged under SM gauge groups
- * How to avoid ruining unification?

Calculable Gauge Unification

Agashe et al, hep-ph/0212028, hep-ph/0403143, hep-ph/050222

- * Unification scale $M_{GUT} \gg f, \Lambda$
- Confining sector charged under SM gauge groups
- How to avoid ruining unification?
- * Let $G \supseteq G_{GUT}$
 - Strong sector states come in complete representations of SU(5)
 - One-loop differential running unaffected (away from Landau poles)
 - Two-loop diagrams with SM, confining sector states, do affect running

The Top Problem

* Largest effect involves $t_R: D_t \approx 0, c_t \approx g_{\rho}$

$$\frac{C_{at}}{2\pi} \frac{c_t^2}{16\pi^2} \left(\frac{f}{\Lambda}\right)^{2D_t} \sim \frac{\mathcal{O}(1)}{2\pi}$$

Too large to be under control!

Top Compositeness

- * Solution: make t_R fully composite
 - Nearly composite anyway
- Chiral, so massless despite being composite
- * Top Yukawa comes from $Q_{\rm 3L}$ mixing term (only)

$$\frac{c_{Q3}}{\Lambda^{D_{Q3}}} \bar{Q}_{3L} \mathcal{O}^t \Rightarrow c_{Q3} \left(\frac{f}{\Lambda}\right)^{D_{Q3}} \bar{Q}_{3L} t_R H$$

* Above Λ , top within confining sector; gauge running under control

In a general theory,

 $\alpha(\mu) = \alpha_{GUT} + SM + NP + M_{GUT}$ -physics

* In a composite Higgs theory above Λ ,

 $\alpha(\mu) = \alpha_{GUT} + SM - \{h, ...\} + NP^{comp} + NP^{elem}$

* Composite SM states "dissolve", counted in NP^{comp}

* In a composite Higgs theory above Λ ,

 $\alpha(\mu) = \alpha_{GUT} + SM - \{h,...\} + NP^{comp} + NP^{elem}$

Composite SM states "dissolve", counted in NP^{comp}

 $lpha^{i}(\mu)-lpha^{j}(\mu)=\mathrm{SM}-\{\mathrm{h},...\}+\mathrm{NP}^{\mathrm{elem}}$

* In a composite Higgs theory above Λ ,

 $\alpha(\mu) = \alpha_{\rm GUT} + \rm SM - \{h, ...\} + \rm NP^{\rm comp} + \rm NP^{\rm elem}$

* Composite SM states "dissolve", counted in NPcomp

$$lpha^{i}(\mu) - lpha^{j}(\mu) = \mathrm{SM} - \{\mathrm{h}, ...\} + \mathrm{NP}^{\mathrm{elem}}$$

Simple metric for differential running

$$R \equiv \frac{b_2 - b_3}{b_1 - b_2}$$

R(SM) = 0.53 R(MSSM) = 0.71 R(SM-h-t_R) = 0.59

Can use NP^{elem} to improve unification; BUT WHY?

- Can use NP^{elem} to improve unification; BUT WHY?
- * If $G_{GUT} \subset H$, then h, t_R NOT only light composites!

- Can use NP^{elem} to improve unification; BUT WHY?
- * If $G_{GUT} \subset H$, then h, t_R NOT only light composites!
- * Higgs in 5 of SU(5): expect Goldstone SU(3) triplet T

- ✤ Can use NP^{elem} to improve unification; BUT WHY?
- * If $G_{\text{GUT}} \subset H$, then h, t_{R} NOT only light composites! $\begin{pmatrix} T \\ H \end{pmatrix}$
- * Higgs in 5 of SU(5): expect Goldstone SU(3) triplet T
- * t_R in **10** of SU(5): expect other chiral fermions! $\begin{pmatrix} t_R & Q' \\ Q'^T & e' \end{pmatrix}$
- Need elementary exotics for vector-like masses
- Call these Top Companions (not partners)

 $\begin{pmatrix} 0 & \tilde{Q}^c \\ \tilde{O}^{cT} & \tilde{\rho}^c \end{pmatrix}$

Precision Unification

Exotic fermion masses similar to top Yukawa

$$c_{\chi} \, \bar{\chi}_L \mathcal{O}^t \Rightarrow c_{\chi} f \, \bar{\chi}_L \chi_R$$

