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Flavor

Generational structure & mixing is a feature of the SM and many
BSM particles. VIRTUES:

i) high sensitivity to BSM in flavor violation;
FCNCs b→ s``, µ→ eγ, h→ τµ, ...

we may discover BSM in flavor physics (even first)

ii) flavorful processes are intrinsically linked to the ”flavor puzzle”:
masses, i.e., Yukawa matrices in LSM = −Q̄YuHCU − Q̄YdHD + ...

do not appear to be random but rather structured - from where?
with a BSM-signal, we may be able to progress here

iii) plenty of modes s→ d, c→ u, b→ s, d, t→ c, u, µ→ e, τ → µ, e

plus charged ones and h→ ff̄ ′; ongoing & future experiments, too.
we may identify LBSM ; complementary to direct searches
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Flavor Themes 2015/16 (simplified)

crosstalk theory(SM/BSM)/pheno/experiment

new bottom-up New Physics benchmark models

leptons↔ quarks
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Flavor Themes 2015/16

- SM precision: Higher order, hadronic matrix elements, lattice QCD

- multi-observable fits to couplings ”Wilson coefficients” C(′)
7,9,10 of

standardized |∆B| = |∆S| = 1 effective hamiltonian; few groups,
dedicated effort, exploit correlations, precision test of the SM

- design/use clean observables; related to (approximate) symmetries
of the SM: lepton-nonuniversality, CP, helicity, LFV .. ”null tests”

- bottom-up model-building/simplified models (Z ′, extra Higgses,
leptoquarks..) ”data-driven”

- Higgs physics: hff̄ and hff̄ ′ – are couplings SM-like?

- quarks together with leptons: recents hints of
lepton-nonuniversality in B-decays RK , RD∗.
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LNU in b→ s

RH = B(B̄→H̄µµ)

B(B̄→H̄ee) , H = K,K∗, Xs, ...

Lepton-universal models(SM): RH = 1+tiny, GH, Krüger ’03

LHCb 2014: RK = 0.745±0.090
0.074 ±0.036 < 1 at 2.6 σ

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.151601, arXiv:1406.6482 [hep-ex]

physics highlight: http://physics.aps.org/articles/v7/102

apriori too few muons, or too many electrons, or combination thereof.
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RK measurement

B± → K±ee and B± → K±µµ events at LHCb. Full data set, 3fb−1,
from 7 and 8 TeV LHC run.

Fig from 9910221, solid: SM, dotted and dot-dashed: BSM scenario

Select low dilepton mass window: 1 ≤ q2 < 6 GeV2 below J/Ψ.
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RK measurement

situation for numerator µµ and denominator ee of RK separately:

LHCba SMb

B(B → Kµµ)[1,6] (1.21± 0.09± 0.07) · 10−7 (1.75+0.60
−0.29) · 10−7

B(B → Kee)[1,6] (1.56+0.19+0.06
−0.15−0.04) · 10−7 same

RK |[1,6] 0.745±0.090
0.074 ±0.036 ' 1

a1209.4284 (µ) and 1406.6482 (e) bBobeth, GH, van Dyk ’12, form factors from 1006.4945

Individual branching ratios make presently no case for new physics,
although muons are a bit below SM. The ratio RK is much cleaner.
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b→ s`` FCNCs model-independently

Construct EFT Heff = −4GF√
2
VtbV

∗
ts

∑
iCi(µ)Oi(µ) at dim 6

V,A operators O9 = [s̄γµPLb] [¯̀γµ`] , O′9 = [s̄γµPRb] [¯̀γµ`]

O10 = [s̄γµPLb] [¯̀γµγ5`] , O′10 = [s̄γµPRb] [¯̀γµγ5`]

S,P operators OS = [s̄PRb] [¯̀̀ ] , O′S = [s̄PLb] [¯̀̀ ] , ONLY O9, O10 are SM, all other BSM

OP = [s̄PRb] [¯̀γ5`] , O′P = [s̄PLb] [¯̀γ5`]

and tensors OT = [s̄σµνb] [¯̀σµν`] , OT5 = [s̄σµνb] [¯̀σµνγ5`]

lepton specific CiOi → C`
iO

`
i , ` = e, µ, τ
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RK-interpretations

Model-independent interpretations with V,A operators: Das et al 1406.

