Asymptotic safety in gravity

Astrid Eichhorn

Imperial College, London

Southampton High Energy Physics Seminar, January 16, 2015

The missing corner of Bronstein's cube

The missing corner of Bronstein's cube

Quantum field theory and gravity

quantum fields:

gravity:

Quantum field theory and gravity

quantum fields:

 \rightarrow quantum gravity:

spacetime fluctuations at the Planck scale $M_{\mathrm{Pl}} = \sqrt{\frac{\hbar c}{G}}$

quantum field theory of gravity in the path-integral framework: **Goal:** $\int \mathcal{D}g_{\mu\nu} e^{iS[g_{\mu\nu}]}$

Goal:
$$\int \mathcal{D}g \ e^{i S[g]} \to \int \mathcal{D}g \ e^{-S[g]} \to \int_{p < k} \mathcal{D}g \ e^{-\Gamma_k}$$

1/k: "resolution" Γ_k : effective dynamics for long-wavelength modes

Goal:
$$\int \mathcal{D}g \ e^{i S[g]} \to \int \mathcal{D}g \ e^{-S[g]} \to \int_{p < k} \mathcal{D}g \ e^{-\Gamma_k}$$

1/k: "resolution" Γ_k : effective dynamics for long-wavelength modes

works as an effective theory at low energies:

$$S_{\text{eff}} = \frac{-1}{16\pi G_N} \int \sqrt{g} (R - 2\Lambda) + \dots$$

example: quantum gravity contribution to Newtonian potential:

$$V(r) = V_{\text{Newton}} + V_{\text{pN}} + \frac{Gm_1m_2}{r} \frac{41}{10\pi} \frac{G\hbar}{r^2} + \dots$$

Goal:
$$\int \mathcal{D}g \ e^{i S[g]} \to \int \mathcal{D}g \ e^{-S[g]} \to \int_{p < k} \mathcal{D}g \ e^{-\Gamma_k}$$

1/k: "resolution" Γ_k : effective dynamics for long-wavelength modes

works as an effective theory at low energies:

$$S_{\text{eff}} = \frac{-1}{16\pi G_N} \int \sqrt{g} (R - 2\Lambda) + \dots$$

example: quantum gravity contribution to Newtonian potential:

$$V(r) = V_{\text{Newton}} + V_{\text{pN}} + \frac{Gm_1m_2}{r} \underbrace{\frac{41}{10\pi} \frac{G\hbar}{r^2}}_{10-40} + \dots$$

[Donoghue, 1994]

Goal:
$$\int \mathcal{D}g \ e^{i S[g]} \to \int \mathcal{D}g \ e^{-S[g]}$$

What is the microscopic quantum structure of spacetime and its dynamics? problem: perturbative non-renormalizability

Goal:
$$\int \mathcal{D}g \ e^{i S[g]} \to \int \mathcal{D}g \ e^{-S[g]}$$

What is the microscopic quantum structure of spacetime and its dynamics? problem: perturbative non-renormalizability

Do we need to:

- leave the continuum and postulate spacetime discreteness?
 (e.g. Loop Quantum Gravity, causal sets)
- introduce new (unobserved) degrees of freedom? (e.g. Supergravity)
- break fundamental symmetries? (e.g. Horava-Lifshitz gravity)
- introduce non-locality? (e.g. strings)

Goal:
$$\int \mathcal{D}g \ e^{i S[g]} \to \int \mathcal{D}g \ e^{-S[g]}$$

What is the microscopic quantum structure of spacetime and its dynamics? problem: perturbative non-renormalizability

Do we need to:

- leave the continuum and postulate spacetime discreteness?
 (e.g. Loop Quantum Gravity, causal sets)
- introduce new (unobserved) degrees of freedom? (e.g. Supergravity)
- break fundamental symmetries? (e.g. Horava-Lifshitz gravity)
- introduce non-locality? (e.g. strings)