 Effect on running equivalent to subtracting t_R^c

 $R(SM-h-t_R-t_R^c) = 0.69$

 $\int \frac{10/t_R \, \overline{10}/t_R^2}{SM}$

 $m_{\chi} \sim f$

An Upper Limit on f

* $m_{\chi} = 20 \text{ TeV}$

Red: 5D Calculation Choi & Kim, hep-th/0411090

 $* \text{ Blue: 4D Estimate} \\ \frac{d}{d\ln\mu} \left(\frac{1}{\alpha_a}\right) = \frac{b_a}{2\pi} + \frac{B_{ab}}{2\pi} \frac{\alpha_b}{4\pi} + \frac{C_{af}}{2\pi} \frac{c_f^2}{16\pi^2} \left(\frac{f}{\Lambda}\right)^{2D_f}$

Two-Loop Unification

An Upper Limit on f

Two-Loop Unification

* $m_{\chi} = 20 \text{ TeV}$

Red: 5D Calculation Choi & Kim, hep-th/0411090

Blue: 4D Estimate

Proton Decay and Dark Matter

Agashe & Servant hep-ph/0403143, hep-ph/0411254, Frigerio et al 1103.2997

* GUT multiplets at very low scale Λ : Proton Decay?

Proton Decay and Dark Matter

Agashe & Servant hep-ph/0403143, hep-ph/0411254, Frigerio et al 1103.2997

- * GUT multiplets at very low scale Λ : Proton Decay?
- * Promote $U(1)_B$ to global symmetry of strong sector
- Interesting subgroup: Baryon Triality

$$\mathbb{Z}_B \equiv 3B - n_c \mod 3$$

- * All SM states \mathbb{Z}_B -neutral: can stabilise DM
- * Goldstone triplet has \mathbb{Z}_B charge!

Proton Decay and Dark Matter

Agashe & Servant hep-ph/0403143, hep-ph/0411254, Frigerio et al 1103.2997

- * GUT multiplets at very low scale Λ : Proton Decay?
- * Promote $\mathrm{U}(1)_B$ to global symmetry of strong sector
- Interesting subgroup: Baryon Triality

$$\mathbb{Z}_B \equiv 3B - n_c \mod 3$$

- * All SM states \mathbb{Z}_B -neutral: can stabilise DM
- * Goldstone triplet has \mathbb{Z}_B charge!

Dark Matter

- Two possible dark matter candidates:
 - * Top Companion Fermion Frigerio et al 1103.2997
 - * Goldstone scalar Frigerio et al, 1204.2808
- Two possible annihilation channels:
 - * Non-Renormalisable operators mediated by composite sector $\frac{1}{f^2}(\bar{\tilde{l}}Q_{3L})(\bar{Q}_{3L}\tilde{l}) = \frac{1}{f}(H^{\dagger}\tilde{l})^2$
 - Renormalisable interactions

$$T(\bar{Q}_{3L}\tilde{q}) \qquad H^{\dagger}H\,S^{\dagger}S$$

* Phenomenological details more model-dependent

Dark Matter

- * Two possible dark matter candidates:
 - * Top Companion Fermion Frigerio et al 1103.2997
 - Goldstone scalar Frigerio et al, 1204.2808
- Two possible annihilation channels:
 - * Non-Renormalisable operators mediated by composite sector $\frac{1}{f^2}(\bar{\tilde{l}}Q_{3L})(\bar{Q}_{3L}\tilde{l}) = \frac{1}{f}(H^{\dagger}\tilde{l})^2$
 - Renormalisable interactions

 $T(\bar{Q}_{3L}\tilde{q}) \qquad H^{\dagger}H\,S^{\dagger}S$

* Phenomenological details more model-dependent

Dark Matter

- * Two possible dark matter candidates:
 - * Top Companion Fermion Frigerio et al 1103.2997
 - Goldstone scalar Frigerio et al, 1204.2808
- Two possible annihilation channels:
 - * Non-Renormalisable operators mediated by composite sector $\frac{1}{f^2}(\bar{\tilde{l}}Q_{3L})(\bar{Q}_{3L}\tilde{l}) = \frac{1}{f}(H^{\dagger}\tilde{l})^2$
 - Renormalisable interactions

$T(\bar{Q}_{3L}\tilde{q}) \qquad H^{\dagger}H\,S^{\dagger}S$

* Phenomenological details more model-dependent

An Explicit Model

Symmetry Breaking

- * Consider model without custodial SU(2), based on SU(5)
 - For SO(10) (natural) model, see Frigerio et al 1103.2997
- * SU(5) models struggle to have top companion DM
 - Lack of neutral fermion outside electroweak doublet
- * Smallest groups: SU(6)/SU(5), U(6)/U(5): DM unstable

$$SU(6) \rightarrow \begin{pmatrix} SU(5) & 0 \\ 0 & 0 \end{pmatrix} \qquad \Pi \sim \begin{pmatrix} T \\ H \\ e^{i\eta} \end{pmatrix}$$

