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A Higgs or the Higgs?
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Unique opportunity for probing New Physics through the Higgs portal:

Precision Higgs Study (Higgcision).

Search for additional Higgses.



Why more Higgses?

Several theoretical motivations to go beyond the SM Higgs sector.

Electroweak Baryogenesis

Additional sources of CP violation
Strong first order phase transition

Dark Matter

Supersymmetry

Why not?



Two Higgs Doublets

Any scalar sector in a local SU(2)× U(1) gauge theory must be consistent with
ρexp = 1.0004+0.0003

−0.0004. [PDG ’14]

With n Higgs multiplets Φi (with i = 1, 2, ..., n):

ρtree =

n∑
i=1

[
Ti (Ti + 1)− Y 2

i

]
vi

2
n∑

i=1

Y 2
i vi

.

Simplest choice: Add multiplets with T (T + 1) = 3Y 2 so that ρtree = 1.

SM: One SU(2)L doublet Φ =

(
φ+

φ0

)
with Y = 1

2 .

A simple extension: Two SU(2)L doublets Φi =

(
φ+

i
φ0

i

)
(with i = 1, 2).



General 2HDM Potential

Most general 2HDM potential in doublet field space Φ1,2:

V =− µ2
1(Φ†1Φ1)− µ2

2(Φ†2Φ2)−
[
m2

12(Φ†1Φ2) + H.c.
]

+ λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1
2
λ5(Φ†1Φ2)2 + λ6(Φ†1Φ1)(Φ†1Φ2) + λ7(Φ†1Φ2)(Φ†2Φ2) + H.c.

]
.

Four real mass parameters µ2
1,2, Re(m2

12), Im(m2
12).

10 real quartic couplings λ1,2,3,4, Re(λ5,6,7), Im(λ5,6,7).

Rich vacuum structure. [Battye, Brawn, Pilaftsis ’11; Branco et al ’12]



Higgs Spectrum in a General 2HDM

Consider normal vacua with real vevs v1,2, where
√

v2
1 + v2

2 = vSM and tanβ = v2/v1.

Eight real scalar fields: φj =

(
φ+

j
1√
2

(vj + ρj + iηj )

)
(with j = 1, 2).

After EWSB, 3 Goldstone bosons (G±,G0), eaten by W± and Z .
Five physical scalar fields: two CP-even (h,H), one CP-odd (a) and two charged (h±).

In the charged sector,
(

G±

h±

)
=

(
cosβ sinβ
− sinβ cosβ

)(
φ±1
φ±2

)
.

M2
h± =

1
sβcβ

[
Re(m2

12)− 1
2

(
{λ4 + Re(λ5)} sβcβ + Re(λ6)c2

β + Re(λ7)s2
β

)]
.

In the CP-odd sector,
(

G0

a

)
=

(
cosβ sinβ
− sinβ cosβ

)(
η1
η2

)
.

M2
a =

1
sβcβ

[
Re(m2

12)− v2
(

Re(λ5)sβcβ +
1
2

{
Re(λ6)c2

β + Re(λ7)s2
β

})]
= M2

h± +
1
2

[λ4 − Re(λ5)] v2.
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Higgs Spectrum in a General 2HDM

In the CP-even sector,
(

H
h

)
=

(
cosα sinα
− sinα cosα

)(
ρ1
ρ2

)

M2
S ≡

(
A C
C B

)

= M2
a

(
s2
β −sβcβ

−sβcβ c2
β

)

+v2

(
2λ1c2

β + Re(λ5)s2
β + 2Re(λ6)sβcβ λ34sβcβ + Re(λ6)c2

β + Re(λ7)s2
β

λ34sβcβ + Re(λ6)c2
β + Re(λ7)s2

β 2λ2s2
β + Re(λ5)c2

β + 2Re(λ7)sβcβ

)
with tan 2α = 2C/(A− B).

The SM Higgs boson is given by

HSM = ρ1 cosβ + ρ2 sinβ = H cos(β − α) + h sin(β − α) .