Asymptotic safety: Continuum quantum field theory of the metric

$$\int_{p< k} \mathcal{D}g_{\mu\nu}(p) e^{-\Gamma_k[g_{\mu\nu}(p):g_i]} \text{ with } \Gamma_k[g_{\mu\nu}] = \int_x \Sigma_i g_i(k) \mathcal{O}_i(g_{\mu\nu})$$
 effective: $k < \Lambda_{UV}$, fundamental: $k \to \infty$

demand: couplings $g_i(k)$ finite for $k \to \infty$

$$\int_{p< k} \mathcal{D} g_{\mu\nu}(p) e^{-\Gamma_k[g_{\mu\nu}(p);g_i]} \text{ with } \Gamma_k[g_{\mu\nu}] = \int_x \Sigma_i g_i(k) \mathcal{O}_i(g_{\mu\nu})$$

effective: $k < \Lambda_{UV}$, fundamental: $k \to \infty$

demand: couplings $g_i(k)$ finite for $k \to \infty$

asymptotic freedom: running coupling weakens towards high momenta

[S. Bethke, 2009]

$$\int_{p< k} \mathcal{D} g_{\mu\nu}(p) e^{-\Gamma_k[g_{\mu\nu}(p);g_i]} \text{ with } \Gamma_k[g_{\mu\nu}] = \int_x \Sigma_i g_i(k) \mathcal{O}_i(g_{\mu\nu})$$

effective: $k < \Lambda_{UV}$, fundamental: $k \to \infty$

demand: couplings $g_i(k)$ finite for $k \to \infty$

asymptotic freedom: running coupling weakens towards high momenta

$$\beta_{\mathsf{g}} = k \, \partial_k \mathsf{g}(k)$$

Asymptotic freedom:

non-interacting fixed point

[Gross, Wilczek; Politzer (1973)]

$$\int_{p< k} \mathcal{D} g_{\mu\nu}(p) \, e^{-\,\Gamma_k[g_{\mu\nu}(p);g_i]} \text{ with } \Gamma_k[g_{\mu\nu}] = \int_x \Sigma_i g_i(k) \mathcal{O}_i(g_{\mu\nu})$$

effective: $k < \Lambda_{UV}$, fundamental: $k \to \infty$

demand: couplings $g_i(k)$ finite for $k \to \infty$

asymptotic freedom: running coupling weakens towards high momenta

[S. Bethke, 2009]

$$\beta_{g} = k \, \partial_{k} g(k)$$

non-interacting fixed point

[Gross, Wilczek; Politzer (1973)]

$$\int_{p< k} \mathcal{D} g_{\mu\nu}(p) \, e^{-\Gamma_k[g_{\mu\nu}(p);g_i]} \text{ with } \Gamma_k[g_{\mu\nu}] = \int_x \Sigma_i g_i(k) \mathcal{O}_i(g_{\mu\nu})$$

effective: $k < \Lambda_{UV}$, fundamental: $k \to \infty$

demand: couplings $g_i(k)$ finite for $k \to \infty$

asymptotic freedom: running coupling weakens towards high momenta

Asymptotic freedom:

 $\beta_g = k \, \partial_k g(k)$ $[G_N] = -2$ β_g non-interacting fixed point

[Gross, Wilczek; Politzer (1973)]

$$\int_{p< k} \mathcal{D} g_{\mu\nu}(p) \, e^{-\Gamma_k[g_{\mu\nu}(p);g_i]} \text{ with } \Gamma_k[g_{\mu\nu}] = \int_x \Sigma_i g_i(k) \mathcal{O}_i(g_{\mu\nu})$$

effective: $k < \Lambda_{UV}$, fundamental: $k \to \infty$

demand: couplings $g_i(k)$ finite for $k \to \infty$

asymptotic freedom: running coupling weakens towards high momenta

[S. Bethke, 2009]

[Gross, Wilczek; Politzer (1973)]

[Weinberg, 1979]

Asymptotic safety

Fundamental theory:

Running dimensionless couplings approach fixed point towards UV

Asymptotic safety

Fundamental theory:

Running dimensionless couplings approach fixed point towards UV

Predictive theory:

Finite number of relevant (UV-attractive) couplings:

$$g_i(k) = g_* + c \left(\frac{k}{k_0}\right)^{-\theta_i}$$
 $\theta_i = d_i + \eta_i$

Asymptotically Safe Quantum Gravity: Evidence

search for scale-free point: $G(k) = G_N k^2$

ullet epsilon-expansion $d=2+\epsilon$ [Weinberg, 1979]

$$\beta_{\mathcal{G}} = \epsilon \mathcal{G} - \frac{38}{3} \mathcal{G}^2$$

Asymptotically Safe Quantum Gravity: Evidence

search for scale-free point: $G(k) = G_N k^2$

ullet epsilon-expansion $d=2+\epsilon$ [Weinberg, 1979]

$$\beta_G = \epsilon G - \frac{38}{3}G^2$$

- Causal Dynamical Triangulations (?) [Ambjorn, Jurkiewicz, Loll, 2000]
- symmetry-reduced setting [Niedermaier, 2009]
- functional Renormalization Group equation [Wetterich, 1993; Reuter, 1996]

