Cosmology Between the Plancks Open EFT & Inflation

Large fields, open systems and inflation

Cliff Burgess

Why EFTs?

- *Decoupling:* short-distance physics is largely irrelevant for long-distance physics
	- EFTs concisely express what is important at long distances

Patron Saint of All Things Natural

Why EFTs?

- *Decoupling:* short-distance physics is *largely* irrelevant for long-distance physics
	- EFTs concisely express what is important at long distances

• *Cosmology likes the unnatural! (what UV completions hate)*

Patron Saint of All Things Natural

• Natural inflation revisited

• Trigonometric, exponential and power-law potentials *(1306.3512 and 1404.6236) w Cicoli, Quevedo & Williams*

- Natural inflation revisited
	- Trigonometric, exponential and power-law potentials *(1306.3512 and 1404.6236) w Cicoli, Quevedo & Williams*
- Open EFTs and EFTs w/o effective lagrangians
	- Decoherence, stochastic inflation and the EFT outside the horizon *(1408.5002) w Holman, Tasinato & Williams*

のようは豊富のの立場も放送したが、そのころ、そののの障害

Part I

NATURAL INFLATION

What is special about Goldstone bosons?

Exponential potentials vs axions

What about large fields?

NATURAL INFLATION

AT THE EXPERIMENT OF A PROPERTY AND RELEASED FOR A PROPERTY AND RELEASED FOR A PROPERTY OF A PROPERTY AND RELEASED

• Why goldstone bosons?

Mukhanov & Chibisov 1980 Liddle & Lyth 1992

• W $\overline{\mathbf{w}}$ n_s *and r in single-field slow roll inflation:* $V(\phi)$

$$
\epsilon = \frac{1}{2} \left(\frac{M_p V'}{V} \right)^2 \quad \eta = \frac{M_p^2 V''}{V}
$$

$$
n_s - 1 = -6\epsilon + 2\eta
$$

$$
r = 16\epsilon
$$

Planck 2013

• W *So what is the hard part?* $\eta=$ $M_p^2 V^{\prime\prime}$ \overline{V} $\eta \ll 1 \Rightarrow m^2 \ll H^2 \ll M^2$

Hierarchy problem in spades!!

Freese, Friedman & Olinto 1990

 \bullet W $\frac{65.$ Poetice Sold eg: *pseudo-Goldstone bosons* $\Phi = \Phi_0 e^{i\varphi} \rightarrow e^{ia} \Phi$ *Perturb around symmetry limit:* $L_{kin}=g_{ab}(\varphi)\partial\varphi^{a}\partial\varphi^{b}$ $V(\varphi) = V_0$ *Once symmetry breaks find, eg:* $V = V_0 + V_1 \cos(\varphi/f)$

Corrections to $V₁$ are proportional to $V₁$

international contribution of the contribution of the contribution of the contribution of the contribution of

• Why goldstone bosons?

- Why exponential potentials?
	- *The 'other' kind of goldstone bosons…*

CB, Cicoli, Quevdo & Williams

Martin, Ringeval & Vennin 2013

Exponential potentials fit the Planck data best:

Martin, Ringeval & Vennin 2013

BMQRZ th/0111025

• W \longrightarrow P^{σ} *Exponential potentials: progress on the* h *problem*

•
$$
V(\varphi) = V_0 \left(1 - e^{-k \varphi} + \cdots \right)
$$

$$
\boldsymbol{SO}
$$

• *Need approximation that works at large fields* $\epsilon = e^{-2k \varphi}$ and $\eta = e^{-k \varphi}$

so slow roll is same as large field

BMQRZ th/0111025 Cicoli, CB & Quevedo 0808.0691

• W \longrightarrow P^{σ} *Exponential potentials: progress on the* h *problem*

•
$$
V(\varphi) = V_0 \left(1 - e^{-k \varphi} + \cdots \right)
$$

$$
\epsilon = e^{-2k \varphi} \text{ and } \eta = e^{-k \varphi}
$$

since $\varepsilon \sim \eta^2$ get prediction $r \sim (n_s - 1)^2$

BMQRZ th/0111025 Cicoli, CB & Quevedo 0808.0691

• W \longrightarrow P^{σ} *Exponential potentials: progress on the* h *problem*

•
$$
V(\varphi) = V_0 \left(1 - e^{-k \varphi} + \cdots \right)
$$

• *Need approximation that works at large fields* $\epsilon = e^{-2k \varphi}$ and $\eta = e^{-k \varphi}$

so

since $\varepsilon \sim \eta^2$ get prediction $r \sim (n_s - 1)^2$ *can adjust k to vary r but hard to get r > 0.11*