SM alignment limit: α→ β (or β − π/2).
Usually attributed to either decoupling or accidental cancellations.
[Gunion, Haber ’03; Ginzburg, Krawczyk ’05; Carena, Low, Shah, Wagner ’13]

Explore symmetries of the 2HDM potential to naturally justify the alignment limit.



Higgs Spectrum in a General 2HDM

In the CP-even sector,
(

H
h

)
=

(
cosα sinα
− sinα cosα

)(
ρ1
ρ2

)

M2
S ≡

(
A C
C B

)

= M2
a

(
s2
β −sβcβ

−sβcβ c2
β

)

+v2

(
2λ1c2

β + Re(λ5)s2
β + 2Re(λ6)sβcβ λ34sβcβ + Re(λ6)c2

β + Re(λ7)s2
β

λ34sβcβ + Re(λ6)c2
β + Re(λ7)s2

β 2λ2s2
β + Re(λ5)c2

β + 2Re(λ7)sβcβ

)
with tan 2α = 2C/(A− B).

The SM Higgs boson is given by

HSM = ρ1 cosβ + ρ2 sinβ = H cos(β − α) + h sin(β − α) .

SM alignment limit: α→ β (or β − π/2).
Usually attributed to either decoupling or accidental cancellations.
[Gunion, Haber ’03; Ginzburg, Krawczyk ’05; Carena, Low, Shah, Wagner ’13]

Explore symmetries of the 2HDM potential to naturally justify the alignment limit.



Natural Alignment Condition

Rewrite CP-even mass matrix as

M2
S =

(
cβ −sβ
sβ cβ

)(
Âv2 Ĉv2

Ĉv2 M2
a + B̂v2

)(
cβ sβ
−sβ cβ

)
≡ OM̂2

SOT .

Â = 2
[
c4
βλ1 + s2

βc2
βλ345 + s4

βλ2 + 2sβcβ
(

c2
βλ6 + s2

βλ7

)]
,

B̂ = λ5 + 2
[
s2
βc2
β

(
λ1 + λ2 − λ345

)
− sβcβ

(
c2
β − s2

β

)(
λ6 − λ7

)]
,

Ĉ = s3
βcβ

(
2λ2 − λ345

)
− c3

βsβ
(

2λ1 − λ345

)
+ c2

β

(
1− 4s2

β

)
λ6 + s2

β

(
4c2
β − 1

)
λ7 .

Exact alignment (α = β) iff Ĉ = 0, i.e.

λ7t4
β − (2λ2 − λ345)t3

β + 3(λ6 − λ7)t2
β + (2λ1 − λ345)tβ − λ6 = 0 .

Natural alignment if happens for any value of tanβ, independent of non-SM Higgs spectra:

λ1 = λ2 = λ345/2 , λ6 = λ7 = 0

CP-even Higgs masses are given by

M2
H = 2λ2v2 ≡ λSMv2 ,

M2
h = M2

a + λ5v2 .
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Higgs Couplings in a General 2HDM

With respect to the SM Higgs couplings HSMVV (V = W±,Z ),

ghVV = sin(β − α) , gHVV = cos(β − α) .

ghaZ = cos(β − α) , gHaZ = sin(β − α) ,

gh+hW− = cos(β − α) , gh+HW− = sin(β − α) .

Similar behavior for CP-even Higgs self-couplings:

ghHH ∝ sin(β − α) , gHhh ∝ cos(β − α) .

In the alignment limit (α→ β), one of the neutral Higgses (h) is gaugephobic.

Only effective probe is through its Yukawa coupling to SM fermions.
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Z2-symmetric 2HDM

General Yukawa Lagrangian

−LY = Q̄L(hu
1Φ1 + hu

2Φ2)uR + Q̄L(hd
1 Φ̃1 + hd

2 Φ̃2)dR + L̄L(he
1Φ̃1 + he

2Φ̃2)eR .

Dangerous FCNC processes at tree-level.