Functional Renormalization Group

include high- energy quantum fluctuations first:

$$e^{-\Gamma_k[\phi]} = \int \mathcal{D}\varphi \, e^{-S[\varphi] - \frac{1}{2} \int_p \varphi(p) \, R_k(p) \, \varphi(-p)}$$

Functional Renormalization Group

include high- energy quantum fluctuations first:

$$e^{-\Gamma_k[\phi]} = \int \mathcal{D}\varphi \, e^{-S[\varphi] - \frac{1}{2} \int_p \varphi(p) \, R_k(p) \, \varphi(-p)}$$

scale-dependent action:

 Γ_k contains effect of quantum fluctuations above momentum scale k

$$\Gamma_{k\to 0} = \Gamma$$
 $\Gamma_{k\to \Lambda\to \infty} \to S$
 $\Gamma = \Gamma_{\rm EH}$ S : prediction!

$$I = I_{EH}$$
 S: prediction

action (k → 0)

Functional Renormalization Group

include high- energy quantum fluctuations first:

$$e^{-\Gamma_k[\phi]} = \int \mathcal{D}\varphi \, e^{-S[\varphi] - \frac{1}{2} \int_p \varphi(p) \, R_k(p) \, \varphi(-p)}$$

1.0
0.8
0.6
0.4
0.2
0.0
0.5
1.0
1.5
2.0 p^2/k^2 microscopic action $(k \Rightarrow \infty)$

 $R_k(p^2/k^2)$

scale-dependent action:

 Γ_k contains effect of quantum fluctuations above momentum scale k

$$\Gamma_{k\to 0} = \Gamma$$
 $\Gamma_{k\to \Lambda\to \infty} \to S$

$$\Gamma = \Gamma_{\rm EH}$$
 S: prediction!

Wetterich equation [1993]:

$$\partial_k \Gamma_k = \frac{1}{2} \mathrm{STr} \left(\Gamma_k^{(2)} + R_k \right)^{-1} \partial_k R_k =$$

ightarrow non-perturbative $eta_{m{g}} = k \partial_k m{g}(k)
ightarrow ext{Quantum Gravity [Reuter, 1996]}$

Setting a scale in quantum gravity

RG: sort quantum fluctuations according to momentum

flat background: p^2 curved background: D^2 fluctuating spacetime?

Setting a scale in quantum gravity

RG: sort quantum fluctuations according to momentum

flat background: p^2

curved background: D^2

fluctuating spacetime?

background field method: $g_{\mu\nu}=ar{g}_{\mu\nu}+h_{\mu\nu}$

$$\int \mathcal{D}g_{\mu\nu}e^{-S[g_{\mu\nu}]}=\int \mathcal{D}h_{\mu\nu}e^{-S[\bar{g}_{\mu\nu}+h_{\mu\nu}]}$$

 $ar{D}^2
ightarrow ext{short/long}$ wavelength quantum fluctuations $ightarrow h_{\mu
u}\,R_k(ar{D}^2)\,h_{\mu
u}$

Setting a scale in quantum gravity

RG: sort quantum fluctuations according to momentum

curved background: D^2

fluctuating spacetime?

background field method: $g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$

$$\int \mathcal{D} g_{\mu\nu} \mathrm{e}^{-S[g_{\mu\nu}]} = \int \mathcal{D} h_{\mu\nu} \mathrm{e}^{-S[\bar{g}_{\mu\nu} + h_{\mu\nu}]}$$

 $\bar{D}^2 \rightarrow {\sf short/long}$ wavelength quantum fluctuations $\rightarrow h_{\mu\nu} R_k(\bar{D}^2) h_{\mu\nu}$

action symmetric under
$$ar g_{\mu
u} oar g_{\mu
u}+\gamma_{\mu
u},\ h_{\mu
u} o h_{\mu
u}-\gamma_{\mu
u}$$

broken by regulator! \Rightarrow background couplings \neq fluctuation couplings

Asymptotically Safe Quantum Gravity: Evidence

$$\Gamma_{k\,{
m EH}}=rac{-1}{16\pi G_N(k)}\int (R-2ar{\lambda}(k))$$

[Reuter ('96); Reuter, Saueressig ('01); Litim ('03)]

fixed-point action: prediction

Asymptotically Safe Quantum Gravity: Evidence

$$\Gamma_{k\,\mathrm{EH}} = rac{-1}{16\pi G_N(k)} \int (R-2ar{\lambda}(k))$$

[Reuter ('96); Reuter, Saueressig ('01); Litim ('03)]

fixed-point action: prediction

$$\Gamma_k = \Gamma_{k\,\mathrm{EH}} + \Gamma_{\mathrm{gauge-fixing}} + \Gamma_{\mathrm{ghost}} + \int d^4x \sqrt{g} \left(f(R) + \frac{R_{\mu\nu}R^{\mu\nu}}{R^{\mu\nu}} + \right)$$