0.7 . Re[Xe −Xµ] . 1.5 ,

X` = CNP`
9 + C ′`9 − (CNP`

10 + C ′`10)

The required NP is sizeable CSM
9 ' −CSM

10 ' 4.2.

Tensors and S,P muon operators are excluded as sole sources of RK ; S,P electronic operators

allowed at 2 σ and require cancellations, testable with B̄ → K̄ee angular distributions.

Xe ' 0 and Xµ ' CµNP
9 ' −1 is consistent with global fit to existing

b→ s data!
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b→ s fits: operator structure

Fitting dimuon observables globally; Descotes-Genon et al
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b→ s fits: operator structure

Descotes-Genon et al
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b→ s fits: lepton flavor structure

Why are muons different from electrons?

Splitting electrons from muons:

Z ′- U(1)τ−µ (BSM in b→ sµµ, not in b→ see).
Altmannshofer, Crivellin, Fuentes, Vicente, .. et al

Links with h→ τµ with extras Higgses Crivellin et al, Heeck et al

new particle exchanged at tree level, including leptoquarks, MSSM
with R-Parity violation amended with Froggatt-Nielsen flavor
symmetry (both µµ and/or ee possible) Schmaltz, Gripaios, Varzielas, .. et al

This naturally provides a link for LFV decays Guadagnoli, Kane, Varzielas which
however is not strict Alonso et al, Fuentes et al

pl see original refs for complete list of contributions to this effort
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Interpretation with Models

Leptoquark model L = −λd` ϕ (d̄PL`) with scalar leptoquark ϕ(3, 2)1/6

with mass M ; includes R-parity violating MSSM)

Heff = − |λd`|
2

M2 (d̄PL`) (¯̀PRd) = |λd`|2
2M2 [d̄γµPRd] [¯̀γµPL`]

from tree level ϕ exchange and fierzing.

In terms of the usual Wilson coefficients:

C ′e10 = −C ′e9 =
λseλ∗be
VtbV

∗
ts

π
αe

√
2

4M2GF
= −λseλ∗be

2M2 (24TeV)2

RK-data implies λseλ
∗
be/M

2 ' 1/(24TeV)2
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Interpretation with Models

Viable parameters of the (scalar) leptoquarks read

1 TeV .M . 48 TeV
2 · 10−3 . |λseλ∗be| . 4

The upper limit on M arises from correlation with Bs mixing, which
constrains (λseλ

∗
be)

2/M2.

– SU(2) implies corresponding effects in b→ sνν (only
electron-neutrinos affected, signal diluted over 3 species).
B(B → Kνν) reduced by 5 %, B(B → K∗νν) enhanced by 5 %, FL
enhanced by 2 % w.r.t SM.

– Further correlation with b→ sγ, and direct searches.

– Decay modes of ϕ-dublet: ϕ2/3 → b e+ , ϕ−1/3 → b ν
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A leptoquark -triplet model

L = −λbµ ϕ∗ q3`2 − λsµ ϕ∗ q2`2, ϕ(3, 3)−1/3

Heff = −λ∗sµλbµ
M2

(
1
4
[q̄2τ

aγµPLq3] [ ¯̀
2τ

aγµPL`2] + 3
4
[q̄2γ

µPLq3] [ ¯̀
2γµPL`2]

)
gives CNPµ

9 = −CNPµ
10 = π

αe

λ∗sµλbµ
VtbV

∗
ts

√
2

2M2GF
' −0.5 and similar mass

range as other model.

Decay modes of ϕ-triplet:

ϕ2/3 → t ν

ϕ−1/3 → b ν , t µ−

ϕ−4/3 → b µ−

15



Distinguish RK explanations

Leptoquark triplet or doublet? That is, more generally,

C (V-A-quark currents) versus
C ′ (V+A quark currents)?

By parity and lorentz invariance, C,C ′ enter decay amplitudes
B → K`` etc as

C + C ′ : K,K∗⊥, . . .