Can be naturally avoided by imposing a Z2-symmetry. [Glashow, Weinberg ’58]

Z2 charge Coupling
Φ1 Φ2 QL LL uR dR eR uR dR eR

Type-I + − + + − − − Φ2 Φ2 Φ2
Type-II (MSSM-type) + − + + − + + Φ2 Φ1 Φ1

Type-X (Lepton-specific) + − + + − − + Φ2 Φ2 Φ1
Type-Y (Flipped) + − + + − + − Φ2 Φ1 Φ2
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Symmetry Classifications of the 2HDM Potential

Three classes of accidental symmetries of the 2HDM potential:

Higgs Family (HF) Symmetries involving transformations of Φ1,2 only (but not Φ∗1,2),
e.g. Z2 [Glashow, Weinberg ’58], U(1)PQ [Peccei, Quinn ’77], SO(3)HF [Deshpande, Ma ’78; Ivanov ’07;

Ma, Maniatis ’09; Ferreira, Haber, Maniatis, Nachtmann, Silva ’10].

CP Symmetries relating Φ1,2 to Φ∗1,2, e.g. Φ1(2) → Φ∗1(2)
(CP1) [Lee ’73; Branco ’80],

Φ1(2) → (−)Φ∗2(1)
(CP2) [Davidson, Haber ’05], CP1 combined with SO(2)HF/Z2 (CP3)

[Ivanov ’07; Ferreira, Haber, Silva ’09; Ma, Maniatis ’09; Ferreira, Haber, Maniatis, Nachtmann, Silva ’10].

Additional mixed HF and CP symmetries that leave the gauge-kinetic terms of Φ1,2
invariant [Battye, Brawn, Pilaftsis ’11].

Includes all custodial symmetries of the 2HDM potential.

Maximum of 13 distinct accidental symmetries of the general 2HDM potential.

Each of them imposes specific relations among the scalar parameters.
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Bilinear Formalism

Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis ’11; Nishi ’11; Pilaftsis ’12]

Φ =


Φ1
Φ2

iσ2Φ∗1
iσ2Φ∗2

 .

Φ satisfies the Majorana condition: Φ = CΦ∗, where C = σ2 ⊗ σ0 ⊗ σ2 = C−1 = C∗.

Define a null 6-dimensional Lorentz vector bilinear in Φ:

RA = Φ†ΣAΦ ,

(with A = 0, 1, 2, 3, 4, 5), where

Σ0 =
1
2
σ0 ⊗ σ0 ⊗ σ0 ≡ 1

2
18, Σ1 =

1
2
σ0 ⊗ σ1 ⊗ σ0, Σ2 =

1
2
σ3 ⊗ σ2 ⊗ σ0,

Σ3 =
1
2
σ0 ⊗ σ3 ⊗ σ0, Σ4 = −1

2
σ2 ⊗ σ2 ⊗ σ0, Σ5 = −1

2
σ1 ⊗ σ2 ⊗ σ0.
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2HDM Potential in Bilinear Field Space

The general 2HDM potential takes a simple form:

V = −1
2

MARA +
1
4

LABRARB .

M =
(
µ2

1 + µ2
2, 2Re(m2

12), −2Im(m2
12), µ2

1 − µ2
2, 0, 0

)
,

R =



Φ†1Φ1 + Φ†2Φ2

Φ†1Φ2 + Φ†2Φ1

−i(Φ†1Φ2 − Φ†2Φ1)

Φ†1Φ1 − Φ†2Φ2

ΦT
1 iσ2Φ2 − Φ†2 iσ2Φ∗1

−i(ΦT
1 iσ2Φ2 + Φ†2 iσ2Φ∗1 )


,

L =



λ1 + λ2 + λ3 Re(λ6 + λ7) −Im(λ6 + λ7) λ1 − λ2 0 0
Re(λ6 + λ7) λ4 + Re(λ5) −Im(λ5) Re(λ6 − λ7) 0 0
−Im(λ6 + λ7) −Im(λ5) λ4 − Re(λ5) −Im(λ6 − λ7) 0 0
λ1 − λ2 Re(λ6 − λ7) −Im(λ6 − λ7) λ1 + λ2 − λ3 0 0

0 0 0 0 0 0
0 0 0 0 0 0


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13 Symmetries of the 2HDM Potential

[Pilaftsis ’12] A. Pilaftsis / Physics Letters B 706 (2012) 465–469 467

Table 1
Parameter relations for the 13 accidental symmetries [1] related to the U(1)Y -invariant 2HDM potential in the diagonally reduced basis, where Im λ5 = 0 and λ6 = λ7. A dash
signifies the absence of a constraint.