Manrique, Reuter, Saueressig ('09, '10):

Donkin, Pawlowski ('12); Codello, D'Odorico, Pagani ('13);

Christiansen, Litim, Pawlowski, Rodigast ('12); Chris-

tiansen, Knorr, Pawlowski, Rodigast ('14);

Doná, A.E., Percacci ('14); Becker, Reuter ('14)

A.E., Gies, Scherer ('09); A.E., Gies ('10);

Groh, Saueressig ('10); A.E. ('13)

Machado, Saueressig ('07);

Codello, Percacci, Rahmede ('08);

Benedetti, Caravelli ('12);

Falls, Litim, Nikolakopoulos ('13);

Dietz, Morris ('12, '13); Demmel, Saueressig, Zanusso ('14)

Benedetti, Machado, Saueressig ('09)

- What are the properties of quantum spacetime?
- What is the status of the cosmological constant problem in asymptotic safety?
- Does matter matter in asymptotically safe gravity?

Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation: $\left(\partial_{\sigma}-\nabla^{2}\right)P(x,x',\sigma)=0$

Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation:
$$(\partial_{\sigma} - \nabla^2) P(x, x', \sigma) = 0$$

$$d_s = -2\lim_{\sigma \to 0} \frac{\partial \ln P(x', x', \sigma)}{\partial \ln \sigma}$$

Probe the quantum regime by a (fictitious) diffusing particle:

$$\left(\partial_{\sigma}-\langle\nabla^{2}\rangle_{k}\right)P(x,x',\sigma)=0$$

$$d_{s} = -2\lim_{\sigma \to 0} \frac{\partial \ln P(x', x', \sigma)}{\partial \ln \sigma}$$

Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation:
$$\left(\partial_{\sigma} - \langle \nabla^2 \rangle_k \right) P(x, x', \sigma) = 0$$

$$d_s = -2 \lim_{\sigma \to 0} \frac{\partial \ln P(x', x', \sigma)}{\partial \ln \sigma}$$

Fixed point
$$\langle g^{\mu\nu} \rangle_k \sim k^2 \Rightarrow \left(\partial_\sigma - k^2 \partial^2\right) P(x,x',\sigma) = 0$$

Nature of quantum spacetime

Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation: $\left(\partial_{\sigma} - \langle \nabla^2 \rangle_k \right) P(x, x', \sigma) = 0$ $d_s = -2 \lim_{\sigma \to 0} \frac{\partial \ln P(x', x', \sigma)}{\partial \ln \sigma}$

Fixed point
$$\langle g^{\mu\nu}\rangle_k \sim k^2 \Rightarrow (\partial_{\sigma} - k^2 \partial^2) P(x, x', \sigma) = 0$$

What is $k? \rightarrow \text{diffusion time}$

$$\left(\partial_{\sqrt{\sigma}}-\partial^2\right)P(x,x',\sigma)=0$$

Nature of quantum spacetime

Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation:

$$\left(\partial_{\sigma} - \langle \nabla^2 \rangle_k \right) P(x, x', \sigma) = 0$$

$$d_s = -2\lim_{\sigma \to 0} \frac{\partial \ln P(x', x', \sigma)}{\partial \ln \sigma}$$

Fixed point
$$\langle g^{\mu\nu} \rangle_k \sim k^2 \Rightarrow \left(\partial_{\sigma} - k^2 \partial^2 \right) P(x, x', \sigma) = 0$$