C − C ′ : K0(1430), K∗0,‖, . . .

so different ratios RK , RK∗ etc are complementary, double ratios
RK∗/RK are cleanly probing right-handed currents!
predictions: RK = Rη, RK∗ = RΦ plus correlations among RH .
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Distinguish RK explanations

àààà
SM

0.6 0.8 1.0 1.2 1.4 RK
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1.6

1.8

RK*
�RK

Green band: RK 1 sigma LHCb. Curves: different BSM scenarios. red dashed: pure CLL. Black solid:

CLL = −2CRL. Blue: CRL. Orange band is prediction for RK∗ (not significantly measurend) based

on RK and B → Xs``: RBelle′09
Xs

= 0.42± 0.25 , RBaBar′13
Xs

= 0.58± 0.19.
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Diagnosing quark and lepton flavor

Given the breakdown of lepton-universaltiy, chances are that
generically there is lepton flavor violation, too arXiv:1411.0565.

Explaining RK with muons and electrons requires theory of flavor.
Thats an opportunity– given a signal– to access origin of flavor
arXiv:1503.01084

Leptoquark coupling matrix: λql ≡


λq1e λq1µ λq1τ

λq2e λq2µ λq2τ

λq3e λq3µ λq3τ


→ Size of BSM effects depends on flavor!

18



Bottom-up leptoquark effects

Use U(1)-flavor-symmetry for quarks (rows) and non-abelian one
e.g. A4 for leptons (columns) and assume Higgs to be uncharged.
Predicts generically hierarchies for quarks and ”zeros” and ”ones” for
leptons. Explicit realizations include

λql ∼


ρdκ ρd ρd

ρκ ρ ρ

κ 1 1

 ,


0 ∗ 0

0 ∗ 0

0 ∗ 0

 ,


∗ 0 0

0 ∗ 0

0 ∗ 0

 , . . .

LQs make interesting link between quark (hierarchy) and lepton
(anarchy? non-abelian discrete?) flavor 1503.01084.
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Bottom-up leptoquark effects

predictions:

B(B → Kµ±e∓) ' 3 · 10−8 κ2

(
1−RK

0.23

)2

, (1)

B(B → Ke±τ∓) ' 2 · 10−8 κ2

(
1−RK

0.23

)2

, (2)

B(B → Kµ±τ∓) ' 2 · 10−8

(
1−RK

0.23

)2

, (3)
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Bottom-up leptoquark effects

and

B(µ→ eγ) ' 2 · 10−12 κ
2

ρ2

(
1−RK

0.23

)2

, (4)

B(τ → eγ) ' 4 · 10−14 κ
2

ρ2

(
1−RK

0.23

)2

, (5)

B(τ → µγ) ' 3 · 10−14 1

ρ2

(
1−RK

0.23

)2

, (6)

B(τ → µη) ' 4 · 10−11 ρ2

(
1−RK

0.23

)2

. (7)
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Bottom-up leptoquark effects

asymmetric branching ratios:

B(Bs → `+`′−)

B(Bs → `−`′+)
' m2

`

m2
`′
. Left-handed leptons only (8)

B(Bs → µ+e−)

B(Bs → µ+µ−)SM

' 0.01κ2 ·
(

1−RK

0.23

)2

, (9)

B(Bs → τ+e−)

B(Bs → µ+µ−)SM

' 4κ2 ·
(

1−RK

0.23

)2

, (10)

B(Bs → τ+µ−)

B(Bs → µ+µ−)SM

' 4 ·
(

1−RK

0.23

)2

, (11)
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Impact on c→ u``?
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Resonance contributions vs BSM

BSM windows in D → πl+l− branching ratios at high and very low q2

only; BSM Wilson coefficients need to be very large, ∼ 1.

|CR
9 (q2 = 1.5 GeV2)| ' 0.8 versus |Cnr SM

9 (q2 & 1 GeV2)| . 5 · 10−4.

To observe BSM in rare charm either i) BSM is very large (plot to the
right) or ii) contributes to SM null tests (LFV, LNU, CP, angular distr.)
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Bottom-up leptoquark effects

Flavor patterns of leptoquark coupling matrix λ (rows=quark flavor,
columns=lepton flavor):

λql ∼


ρdκ ρd ρd

ρκ ρ ρ

κ 1 1

 ,


0 ∗ 0

0 ∗ 0

0 ∗ 0

 ,


∗ 0 0

0 ∗ 0

0 ∗ 0

 , . . .