No. Symmetry µ2
1 µ2

2 m2
12 λ1 λ2 λ3 λ4 Reλ5 λ6 = λ7

1 Z2 × O(2) – – Real – – – – – Real
2 (Z2)2 × SO(2) – – 0 – – – – – 0
3 (Z2)3 × O(2) – µ2

1 0 – λ1 – – – 0
4 O(2) × O(2) – – 0 – – – – 0 0
5 Z2 × [O(2)]2 – µ2

1 0 – λ1 – – 2λ1 − λ34 0
6 O(3) × O(2) – µ2

1 0 – λ1 – 2λ1 − λ3 0 0
7 SO(3) – – Real – – – – λ4 Real
8 Z2 × O(3) – µ2

1 Real – λ1 – – λ4 Real
9 (Z2)2 × SO(3) – µ2

1 0 – λ1 – – ±λ4 0
10 O(2) × O(3) – µ2

1 0 – λ1 2λ1 – 0 0
11 SO(4) – – 0 – – – 0 0 0
12 Z2 × O(4) – µ2

1 0 – λ1 – 0 0 0
13 SO(5) – µ2

1 0 – λ1 2λ1 0 0 0

T 2 =

⎛

⎜⎜⎜⎝

0 0 i 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
, T 3 =

⎛

⎜⎜⎜⎝

0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 4 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
, T 5 =

⎛

⎜⎜⎜⎝

0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 6 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 −i 0 0 0
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These are exactly the 10 generators of the orthogonal SO(5) group.
Consequently, the relation (13) represents one of the central results
of this Letter, as it gives an one-to-one correspondence between
the generators of SUM(4) and those of SO(5). Hence, we get the
isomorphism: SO(5) ∼= SUM(4)/Z2, between the Φ- and the R I -
space. This result offers firm proof of the equivalence relation,
between SUM(4) and SO(5), presented in [1].

It is now obvious that the maximal reparameterization group
acting on the Φ-space in the 2HDM potential, which leaves the
SU(2)L gauge kinetic term of Φ canonical, is

GΦ
2HDM =

(
SUM(4)/Z2

)
⊗ SU(2)L . (15)

The group GΦ
2HDM includes the U(1)Y hypercharge group through

the generator K 0 of SUM(4), as well as 9 other generators related
to HF/CP transformations. On the other hand, the SU(2)L group
generators may be represented as σ 0 ⊗ σ 0 ⊗ (σ 1,2,3/2), which
manifestly commute with all generators of SUM(4). Finally, the
quotient factor Z2 appearing in (15) is needed to avoid double cov-
ering the group GΦ

2HDM in the Φ-space.
In order to classify all possible HF/CP accidental symmetries

of the 2HDM potential, it is more convenient to go over to the
5-dimensional bilinear space R I , where the maximal reparameter-
ization group is G R

2HDM = SO(5), which leaves R0 invariant. Given

that SO(5) is the maximal symmetry group in the R I -space, Ref. [1]
classifies all possible symmetries derived from SO(5), including all
its proper, improper and semi-simple subgroups. Such an analy-
sis led to a maximum of 13 accidental symmetries for the 2HDM
potential, which are presented in Table 1. The same table shows
the parameter restrictions for each of the 13 symmetries in a
specific bilinear basis [15], where LI J is made diagonal by an
SO(3) ⊂ SO(5) rotation [24]. In this diagonally reduced basis, one
has the restrictions:

Im λ5 = 0, λ6 = λ7, (16)

thus reducing to 7 the number of independent quartic couplings
for the 2HDM potential. From Table 1, we observe that all 13
symmetries include SO(2) ∼= U(1)Y as a subgroup. Note that the
parameter relations pertinent to the 13 symmetries are chosen, so
as to manifestly lead to CP-invariant scalar potentials.

