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quantum fields: gravity:

— quantum gravity:

spacetime fluctuations

at the Planck scale Mp; = %C

quantum field theory of gravity in the path-integral framework:
Goal: [Dg,, e lsn]
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What is the microscopic quantum structure of spacetime and its dynamics?
problem: perturbative non-renormalizability

Do we need to:

@ leave the continuum and postulate spacetime discreteness?
(e.g. Loop Quantum Gravity, causal sets)

o introduce new (unobserved) degrees of freedom? (e.g. Supergravity)
@ break fundamental symmetries? (e.g. Horava-Lifshitz gravity)
@ introduce non-locality? (e.g. strings)

Asymptotic safety: Continuum quantum field theory of the metric
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Fundamental theory:
Running dimensionless couplings approach fixed point towards UV
Predictive theory:
Finite number of relevant (UV-attractive) couplings:

gi(k) =g+ c (7’;)79" 0; = di +n;
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search for scale-free point: G(k) = Gyk?

@ epsilon-expansion d = 2 + € [weinberg, 1979]
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e Causal Dynamical Triangulations (?) (ambjorn, Jurkiewicz, Lol 2000]
o Symmetry-reduced Settlng [Niedermaier, 2009]

o functional Renormalization Group equation [wetterich, 1993; Reuter, 1996]



Functional Renormalization Group RgK)

1.0!

include high- energy quantum fluctuations first: 08

0.4

o—Tild] — [Dye =Slel=3 [, #(p) R(p) #(—P) 0z
oIk

0.5 1.0 1.5 20



Functional Renormalization Group RA)

1.0

include high- energy quantum fluctuations first: 08
0.4
el = [Dpe” Slel—3 [, #(p) Ri(p) (~p) 02
o5 10 15 zoP
=T~ microscopic action
scale-dependent action: (k> )

<>

Iy contains effect of quantum fluctuations above !

I,: family of
momentum scale k effective actions
rk—>0 =TI rk—>/\—>oo — S
=TEn S: prediction!

== Low-energy effective
action (k> 0)



Functional Renormalization Group RgK)

1.0
include high- energy quantum fluctuations first: 08

e Tl = [Dpe™ Slel—3 [, #(p) Ri(p) (~p) 02

2.2
05 10 15 20° K

=T~ microscopic action

scale-dependent action: (k> )
. . N
I, contains effect of quantum fluctuations above ¢  family of
.
momentum scale k effective actions
rk—>0 =TI rk—)/\—>oo — S
=Tgny S: prediction!

== Low-energy effective
action (k> 0)

Wetterich equation [1903):
-1
Oy = 1STr (r(kz) + Rk> Ok Ry = %

— non-perturbative g = kOxg(k) — Quantum Gravity [Reuter, 1996]
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Setting a scale in quantum gravity

RG: sort quantum fluctuations according to momentum

flat background: p? Wﬁd curved background: D?
fluctuating spacetime? I I

background field method: g, = 8. + hu

ngWe—S[g;w] - fphwe—s[éuwrhw] O ‘

D? — short/long wavelength quantum
fluctuations — hy,, Ry (D?) .

action symmetric under g, — 8w + Vv M — by — Vo

broken by regulator! = background couplings # fluctuation couplings
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[Reuter ('96); Reuter, Saueressig ('01); Litim ('03)]

fixed-point action: prediction

'k =Tken + rgauge—ﬁxing + rghost + f d4X\/§(f(R) + R;u/ R 4 )

Manrique, Reuter, Saueressig ('09, '10);

Donkin, Pawlowski ('12); Codello, D'Odorico, Pagani ('13);
Christiansen, Litim, Pawlowski, Rodigast ('12); Chris-
tiansen, Knorr, Pawlowski, Rodigast ('14);

Dond, A.E., Percacci ('14); Becker, Reuter ('14)

A.E., Gies, Scherer ('09); A.E., Gies ('10);

Groh, Saueressig ('10); A.E. ('13)

Machado, Saueressig ('07);

Codello, Percacci, Rahmede ('08);

Benedetti, Caravelli ('12);

Falls, Litim, Nikolakopoulos ('13);

Dietz, Morris ('12, '13); Demmel, Saueressig, Zanusso ('14)

Benedetti, Machado, Saueressig ('09)



@ What are the properties of quantum spacetime?

@ What is the status of the cosmological constant problem in
asymptotic safety?