LQs make interesting link between quark (hierarchy) and lepton
(anarchy? non-abelian discrete?) flavor 1503.01084.
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Predictions for charm decays

B(D+ → π+µ+µ−) B(D0 → µ+µ−) B(D+ → π+e±µ∓) B(D0 → µ±e∓) B(D+ → π+νν̄)

i) SM-like SM-like . 2 · 10−13 . 7 · 10−15 . 3 · 10−13

ii.1) . 7 · 10−8 (2 · 10−8) . 3 · 10−9 0 0 . 8 · 10−8

ii.2) SM-like . 4 · 10−13 0 0 . 4 · 10−12

iii.1) SM-like SM-like . 2 · 10−6 . 4 · 10−8 . 2 · 10−6

iii.2) SM-like SM-like . 8 · 10−15 . 2 · 10−16 . 9 · 10−15

Table 1: Branching fractions for the full q2-region (high q2-region) for different classes of leptoquark
couplings. Summation of neutrino flavors is understood. ”SM-like” denotes a branching ratio which is
dominated by resonances or is of similar size as the resonance-induced one. All c→ ue+e− branching
ratios are ”SM-like” in the models considered. Note that in the SM B(D0 → µµ) ∼ 10−13.

LHCb: arXiv:1512.00322 [hep-ex] B(D0 → e±µ∓) < 1.3 · 10−8 at 90
% CL

i): hierarchy, ii) muons only iii) skewed, 1) no kaon bounds 2) kaon
bounds apply for SU(2)L-dublets Q = (c, s)
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Summary

– Great prospects to test the SM and look for BSM physics in
semileptonic rare decays.

– Whether new Physics can be seen depends on flavor, and vice
versa; links between K,D,B-physics and LFV can provide new
insights into flavor.

– Current anomalies in the flavor sector have triggered new types of
bottom-up model-building (Z ′, leptoquarks, ..), that deserves
attention in direct searches.
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Summary

BACK-UP

28



c→ u SM GIM-suppression

c→ u amplitudes are strongly GIM-suppressed:
Ac→u ' sin ΘC [f(m2

s/m
2
W )− f(m2

d/m
2
W )] +O(sin5 ΘC)

Resulting (non-resonant) SM branching ratios are 10−12 − 10−13:

q2-bin B(D+ → π+µ+µ−)SM
nr 90% CL limit LHCb’13

full q2: 3.7 · 10−12 (±1,±3,+16
−15 ,±1,+4

−1 ,
+158
−1 ,+16

−12 ) 7.3 · 10−8

low q2: 7.4 · 10−13 (±1,±4,+23
−21 ,

+10
−11 ,

+11
−1 ,+238

−23 ,+6
−5 ) 2.0 · 10−8

high q2: 7.5 · 10−13 (±1,±6,+15
−14 ,±6,+2

−1 ,
+136
−45 ,+27

−20 ) 2.6 · 10−8

Table 2: Non-negligible uncertainties correspond to (normalization,
mc, ms, µW , µb, µc, f+), respectively, given in percent arXiv:1510.00311

Largest uncertainty: µc-scale dependence mc/
√

2 < µc ≤
√

2mc.
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Resonance contributions

D → πM → πl+l−, with M = η(′), ρ, ω,Φ

Model with Breit-Wigners, branching ratio data and relative phases:

solid blue: SM with µc-uncertainty, dashed 90% CL upper limit, gray: resonance contribution
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Model-independent constraints on BSM

c→ uµµ: |C(′)
V,A| . 1 (illustrated above), |CT,T5| . 1, |C(′)

S,P | . 0.1.

BSM weak loop ΛNP & O(5) TeV, BSM tree level ΛNP & weak scale.

c→ uee: constraints are weaker (data) by a (2-4) × muon bounds.
c→ ueµ: weaker by (6-7) × muon bounds.
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Probing even small couplings: ACP

GIM-suppression can be eased by the resonances, which are less
SU(3)F -symmetric than the nr- contributions. also ”resonance-catalyzed CP”, Fajfer et al ’13

Large uncertainties, however, large BSM signals possible
(|ASM

CP | . few10−3) even independent of strong phases around Φ.