It is worth commenting that only two discrete factors, (Z2)
2

and (Z2)
4, are allowed, as being the only admissible subgroups

of SO(5), where Z2 is the reflection group of one of the compo-
nents R I . More explicitly, the standard CP (or CP1) discrete sym-
metry may be represented as $CP1 = C = σ 2 ⊗ σ 0 ⊗ σ 2 in the Φ-
space, and the usual discrete ‘Z2’ (CP2) symmetry as $Z2 = σ 0 ⊗
σ 3 ⊗ σ 0 ($CP2 = σ 2 ⊗ σ 2 ⊗ σ 0). In the R I -space, the transforma-
tion matrices (or the generating group elements) associated with
the CP1, ‘Z2’ and CP2 discrete symmetries are respectively given by

DCP1 = diag(1,−1,1,1,−1),

D Z2 = diag(−1,−1,1,−1,−1),

DCP2 = diag(−1,−1,−1,1,−1). (17)

As a consequence, both the traditional ‘Z2’ symmetry and CP2 are
actually isomorphic to the (Z2)

4 symmetry.
It is straightforward to identify the generators pertinent to the

continuous HF/CP symmetries of the 2HDM potential in the diago-
nally reduced basis (16). Specifically, the 2HDM potential possesses
a continuous symmetry, iff
[
T a,L

]
= 0, T aM = 0, (18)

where L and M denote the 5 × 5 matrix LI J and the 5-dimensional
vector MI in the reduced basis, respectively. Given the one-to-one
correspondence between T a and K a generators, it is not difficult
to determine the transformation relations associated with a given
continuous HF/CP symmetry in the Φ-space through:

Φ → Φ ′ = eiθa K a
Φ, (19)

Recall natural alignment condition λ1 = λ2 = λ345/2 , λ6 = λ7 = 0.

Only three symmetries satisfy this.
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Maximal Symmetry Group

Maximal symmetry group in the bilinear field space: GR
2HDM = SO(5).

In the original Φ-field space, GΦ
2HDM = (Sp(4)/Z2)⊗ SU(2)L.

Conjecture: In a general nHDM, GΦ
nHDM = (Sp(2n)/Z2)⊗ SU(2)L.

For the SM, reproduces the well-known custodial symmetry GΦ
SM = (SU(2)C/Z2)⊗ SU(2)L.

[Sikivie, Susskind, Voloshin, Zakharov ’80].

In 2HDM, 3 different realizations of custodial symmetry with [Pilaftsis ’12; BD, Pilaftsis ’14]

(i) hu
1 = eiθhd

1 and hu
2 = eiθhd

2 ,

(ii) hu
1 = eiθhd

1 and hu
2 = −eiθhd

2 ,

(iii) hu
1 = eiθhd

2 and hu
2 = e−iθhd

1 .

Equivalent only in the SO(5) limit.
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Maximally Symmetric 2HDM

In the SO(5) limit, the 2HDM potential is very simple:

V = −µ2
(
|Φ1|2 + |Φ2|2

)
+ λ

(
|Φ1|2 + |Φ2|2

)2
= − µ2

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
.

More minimal than the MSSM scalar potential, which in the custodial limit g′ → 0, has a
smaller symmetry: O(2)⊗ O(3) ⊂ SO(5).

After EWSB in the MS-2HDM, one massive Higgs boson H with M2
H = 2λ2v2, whilst

remaining four (h, a and h±) are massless [Goldstone theorem].

Natural SM alignment limit with α = β. [Recall HSM = H cos(β − α) + h sin(β − α)]

(Pseudo)-Goldstones in MS-2HDM acquire mass due to custodial symmetry-breaking g′

and Yukawa coupling effects.
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g′ and Yukawa Coupling Effects

Custodial symmetry broken by non-zero g′ and Yukawa couplings.