Symmetry Breaking

- * Consider model without custodial SU(2), based on SU(5)
 - For SO(10) (natural) model, see Frigerio et al 1103.2997
- * SU(5) models struggle to have top companion DM
 - Lack of neutral fermion outside electroweak doublet
- * Smallest groups: SU(6)/SU(5), U(6)/U(5): DM unstable

$$SU(6) \rightarrow \begin{pmatrix} SU(5) & 0 \\ 0 & 0 \end{pmatrix} \qquad \Pi \sim \begin{pmatrix} T \\ H \\ e^{i\eta} \end{pmatrix}$$

Symmetry Breaking

- * Consider model without custodial SU(2), based on SU(5)
 - For SO(10) (natural) model, see Frigerio et al 1103.2997
- * SU(5) models struggle to have top companion DM
 - Lack of neutral fermion outside electroweak doublet
- * Smallest groups: SU(6)/SU(5), U(6)/U(5): DM unstable
- * So consider $SU(7)/SU(6) \times U(1)$ $SU(7) \rightarrow \begin{pmatrix} SU(6) & 0 \\ 0 & U(1)_7 \end{pmatrix} \qquad \Pi \sim \begin{pmatrix} T \\ H \\ S \\ 0 \end{pmatrix}$

Dark Matter Stability: U(1)s

* Gauging breaks $SU(6) \times U(1) \rightarrow SU(5) \times U(1) \times U(1)$

$$SU(7) \to \begin{pmatrix} SU(5) & 0 & 0\\ 0 & U(1)_6 & 0\\ 0 & 0 & U(1)_7 \end{pmatrix}$$

/ \

* Linear combination of $\mathrm{U}(1)s$ stabilises S

$$U(1)_7 - 7U(1)_6 \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \Pi \sim \begin{pmatrix} T \\ H \\ S \\ 0 \end{pmatrix}$$

Dark Matter Stability: U(1)s

* Gauging breaks $SU(6) \times U(1) \rightarrow SU(5) \times U(1) \times U(1)$

$$SU(7) \to \begin{pmatrix} SU(5) & 0 & 0\\ 0 & U(1)_6 & 0\\ 0 & 0 & U(1)_7 \end{pmatrix}$$

* Linear combination of $\mathrm{U}(1)s$ stabilises S

$$U(1)_7 - 7U(1)_6 \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \Pi \sim \begin{pmatrix} T \\ H \\ S \\ 0 \end{pmatrix}$$

However, fermion couplings complicate things

Dark Matter Stability: ZB

- * Fermion couplings break $U(1)_S$
- * Enlarge symmetry: $U(7) \times U(1)_{B0}/U(6) \times U(1) \times U(1)_{B0}$
 - * Expect U(N) global flavour symmetries
 - Need to add Baryon number anyway
- * Fermion, gauge couplings break $H \rightarrow G_{SM} \times U(1)_B$ $U(1)_B \equiv \frac{1}{126} \left(6U(1)_E + U(1)_7 - 7U(1)_6 + 126U(1)_{B0} \right)$
- * Goldstones have different charge under true $\mathrm{U}(1)_{\mathrm{B}}$

Dark Matter Stability: ZB

- * Fermion couplings break $U(1)_S$
- * Enlarge symmetry: $U(7) \times U(1)_{B0}/U(6) \times U(1) \times U(1)_{B0}$
 - * Expect U(N) global flavour symmetries
 - Need to add Baryon number anyway
- * Fermion, gauge couplings break $H \rightarrow G_{SM} \times U(1)_B$ $U(1)_B \equiv \frac{1}{126} \left(6U(1)_E + U(1)_7 - 7U(1)_6 + 126U(1)_{B0} \right)$
- * Goldstones have different charge under true $U(1)_B$

Matter Embeddings

- * t_R (& hence top companions) in **15** of SU(6) = 10 + 5 of SU(5)
- * All SM Yukawas generated
 - Quarks couple to 35
 - Leptons couple to 21
 - Doublets couple to two operators
- * Right-handed neutrinos N^c:
 - Needed for Majorana v masses
 - Allow leptogenesis

	SU(7)	SU(6)	SU(5)	$U(1)_L$	$U(1)_B$
$q_{(u)}$	$\overline{35}$	20	10	0	$\frac{1}{3}$
$q_{(d)}$	35	20	10	0	$\frac{1}{3}$
u^c	35	15	10	0	$-\frac{1}{3}$
d^c	$\overline{35}$	$\overline{15}$	$\overline{5}$	0	$-\frac{1}{3}$
$l_{(\nu)}$	$\overline{21}$	$\overline{15}$	$\overline{5}$	1	0
$l_{(e)}$	$\overline{21}$	$\overline{6}$	$\overline{5}$	1	0
N^c	21	6	1	$^{-1}$	0
e^{c}	21	15	10	-1	0
$(ilde{q}^c, ilde{e})$	25	15	$\overline{10}$	0	$\frac{1}{3}$
(\tilde{d}^c, \tilde{l})	- 35	10	$\overline{5}$	0	0