@ Does matter matter in asymptotically safe gravity?
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Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation:
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[Calcagni, A.E., Saueressig, 2013]



Nature of quantum spacetime

Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation:
(05 = (V?)k) P(x,x',0) =0

_ . 0lnP(x',x',0)
ds = —21im =75, 7=

spectral dimension: ds = 4 at large length scales, ds = 2 at small scales

[Lauscher, Reuter (2005); Reuter, Saueressig (2011); Calcagni, A.E., Saueressig (2013)]

quantum spacetime undergoes dynamical dimensional reduction
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Motivation: Why unimodular quantum gravity?

Unimodu|al’: \/g = € = const [Einstein, 1919; van Dam, van der Bij, Ng (1982); Unruh (1989)..]

e Cosmological constant fine-tuning problem: [ d4x\/§ = const

— quantum fluctuations do not drive A(k)
('degravitation’ of cosmological constant)

@ classically: equations of motion agree with GR
(A enters as constant of integration)
differences on quantum level (off-shell configurations)

Can unimodular gravity be asymptotically safe?

/& = const — spectrum of quantum fluctuations differs to standard case
/& = const — symmetry: transverse diffeomorphisms

= Renormalization Group flow differs from standard case
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Einstein-Hilbert truncation: G features UV-attractive fixed point (ak. 2013
f(R) truncation (A&, to appear:

(regulator as in [sencdetsi, Caravell, 2012])

in f(R)=>_"_, a;R" with n = 10

fixed point with two relevant directions:

critical exponents
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n <1
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unimodular asymptotic safety seems viable!
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Does matter matter in quantum gravity?

quantum fluctuations of all fields drive Renormalization Group flow:

OO
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Quantum gravity and matter

Matter will have an effect on quantum gravity
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analogy: Quantum Chromodynamics:

Is Asymptotically Safe Gravity compatible with Standard Model matter?



Matter matters
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rk = rk Einstein—Hilbert + rk matter
[k Einstein—Hilbert =

[dxVE <163rc (=R+2M) + Z h-((—D2 - 2A) + W(R)) - h)

[ see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]
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Matter matters
with P. Dond, R. Percacci (2013, 2014):

rk = rk Einstein—Hilbert + rk matter
[k Einstein—Hilbert =

[dxVE (16;6. (=R+2M) + Z h-((—D2 - 2A) + W(R)) - h)

[ see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

with minimally coupled matter:
Ns scalars: Ss = £ [ dx /g g S 11 0,0/, 6"

Np Dirac fermions Sp = iZp [ d¥x\/g SN0, iy

Ny Abelian vector bosons: )
N S o Ne =
Sv =% [ d'x/E I " e F Fiy+ 3¢ [ dIxVEB i (8" DuA))

Ngs spin 3/2 fields: Sgs = 1 [ ddx\/EZ;\ff PV Ly, 5V W,
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Approximative analysis

(neglect graviton and matter wave function renormalizations)

B =2G + % (Ns 4+ 2Np — 4Ny — Ngs — 46) [p.oons, AE. R. Percacci, 2013, 2014]

N

F UV-repulsive T
f fixed point

UV-attractive
fixed point

— for a given number of vectors Ny (and Nrs = 0), there is an upper

limit on the number of scalars Ns a

Matter matters in asymptotically sa

nd Dirac fermions Np!

fe quantum gravity!



Full analysis
Ny =12, Nps = 0

upper limit on Np and Ng

Standard Model: Ny =12, Np = 45/2, Ns = 4: compatible with
gravitational fixed point (disclaimer: truncated RG flow)
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Specific matter models
Standard Model: (Ns =4, Np =45/2, Ny, = 12) v

— right-handed neutrinos?v’
— dark matter scalar? v
supergravity (Ngs =1%) v/
supersymmetric extension (MSSM*: Ng = 49, Np = 61/2, Ny = 12) X
+ Interactions and regulator not supersymmetric
GUT (SO(10): Ns =97, Np =24, Ny = 45) X
Prediction:

Only specific models with restricted matter content are compatible with
Asymptotically Safe Quantum Gravity!
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Unimodular case
(neglect graviton and matter wave function renormalizations)

BG - 2G + % (NS -+ 2ND - 4NV - NRS - 20)’ [A.E., to appear]

T4 R 04 T

F UV-repulsive

_ 7 fixed point

UV-attractive
-3t fixed point

Standard Model compatible

critical number of fermions and scalars changes slightly
= BSM discoveries could distinguish QG models!



Tests of quantum gravity

Does testing quantum gravity require galaxy-size accelerators?

No! Can test Asymptotically Safe Quantum Gravity at LHC, 14 TeV:
Look for Beyond-Standard-Model particle physics
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Summary

@ Asymptotic Safety generalizes Asymptotic Freedom: Interacting
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Thank you for your attention!