What is $k? \rightarrow \text{diffusion time}$

$$\left(\partial_{\sqrt{\sigma}}-\partial^2\right)P(x,x',\sigma)=0$$

Nature of quantum spacetime

Probe the quantum regime by a (fictitious) diffusing particle:

diffusion equation:

$$(\partial_{\sigma} - \langle \nabla^2 \rangle_k) P(x, x', \sigma) = 0$$

$$d_s = -2\lim_{\sigma \to 0} \frac{\partial \ln P(x', x', \sigma)}{\partial \ln \sigma}$$

spectral dimension: $d_s=4$ at large length scales, $d_s=2$ at small scales

[Lauscher, Reuter (2005); Reuter, Saueressig (2011); Calcagni, A.E., Saueressig (2013)]

quantum spacetime undergoes dynamical dimensional reduction

The cosmological constant in asymptotic safety

'natural': $\Lambda \sim \textit{M}_{\rm Planck}^2$ measured: $\Lambda_{\rm meas} \sim 10^{-122} \Lambda_{\rm expect}$

 \rightarrow fine-tuning of bare c.c.

The cosmological constant in asymptotic safety

'natural': $\Lambda \sim M_{
m Planck}^2$

measured: $\Lambda_{\rm meas} \sim 10^{-122} \Lambda_{\rm expect}$

 \rightarrow fine-tuning of bare c.c.

$$G = G_N k^2$$
, $\lambda = \Lambda/k^2$

unimodular: $\sqrt{g}=\overline{\epsilon}=\mathit{const}$ [Einstein, 1919; van Dam, van der Bij, Ng (1982); Unruh (1989)...]

unimodular:
$$\sqrt{g}=ar{\epsilon}=\mathit{const}$$
 [Einstein, 1919; van Dam, van der Bij, Ng (1982); Unruh (1989)...]

- Cosmological constant fine-tuning problem: $\int d^4x \sqrt{g} = \text{const}$
 - \rightarrow quantum fluctuations do not drive $\Lambda(k)$ ('degravitation' of cosmological constant)

```
unimodular: \sqrt{g}=\bar{\epsilon}=\mathit{const} [Einstein, 1919; van Dam, van der Bij, Ng (1982); Unruh (1989)...]
```

- Cosmological constant fine-tuning problem: $\int d^4x \sqrt{g} = \text{const}$
 - \rightarrow quantum fluctuations do not drive $\Lambda(k)$ ('degravitation' of cosmological constant)
- classically: equations of motion agree with GR
 (Λ enters as constant of integration)
 differences on quantum level (off-shell configurations)

unimodular:
$$\sqrt{g}=\overline{\epsilon}=\mathit{const}$$
 [Einstein, 1919; van Dam, van der Bij, Ng (1982); Unruh (1989)...]

- Cosmological constant fine-tuning problem: $\int d^4x \sqrt{g} = \text{const}$
 - \rightarrow quantum fluctuations do not drive $\Lambda(k)$ ('degravitation' of cosmological constant)
- classically: equations of motion agree with GR
 (Λ enters as constant of integration)
 differences on quantum level (off-shell configurations)

Can unimodular gravity be asymptotically safe?

$$\sqrt{g}=\mathrm{const} \to \mathrm{spectrum}$$
 of quantum fluctuations differs to standard case $\sqrt{g}=\mathrm{const} \to \mathrm{symmetry}$: transverse diffeomorphisms

⇒ Renormalization Group flow differs from standard case

Einstein-Hilbert truncation: G features UV-attractive fixed point [A.E., 2013]

f(R) truncation [A.E., to appear]:

(regulator as in [Benedetti, Caravelli, 2012])

in
$$f(R) = \sum_{i=1}^{n} a_i R^i$$
 with $n = 10$

Einstein-Hilbert truncation: G features UV-attractive fixed point [A.E., 2013]

f(R) truncation [A.E., to appear]:

(regulator as in [Benedetti, Caravelli, 2012])

in
$$f(R) = \sum_{i=1}^{n} a_i R^i$$
 with $n = 10$

fixed point with two relevant directions:

Einstein-Hilbert truncation: G features UV-attractive fixed point [A.E., 2013]

f(R) truncation [A.E., to appear]:

(regulator as in [Benedetti, Caravelli, 2012])

in
$$f(R) = \sum_{i=1}^{n} a_i R^i$$
 with $n = 10$

fixed point with two relevant directions:

Einstein-Hilbert truncation: G features UV-attractive fixed point [A.E., 2013]

f(R) truncation [A.E., to appear]:

(regulator as in [Benedetti, Caravelli, 2012])

in
$$f(R) = \sum_{i=1}^{n} a_i R^i$$
 with $n = 10$

fixed point with two relevant directions:

unimodular asymptotic safety seems viable!