BMQRZ th/0111025

• W completions, such as when extra-dimensional size, • W enpirated). *Exponential potentials arise generically from UV r, is the inflaton (though can also be more complicated):*

$$
V(\varphi) = V_0 \left(1 - \frac{1}{r^p} + \cdots \right)
$$

$$
= V_0 \left(1 - e^{-k \varphi} + \cdots \right)
$$

$$
since L = M^2 \frac{(\partial r)^2}{r^2} implies \frac{r}{\varphi} = e^{\varphi/M}
$$

We are allowed a contribution of the contribution of the contribution of the contribution

• Why goldstone bosons?

- Why exponential potentials?
	- *The 'other' kind of goldstone bosons…*
- What about large fields?

• W

 \bullet W_{IIsually} large r corre *Usually large r corresponds to large excursions in field space*

• $\Delta \phi > M_p (r/4\pi)^{1/2} (Lyth)$

• W Can evade this, but *Can evade this, but SHOULD EMBRACE IT!*

• W decoupling (as expressed eg by effective field *Q:* Need large fields be inconsistent with theory techniques) and control of calculations?

• W • ^The *I* and the *I* and the *I* and the *I* and *R* and *L* and *L A: Not in principle: EFT and decoupling rely on low energy, and not small fields.*

 \bullet W \bullet CHICV flat divections provide existence *SUSY flat directions provide existence proof Require asymptotic form for*

• What not to do: *expand in powers of* f

• W

• *Need approximation that works at large fields*

• W should un Generically should NOT expand in powers of φ : Should understand large-field limit (eg as symmetry limit for goldstone bosons)

• W

• $W_{\text{when large field}}$ But…sometimes CAN expand in powers of fields when large fields are small:

• W Large r requires $\varphi > M_p$ • \vert Taylor expansion requires $\varphi < f$ $V(\varphi/f) \approx V_0 + V_1 \varphi^2 + \cdots$

These can be consistent if: $f > M_p$

Summary:

 \bullet W $P_{\text{scoudo-}ooldstov}$ *Pseudo-goldstone bosons are natural inflatons*

• W Generically get trigonometric or exponential • *potentials, though others are possible (even* ϕ^2 *)*

• W Large fields need not be the Large fields need not be inconsistent with low*energies, but must understand the large-field limit. Large r likely to be a great slayer of models, if true.* **この場所によりは豊かな場所がある。 さかしんかいがく**

Part I

EFTS W/O EFF LAGRANGIANS

Effective theory outside the horizon

EFTS W/O EFF LAGRANGIANS

「高速電話をおくして量を装置を読みやかけない」というのです。

• O summarize high-energy effects for low-energy Usually EFTs rely on simplicity when $E < M$ to observables in terms of an effective Lagrangian.

$$
e^{iS_{eff}(\varphi)} = \int D\psi \ e^{iS(\varphi,\psi)}
$$

 S_{eff} is simple when expanded in ∂/M

• O_l open systems, even when degrees of freedom may Such a description is not in general possible for be integrated out.

eg: particle moving through a medium

courtesy Scientific American

• O_l open systems, even when degrees of freedom may Such a description is not in general possible for be integrated out.

eg: particle moving through a medium

Leff need not exist since in general pure states can evolve to mixed due to ability to exchange info

courtesy Scientific American

• O_l given a hierarchy of scales. EFT nonetheless can exist: *ie things can simplify*

> Divide system into small observed subsystem, *A*, in presence of a large environment, *B*: $H = H_A + H_B + V$ then simplifications can arise when $t_c \ll t_p$ Where t_c is the correlation time of *V* in *B* and t_p is the time beyond which perturbation in *V* fails. *B A*