Opportunity to probe SM-like lorentz-structure CV,A even in presence
of SU(2)-link to K-physics – links between charm and b-physics
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SM null tests

Θ: angle between negatively charged lepton and D in dilepton cms

dΓ(D→πl+l−)
d cos Θ

= 3
4
(1− FH)(1− cos2 Θ) + AFB cos Θ + FH/2 Bobeth et al ’07

SM: AFB, FH ' 0 by lorentz-structure and small lepton masses. Both
require S,P- and or tensor operators.

Model-independently, striking BSM signals possible (high q2):

|AFB(D+ → π+µ+µ−)| . 0.6, |AFB(D+ → π+e+e−)| . 0.8 and
FH(D+ → π+l+l−) . 2 for l = e, µ.

LFV-rates and dineutrino modes which vanish in SM can be just
around the corner (model-independently).
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RK -interpretations – SU(2)L

Lets use the chiral basis:

O`LL ≡ (O`9 −O`10)/2 , O`LR ≡ (O`9 +O`10)/2 ,

O`RL ≡ (O′`9 −O′`10)/2 , O`RR ≡ (O′`9 +O′`10)/2 .

RK sensitive to left-handed leptons:

C`
LL = C`

9 − C`
10 , C`

RL = C ′`9 − C ′`10 .

right-handed leptons: C`LR = C`9 + C`10, C`RR = C′`9 + C′`10

This suggests to use in global fits invariant-constraints such as
CNP`

9 = −CNP`
10 , CNP′`

9 = −CNP′`
10 .
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RK -interpretations – SU(2)L

Fig from 1410.4545 – global fit including RK

– Bounds stronger for µµ (y-axis) than for ee (x-axis).

– Both left-handed quarks CLL (left-handed plot) and right-handed
quarks CRL (right-handed plot) can be sizable.
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RK -interpretations – SU(2)L muons -Bs → µµ

If we assume new physics in muons alone employ B(B̄s → µµ)

B(B̄s → µµ)exp

B(B̄s → µµ)SM
= 0.79± 0.20 is suppressed currently .

0.0 . Re[Cµ
LR + Cµ

RL − C
µ
LL − C

µ
RR] . 1.9 , (B(Bs → µµ))

0.7 . −Re[Cµ
LL + Cµ

RL] . 1.5 . (RK)

This isolates Cµ
LL as the only single operator (particle) interpretation

of RK . Note: this is V-A. Iff B(B̄s → µµ) would be enhanced this
would isolate Cµ

RL ' −1, V+A! b→ see way less constrained.
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c→ ull: SM

Of course charm FCNCs are of interest by themselves, however, the
recent anomalies in semileptonic B-decays add to the physics case
of charm decays into leptons.

Improved (N)NLO calculation in SM: S de Boer et al, to appear, DO-TH 15-11

2-step matching:

Lweak
eff |mW≥µ>mb

=
4GF√

2

∑
q=d,s,b

V ∗cqVuq
(
C̃1(µ)P

(q)
1 (µ) + C̃2(µ)P

(q)
2 (µ)

)
, (12)

Lweak
eff |mb>µ≥mc =

4GF√
2

∑
q=d,s

V ∗cqVuq

(
C̃1(µ)P

(q)
1 (µ) + C̃2(µ)P

(q)
2 (µ)−

10∑
i=3

C̃i(µ)Pi(µ)

)
. (13)

P
(q)
1,2 : tree-level W -induced. P3..10: penguins
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c→ ull: SM

j = 1 j = 2 j = 7 j = 8 j = 9 j = 10

C̃
(0)
j -1.0275 1.0925 0 0 -0.0030 0

(αs/(4π)) C̃
(1)
j 0.3214 -0.0549 0.0035 -0.0020 0.0004 0

(αs/(4π))2 C̃
(2)
j 0.0787 -0.0035 0.0002 -0.0001 -0.0048 0

C̃j -0.6274 1.0341 0.0037 -0.0021 -0.0074 0

Table 3: The ith order contributions (αs/(4π))i C̃
(i)
j , i = 0, 1, 2 to the

SM Wilson coefficients, at µ = mc. The last row gives their sum,
C̃j(mc). For j = 3, 4, 5, 6 see 1510.00311.
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