Does matter matter in quantum gravity?

quantum fluctuations of all fields drive Renormalization Group flow:

Quantum gravity and matter

Matter will have an effect on quantum gravity

analogy: Quantum Chromodynamics:

Asymptotic freedom only for $N_f < 16.5$

Quantum gravity and matter

Matter will have an effect on quantum gravity

analogy: Quantum Chromodynamics:

Asymptotic freedom only for $N_f < 16.5$

Is Asymptotically Safe Gravity compatible with Standard Model matter?

with P. Doná, R. Percacci (2013, 2014):

$$\Gamma_k = \Gamma_{k \text{ Einstein-Hilbert}} + \Gamma_{k \text{ matter}}$$

$$\Gamma_{k \text{ Einstein-Hilbert}} = \int d^{d}x \sqrt{\bar{g}} \left(\frac{1}{16\pi G} \left(-\bar{R} + 2\Lambda \right) + \frac{Z_{h}}{2} h \cdot \left(\left(-\bar{D}^{2} - 2\Lambda \right) + W(R) \right) \cdot h \right)$$
I see also Christiansen Litim, Pawlowski, Rodigast (2012): Codello, D'Odorico, Pagani (2013)]

[see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

Results: Graviton wave function renormalization

with P. Doná, R. Percacci (2013, 2014):

$$\Gamma_k = \Gamma_{k \text{ Einstein-Hilbert}} + \Gamma_{k \text{ matter}}$$

$$\Gamma_{k \text{ Einstein-Hilbert}} = \int d^{d}x \sqrt{\bar{g}} \left(\frac{1}{16\pi G} \left(-\bar{R} + 2\Lambda \right) + \frac{Z_{h}}{2} h \cdot \left(\left(-\bar{D}^{2} - 2\Lambda \right) + W(R) \right) \cdot h \right)$$
I see also Christiansen Litim, Pawlowski, Rodigast (2012): Codello, D'Odorico, Pagani (2013)]

[see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

with P. Doná, R. Percacci (2013, 2014):

$$\Gamma_k = \Gamma_{k \, \text{Einstein-Hilbert}} + \Gamma_{k \, \text{matter}}$$

$$\Gamma_{k \, \mathrm{Einstein-Hilbert}} = \int d^{d}x \sqrt{\bar{g}} \left(\frac{1}{16\pi G} \left(-\bar{R} + 2\Lambda \right) + \frac{Z_{h}}{2} \, h \cdot \left(\left(-\bar{D}^{2} - 2\Lambda \right) + W(R) \right) \cdot h \right)$$
[see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

with minimally coupled matter:

with P. Doná, R. Percacci (2013, 2014):

$$\Gamma_k = \Gamma_{k \, \text{Einstein-Hilbert}} + \Gamma_{k \, \text{matter}}$$

I k Einstein-Hilbert =
$$\int d^d x \sqrt{\bar{g}} \left(\frac{1}{16\pi G} \left(-\bar{R} + 2\Lambda \right) + \frac{Z_h}{2} h \cdot \left(\left(-\bar{D}^2 - 2\Lambda \right) + W(R) \right) \cdot h \right)$$
[see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

with minimally coupled matter:

$$N_S$$
 scalars: $S_S = \frac{Z_S}{2} \int d^d x \sqrt{g} g^{\mu\nu} \sum_{i=1}^{N_S} \partial_\mu \phi^i \partial_\nu \phi^i$

with P. Doná, R. Percacci (2013, 2014):

$$\Gamma_k = \Gamma_{k \, \text{Einstein-Hilbert}} + \Gamma_{k \, \text{matter}}$$

$$\Gamma_{k \, \mathrm{Einstein-Hilbert}} = \int d^d x \sqrt{\overline{g}} \left(\frac{1}{16\pi G} \left(-\overline{R} + 2\Lambda \right) + \frac{Z_h}{2} \, h \cdot \left(\left(-\overline{D}^2 - 2\Lambda \right) + W(R) \right) \cdot h \right)$$
[see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

with minimally coupled matter:

$$N_S$$
 scalars: $S_S = \frac{Z_S}{2} \int d^d x \sqrt{g} g^{\mu\nu} \sum_{i=1}^{N_s} \partial_\mu \phi^i \partial_\nu \phi^i$

$$N_D$$
 Dirac fermions $S_D = iZ_D \int d^d x \sqrt{g} \sum_{i=1}^{N_D} \bar{\psi}^i \nabla \psi^i$

with P. Doná, R. Percacci (2013, 2014):