Scalar Potential

* Higgs VEV tuned; Higgs Mass set by gauge loops:

Scalar Potential

* Higgs VEV tuned; Higgs Mass set by gauge loops:

Triplet, Singlet masses typically

$$m_T \sim \frac{g_{\rho}f}{4\pi} \max[g_3, \lambda_{\psi}] \sim (1-2)\frac{f}{\pi} \qquad m_S \sim \frac{g_{\rho}f}{4\pi} \max[\lambda_{\chi}, \lambda_b] \sim \frac{f}{\pi}$$

Scalar Potential

Triplet, Singlet masses typically

$$m_T \sim \frac{g_{\rho}f}{4\pi} \max[g_3, \lambda_{\psi}] \sim (1-2)\frac{f}{\pi} \qquad m_S \sim \frac{g_{\rho}f}{4\pi} \max[\lambda_{\chi}, \lambda_b] \sim \frac{f}{\pi}$$

- Singlet can be tuned lighter; needed to fit relic density
 - * For $f \sim 10$ TeV, only ~ few to 25 percent tuning

Dark Matter Phenomenology

$$V \supset -\mu^2 H^{\dagger} H + m_S^2 S^{\dagger} S + \lambda (H^{\dagger} H)^2 + \kappa (H^{\dagger} H) (S^{\dagger} S)$$

- Higgs portal singlet
 Cline et al, 1306.4710
- * κ set by top companion loops: $\kappa \sim 0.02 \ (m_\chi/f)^4$
- Limits:
 - Direct Detection $m_S > 300 \text{ GeV}$
 - * Calculability $\lambda_{\chi} < g_{\rho}/3$
 - * Relic Density bounds $\kappa \to m_{\chi}$
- DD best hope for signal

Collider Phenomenology

General Features

- * Higgs deviations from SM ~ v^2/f^2
 - Unnatural models untestable this way
- Typical Spectrum

$$m_{\chi} \sim (1-2)f \quad m_T \sim \frac{(1-2)}{\pi}f \quad m_{DM} \sim 1 \text{ TeV}$$

- Top Companions decay promptly
- * Triplet decays to $t\ b\ DM\ DM$
 - Top companion DM: fermion number
 - Goldstone DM: accidental Z₂

Scalar Triplet Decays

- * Triplet decay suppressed: phase space, m_T/f
- Triplet can decay promptly/ displaced/collider stable
- Long-lived state marker for split spectrum
 - Compare gluino in split-SUSY

Scalar Triplet Decays

f = 10 TeV

Qualitative Collider Events

- Top companions too heavy even for 100 TeV collider
- * Strongest collider signals: $T^{\dagger}T$ production
- Classify events by decay lengths on either side
 - P: Prompt Decay
 - * B: Beam-pipe Decay
 - D: Detector Decay
 - * S: Stopped in Detector
 - * E: Escape Detector

LHC Events (13 TeV)

73

100 TeV Events (3ab⁻¹)

74

Conclusions

Conclusions

- Unnatural models worthy due to flavour, EWPO, LHC
- Unnatural Composite Higgs valid alternative to SUSY
- * Gauge Unification, dark matter give bound f < 1000 TeV
- Light scalar triplet is generic and long-lived
- * Explicit SU(5) model with scalar dark matter given
- Future directions: Collider phenomenology, Baryogenesis, Other Cosets

Back-up Slides

Neutrino Masses

- * If new sector violates *L*, will generate Weinberg term: $\mathcal{L} \supset \frac{1}{f} |L H|^2$
- * This is forbidden: $m_{\nu} \sim 0.06 6 \text{ GeV}$
 - * We must impose $\mathrm{U}(1)_{\mathrm{L}}$ as a symmetry of strong sector
 - * So neutrino masses require $\rm N_{\rm R}$
- * Majorana N_{R} lead to v_{L} masses via controlled L violation

$$\mathcal{L} \supset N_R \mathcal{O}^N + L \mathcal{O}^L \quad \Rightarrow \quad \frac{f}{m_N^2} |LH|^2$$

Incomplete Generations and Baryon Number

Three generations of chiral fermions: $\begin{array}{ccccc} L & \bar{d}_R & \bar{e}_R & Q_L \\ 0 & -\frac{1}{3} & 0 & \frac{1}{3} \end{array}$ \overline{t}' $-\frac{1}{3}$