SO(5)⊗ SU(2)L
g′ 6=0−−−−→ O(3)⊗ O(2)⊗ SU(2)L ∼ O(3)⊗ U(1)Y ⊗ SU(2)L

Yukawa−−−−→ O(2)⊗ U(1)Y ⊗ SU(2)L ∼ U(1)PQ ⊗ U(1)Y ⊗ SU(2)L

〈Φ1,2〉6=0
−−−−−−→ U(1)em .

Assume SO(5)-symmetry scale µX � v .
Use two-loop RGEs to find the mass spectrum at weak scale.
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Soft Breaking Effects
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In the SO(5) limit for quartic couplings,

M2
H = 2λ2v2 , M2

h = M2
a = M2

h± =
Re(m2

12)

sβcβ
.

Still preserves natural alignment, irrespective of other 2HDM parameters.
Predicts a quasi-degenerate heavy Higgs sector.



Quartic Coupling Unification

2.0 2.5 3.0 3.5 4.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Log10(μ/GeV)

S
ca
la
r
Q
ua
rt
ic
C
ou
pl
in
gs

λ1

λ2

λ3

λ4

λ5,6,7

λ3-2λ1



Constraints from Global Fit
Electroweak precision observables.
LHC signal strengths of the light CP-even Higgs boson.
Limits on heavy CP-even scalar from H → WW ,ZZ , ττ searches.
Flavor observables such as Bs mixing and B → Xsγ.

Stability of the potential:

λ1,2 > 0, λ3 +
√
λ1λ2 > 0, λ3 + λ4 +

√
λ1λ2 − Re(λ5) > 0.

Perturbativity of the Higgs self-couplings: ‖SΦΦ→ΦΦ‖ < 1
8 .
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[reinterpreted from Baglio, Eberhardt, Nierste, Wiebusch ’13]
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Lower Limit on Charged Higgs Mass
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Lower and Upper Limits on Charged Higgs Mass
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Implications for the LHC Searches

Recall that ghVV = sin(β − α) , gHVV = cos(β − α).

In the alignment limit α→ β, H is SM-like and the heavy Higgs h is gaugephobic.

Dominant production modes at the LHC: ggF and associated production with t t̄ .
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LHC Searches so far

Existing collider limits on the heavy Higgs sector derived from WW and ZZ modes are not
applicable in the alignment limit.
Limits from gg → h→ τ+τ− and gg → bb̄h→ bb̄τ+τ− are easily satisfied.
Similarly for h→ HH → γγbb.
In the charged-Higgs sector, most of the searches focus on the low-mass regime
(Mh± < Mt ): pp → tt → Wbbh+, h+ → cs.
Recently, the search was extended beyond the top-threshold: [CMS-PAS-HIG-13-026]

gg → h+tb → (`νbb)(`′νb)b

2 2 Signal and background Monte Carlo simulation

Table 1: Values of the cross section and theoretical branching fractions for B(H+ ! tb) and
B(H+ ! tn) derived from the FeynHiggs package, as a function of the charged Higgs boson
mass. The numbers refer to H+ only. The mmod+

h MSSM scenario is assumed.

mH+ [GeV] cross section [pb] BR(H+ ! tn) BR(H+ ! tb)
180 0.1501 0.901490 0.081662
200 0.1280 0.534418 0.455760
220 0.1027 0.367483 0.625690
250 0.07624 0.257198 0.705360
300 0.04643 0.192875 0.744171
400 0.02942 0.151062 0.722967
500 0.00827 0.110921 0.563428
600 0.00390 0.095882 0.495196

simulation samples used is provided in Section 2, and the event reconstruction in Section 3, fol-
lowed by the description of the event selection for the two analyses, including the hadronic and
leptonic t decays, in Section 4 and Section 5, respectively. The limits are derived in Section 6.

g t̄

b̄

H+

t

1

g

g t̄

b

t

b̄

H+

1

Figure 1: Feynman diagrams of the charged Higgs boson production in the MSSM scenario for
a charged Higgs boson mass larger than the top quark mass, mH+ > mt.