• O_l be computed by computing a coarse-grained For such a system evolution over times $t \gg t_n$ can evolution:

$$
(d\rho_A/dt)_{cg} = \frac{1}{\Delta t} Tr_B[U(\Delta t)\rho U^*(\Delta t)]
$$

for $t_c \ll \Delta t \ll t_p$ and integrating.

for $A \ll B$ *this limit this is a Markov process*

• O_l be computed by computing a coarse-grained For such a system evolution over times $t \gg \overline{t_n}$ can evolution:

 $\frac{1}{\pi}$ This is what allows calculation $f_{\text{room, otomo, iq}}$ 1000 \angle 1; l_{zolv} of light propagation over distances for which scattering from atoms is 100% likely

for $A \ll B$ *in this limit this*

www.osa-opn.org

2010年1月,北京大学、大学会会议室、<mark>市场大学研究所 1990年(1990年)</mark>

• Open EFTs

• Effective theory outside the horizon

CB, Holman, Tasinato & Williams

• O_1 Sca • Ef *Q: What is the effective theory outside the Hubble scale during inflation? Claim:* this is described by an Open EFT *System A:* extra-Hubble modes: $\frac{k}{a}$ \overline{a} ≪ *System B:* intra-Hubble modes: $\frac{k}{e}$ \overline{a} $>$ H

Correlation time: $t_c \approx H^{-1}$

• Ef $\overline{}$

CB, Holman, Tasinato & Williams

• O_1 Calculation of off-diagonal matrix elements of ρ_A :

> suppose $V = \int A^i B_i d^3x$ and $\langle \delta B_i(x) \delta B_j(x') \rangle = U_{ij}(x) \delta(t - t')$

 also extra-Hubble squeezing of modes implies $A^{i}(\Phi,\Pi)|\varphi\rangle \rightarrow A^{i}(\Phi,0)|\varphi\rangle = \alpha^{i}(\varphi)|\varphi\rangle$ so *Aⁱ* is always diagonal in field eigenbasis

CB, Holman, Tasinato & Williams

• O_1 Calculation of off-diagonal matrix elements of ρ_A :

then can integrate equation for ρ_A in field basis:

• **Ef**
$$
\langle \varphi | \rho_A | \tilde{\varphi} \rangle = \langle \varphi | \rho_{A0} | \tilde{\varphi} \rangle e^{-\Gamma}
$$

where $\Gamma = \int d^3x dt \, [\alpha^i - \tilde{\alpha}^i][\alpha^j - \tilde{\alpha}^j] U_{ij}$

implies off-diagonal elements *decohere* as with variance narrowing on Hubble times: $\sigma^{-2} \propto a^3$

CB, Holman, Tasinato & Williams

 \cdot O $_{\text{For these}}$ *What of the diagonal matrix elements of* ρ_A ? For these $\Gamma = 0$ and so the probabilities are governed by initial quantum state. $P[\varphi] = \langle \varphi | \rho_A | \varphi \rangle = | \Psi(\varphi) |^2$

• Ef $\overline{}$

Schrodinger evolution plus tracing of sub-Hubble modes implies P satisfies $\frac{\partial P}{\partial t}$ ∂t $= N$ $\partial^2 P$ $rac{\partial F}{\partial \varphi^2}$ with $N = H^3/8\pi^2$ as in *Starobinsky stochastic inflation*

Summary:

 \cdot O $\sqrt{ }$ Open sys *Open systems provide a new type of EFT where simplicity of scale hierarchy is not captured by an effective lagrangian*

• Ef \blacksquare *Appropriate for EFT outside inflationary Hubble scale, and provides derivation of Starobinsky's stochastic inflation as well as the rapid decoherence of primordial quantum fluctuations.*

- Inflation with large fields
	- Requires understanding of large-field regime
	- Pseudo-Goldstone bosons lead to trig, exponential potentials (and even power laws sometimes)
	- *r* larger than 0.1 a challenge for many models

Summary

- Inflation with large fields
	- Requires understanding of large-field regime
	- Pseudo-Goldstone bosons lead to trig, exponential potentials (and even power laws sometimes)
	- *r* larger than 0.1 a challenge for many models
- Inflation and Open EFTs
	- EFT for open systems, without eff lagrangian
	- Gives extra-Hubble EFT: decoherence + Starobinsky
	- New domains of validity of EFT approximation