$$\Gamma_k = \Gamma_{k \text{ Einstein-Hilbert}} + \Gamma_{k \text{ matter}}$$

$$\Gamma_{k \text{ Einstein-Hilbert}} = \int d^{d}x \sqrt{\overline{g}} \left(\frac{1}{16\pi G} \left(-\overline{R} + 2\Lambda \right) + \frac{Z_{h}}{2} h \cdot \left(\left(-\overline{D}^{2} - 2\Lambda \right) + W(R) \right) \cdot h \right)$$

see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

with minimally coupled matter:

$$N_S$$
 scalars: $S_S = \frac{Z_S}{2} \int d^d x \sqrt{g} g^{\mu\nu} \sum_{i=1}^{N_S} \partial_\mu \phi^i \partial_\nu \phi^i$

$$N_D$$
 Dirac fermions $S_D = iZ_D \int d^d x \sqrt{g} \sum_{i=1}^{N_D} \bar{\psi}^i \nabla \psi^i$

 N_V Abelian vector bosons:

$$S_V = \frac{Z_V}{4} \int d^d x \sqrt{g} \sum_{i=1}^{N_F} g^{\mu\nu} g^{\kappa\lambda} F^i_{\mu\kappa} F^i_{\nu\lambda} + \frac{Z_V}{2\xi} \int d^d x \sqrt{\bar{g}} \sum_{i=1}^{N_F} \left(\bar{g}^{\mu\nu} \bar{D}_{\mu} A^i_{\nu} \right)^2$$

with P. Doná, R. Percacci (2013, 2014):

$$\Gamma_k = \Gamma_{k \text{ Einstein-Hilbert}} + \Gamma_{k \text{ matter}}$$

$$\Gamma_{k \, \text{Einstein-Hilbert}} = \int d^{d}x \sqrt{\bar{g}} \left(\frac{1}{16\pi G} \left(-\bar{R} + 2\Lambda \right) + \frac{Z_{h}}{2} h \cdot \left(\left(-\bar{D}^{2} - 2\Lambda \right) + W(R) \right) \cdot h \right)$$
[see also Christiansen, Litim, Pawlowski, Rodigast (2012); Codello, D'Odorico, Pagani (2013)]

with minimally coupled matter:

$$N_S$$
 scalars: $S_S = \frac{Z_S}{2} \int d^d x \sqrt{g} g^{\mu\nu} \sum_{i=1}^{N_S} \partial_\mu \phi^i \partial_\nu \phi^i$

$$N_D$$
 Dirac fermions $S_D = iZ_D \int d^d x \sqrt{g} \sum_{i=1}^{N_D} \bar{\psi}^i \nabla \psi^i$

 N_V Abelian vector bosons:

$$S_V = \frac{Z_V}{4} \int d^d x \sqrt{g} \sum_{i=1}^{N_F} g^{\mu\nu} g^{\kappa\lambda} F^i_{\mu\kappa} F^i_{\nu\lambda} + \frac{Z_V}{2\xi} \int d^d x \sqrt{\bar{g}} \sum_{i=1}^{N_F} \left(\bar{g}^{\mu\nu} \bar{D}_{\mu} A^i_{\nu} \right)^2$$

$$N_{RS}$$
 spin 3/2 fields: $S_{RS}=rac{1}{2}\int d^dx \sqrt{g}\sum_{i=1}^{N_{RS}}\epsilon^{\mu
u
ho\sigma}ar{\Psi}_{\mu}\gamma_{
u}\gamma_5
abla_{
ho}\Psi_{\sigma}$

Approximative analysis (neglect graviton and matter wave function renormalizations)

$$\beta_G = 2G + \frac{G^2}{6\pi} \left(-46 \right),$$

Approximative analysis

(neglect graviton and matter wave function renormalizations)

$$eta_G = 2G + rac{G^2}{6\pi} \left(N_S + 2N_D - 4N_V - N_{RS} - 46
ight)$$
 [P.Doná, A.E., R. Percacci, 2013, 2014]

 \rightarrow for a given number of vectors N_V (and $N_{RS}=0$), there is an upper limit on the number of scalars N_S and Dirac fermions N_D !

Matter matters in asymptotically safe quantum gravity!

Standard Model: $N_V=12$, $N_D=45/2$, $N_S=4$: compatible with gravitational fixed point (disclaimer: truncated RG flow)

Standard Model: $(N_S = 4, N_D = 45/2, N_V = 12)$ \checkmark

Standard Model: (N_S = 4, N_D = 45/2, N_V = 12) \checkmark

 \rightarrow right-handed neutrinos? \checkmark

 \rightarrow dark matter scalar? \checkmark

Standard Model: ($N_S = 4$, $N_D = 45/2$, $N_V = 12$) \checkmark

→ right-handed neutrinos?

→ dark matter scalar? ✓

supergravity ($N_{RS}=1^*$) \checkmark

supersymmetric extension (MSSM*: $N_S = 49, N_D = 61/2, N_V = 12$) X

* Interactions and regulator not supersymmetric

Standard Model:
$$(N_S = 4, N_D = 45/2, N_V = 12)$$
 \checkmark

supergravity (
$$N_{RS}=1^*$$
) \checkmark

supersymmetric extension (MSSM*:
$$N_S = 49, N_D = 61/2, N_V = 12$$
) X

* Interactions and regulator not supersymmetric

GUT (SO(10):
$$N_S = 97, N_D = 24, N_V = 45)$$
 X

Standard Model:
$$(N_S = 4, N_D = 45/2, N_V = 12)$$
 \checkmark

→ right-handed neutrinos?

→ dark matter scalar? ✓

supergravity (
$$N_{RS}=1^*$$
) \checkmark

supersymmetric extension (MSSM*:
$$N_S = 49, N_D = 61/2, N_V = 12$$
) $\ref{eq:mass_point}$

* Interactions and regulator not supersymmetric

GUT (SO(10):
$$N_S = 97, N_D = 24, N_V = 45)$$
 X

Prediction:

Only specific models with restricted matter content are compatible with Asymptotically Safe Quantum Gravity!

Unimodular case

(neglect graviton and matter wave function renormalizations)

$$eta_G=2G+rac{G^2}{6\pi}\left(extit{N}_S+2 extit{N}_D-4 extit{N}_V- extit{N}_{RS}-46
ight),$$
 [A.E., to appear]

Unimodular case

(neglect graviton and matter wave function renormalizations)

$$eta_G=2G+rac{G^2}{6\pi}\left(extit{N}_S+2 extit{N}_D-4 extit{N}_V- extit{N}_{RS}-20
ight),$$
 [A.E., to appear]

Unimodular case

(neglect graviton and matter wave function renormalizations)

$$eta_{G}=2G+rac{G^{2}}{6\pi}ig(N_{S}+2N_{D}-4N_{V}-N_{RS}-20ig),$$
 [A.E., to appear]

Standard Model compatible

critical number of fermions and scalars changes slightly ⇒ BSM discoveries could distinguish QG models!

Tests of quantum gravity

Does testing quantum gravity require galaxy-size accelerators?

No! Can test Asymptotically Safe Quantum Gravity at LHC, 14 ${
m TeV}$: Look for Beyond-Standard-Model particle physics

- Asymptotic Safety generalizes Asymptotic Freedom: Interacting ultraviolet fixed point in Renormalization Group flow
- Candidate for quantum gravity (evidence for existence of fixed point)

- Asymptotic Safety generalizes Asymptotic Freedom: Interacting ultraviolet fixed point in Renormalization Group flow
- Candidate for quantum gravity (evidence for existence of fixed point)
- Unimodular asymptotic safety (improve on cc problem) viable in f(R) truncation

- Asymptotic Safety generalizes Asymptotic Freedom: Interacting ultraviolet fixed point in Renormalization Group flow
- Candidate for quantum gravity (evidence for existence of fixed point)
- Unimodular asymptotic safety (improve on cc problem) viable in f(R) truncation
- Can include matter: Unified quantum field theory framework
- Evidence that Standard Model matter compatible with Asymptotically Safe Quantum Gravity
- Evidence that not all BSM scenarios (SUSY, extra dimensions...) compatible (disclaimer: truncated RG flow) \rightarrow New possibility to test quantum gravity at LHC and beyond

- Asymptotic Safety generalizes Asymptotic Freedom: Interacting ultraviolet fixed point in Renormalization Group flow
- Candidate for quantum gravity (evidence for existence of fixed point)
- Unimodular asymptotic safety (improve on cc problem) viable in f(R) truncation
- Can include matter: Unified quantum field theory framework
- Evidence that Standard Model matter compatible with Asymptotically Safe Quantum Gravity
- Evidence that not all BSM scenarios (SUSY, extra dimensions...) compatible (disclaimer: truncated RG flow) \rightarrow New possibility to test quantum gravity at LHC and beyond

Thank you for your attention!