2 Signal and background Monte Carlo simulation
Simulated samples of SM processes are generated using the MADGRAPH 5.1.3.30 [16, 17],
PYTHIA 6 [18] or POWHEG 1.0 [19] event generator programs. The MADGRAPH samples use
the CTEQ6L1 PDF set, a renormalization scale equal to 91.1880 and a 20 GeV jet matching
threshold for the ktMLM showering scheme. The POWHEG samples use the CTEQ6m PDF set.
The di-boson cross sections are based on MCFM [20] computations from [21]. Apart from the
SM tt and MSSM charged Higgs processes, the relevant processes are from single top, vector
boson (W/Z) and Drell-Yan (DY) production. QCD samples are also considered, since jets can
be misidentified as leptons during the reconstruction process. Single top events are simulated
with POWHEG, while MADGRAPH is used for tt, W+jet, and DY events. All other samples (QCD
and dibosons) use PYTHIA. For the signal events, the production of MSSM charged Higgs is
generated with PYTHIA. The t decays are simulated with TAUOLA [22] which correctly accounts
for the t lepton polarization in describing the decay kinematics.
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Figure 10: The 95% confidence level exclusion limits estimated from the combination of the
µth, eµ, ee, and µµ final states, when imposing the branching ratios for the two decay channels
to be the ones predicted by the mmod+

h MSSM scenario. The excluded values are roughly two
orders of magnitude larger than those predicted by our reference model.
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Figure 11: The 95% confidence level exclusion limits estimated from the combination of the µth,
eµ, ee, and µµ final states when assuming B(H+ ! tb) = 100% (left) and B(H+ ! thn) = 100%
(right). The ±1s and ±2s bands around the expected limits are also shown.



Predictions in the MS-2HDM
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Simulations for
√

s = 14 TeV LHC

Used MadGraph5_aMC@NLO.

Event reconstruction using the CMS cuts:

p`T > 20 GeV, |η`| < 2.5, ∆R`` > 0.4,

M`` > 12 GeV, |M`` −MZ | > 10 GeV,

pj
T > 30 GeV, |ηj | < 2.4, /ET > 40 GeV.

For charged Higgs mass reconstruction, used ‘stransverse mass’ variable [Lester, Summers ’99]

MT2 = min{
/pT1

+/pT2
=/pT

}[max
{

mT1 ,mT2

} ]
.

Cambridge mT 2 (Lester and Summers, 1999)

p

p

⎬
⎭
⎫ pT/

p2

p1

I Each massive particle pair produced decays to one visible
and one invisible particle.

I For pp ! X + l̃ l̃ ! X + l+�̃al��̃b,

m2
l̃ � m2

T
�
pTl , pT �̃

�

⌘ m2
l + m2

�̃ + 2
�
ETlET �̃ � pTl · pT �̃

�

where ET =
q

p2
T + m2.



Mass Reconstruction using MT 2
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Reach at 14 TeV LHC

SM bkg.
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New Signal in the Neutral Higgs Sector

gg → t t̄h → t t̄ t t̄

Existing 95% CL experimental upper limit on σt t̄ t t̄ is 32 fb (CMS).

SM prediction for σ(pp → t t̄ t t̄ + X) ' 10–15 fb at NLO. [Bevilacqua, Worek ’12]

Still lot of room for BSM contribution.5.3 Numerical analysis 71
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Figure 5.2: Leading order Feynman diagrams for the Higgs boson production at the LHC
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tβ = 1 (14 TeV)

tβ = 2 (14 TeV)

tβ = 5 (14 TeV)

500 1000 1500 2000
10-2

0.1

1

10

Mh (GeV)

σ
×
B
R
(h
→
tt- )

[fb
]



Towards a Full Analysis of the t t̄ t t̄ Signal
35 final states, grouped into five channels:

Fully hadronic: 12 jets, with 4 b-jets.
Mostly hadronic: 6 light jets, 4 b-jets, one charged lepton and /ET .
Semi-leptonic/hadronic: 4 light jets, 4 b-jets, 2 charged leptons and /ET .
Mostly leptonic: 2 light jets, 4 b-jets, 3 charged leptons and /ET .
Fully leptonic: 4 b-jets, 4 charged leptons and /ET .18 Chapter 1. Theoretical background

hhh`

40.04%

hhhh 20.88%

others hh``

24.59%

hh`±`± with `±`± = e±e±, µ±µ±, e±µ±

4.19%

h```

9.20%

````1.10%

Figure 1.4: Branching fractions for the di↵erent decays of the four top quarks, depending on whether
the W boson decays hadronically (h) or leptonically (`).

composed of weakly interacting massive particles (WIMPs). The combination of ordinary
matter and dark matter is still only 31.7%. The remaining 68.3% is called dark energy [56],
which is inferred as responsible for accelerating the expansion of the Universe [57, 56]. The
SM does not provide any candidate for dark matter and does not explain dark energy.

• In the SM there are three fundamental symmetries: C (charge conjugation), P (parity),
and T (time-reversal). If all of them are respected there is no reason for the prevalence
of matter with respect to antimatter observed in the Universe [58]. However, in the SM,
there is no source of CP violation strong enough which can explain the matter-antimatter
asymmetry [59].

• Neutrinos are proposed by the SM as massless particles. However, the observation of
neutrino oscillations provides experimental evidence that neutrinos have mass [23, 24, 25,
26, 27]. Nevertheless, it can be easily accommodated in the SM.

• As stated before, quarks and leptons are grouped in three di↵erent families. The SM does
not explain why there are three generations of particles nor its mass hierarchy. In addition,
it does not explain why there are so many di↵erent types of quarks and leptons.

• In the SM with electroweak symmetry intact, all particles are massless. Explicit mass
terms are forbidden in the Lagrangian due to gauge invariance. A new mechanism (Higgs)
has to be introduced “by hand” in order to break the symmetry, and therefore, to generate
the masses of the particles. The SM does not explain the origin of this mechanism.

• The hierarchy problem constitutes a major limit of the SM. Following renormalization, the
Higgs mass at first order is given by

M2
H = (M2

H)bare �
�2

f⇤
2

8⇡2
, (1.32)

Daniela Paredes



Towards a Full Analysis of the t t̄ t t̄ Signal
35 final states, grouped into five channels:

Fully hadronic: 12 jets, with 4 b-jets.
Mostly hadronic: 6 light jets, 4 b-jets, one charged lepton and /ET .
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Mass Reconstruction using MT 2
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pp → t t̄h → t t̄ t t̄ Signal
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Conclusions

Examined the SM alignment limit of the 2HDM potential.

Listed the symmetries leading to natural alignment.

Analyzed the simplest one, namely, the Maximally Symmetric 2HDM potential with SO(5)
symmetry.

Deviations from alignment are induced naturally by RG effects due to g′ and Yukawa
couplings, and due to soft-breaking mass parameter.

Predicts a quasi-degenerate and ‘gaugephobic’ heavy Higgs sector.

Using the alignment constraints, we predict lower limits on the heavy Higgs spectrum,
which prevail the present limits in a wide range of parameter space.

Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs
masses, which could be completely probed during LHC run-II.

Initiated study on a new collider signal with four top quarks in the final state, which can
become a valuable observational tool to directly probe the heavy Higgs sector in the
alignment limit.
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ps: BABAR Result 6

We recently presented an update of the earlier mea-
surement [14] based on the full BABAR data sample [17].
This update included improvements to the event recon-
struction that increased the signal efficiency by more
than a factor of 3. In the following, we describe the anal-
ysis in greater detail, present the distributions of some
important kinematic variables, and expand the interpre-
tation of the results.

We choose to reconstruct only the purely leptonic de-
cays of the τ lepton, τ− → e−νeντ and τ− → µ−νµντ ,

so that B → D(∗)τ−ντ and B → D(∗)ℓ−νℓ decays are
identified by the same particles in the final state. This
leads to the cancellation of various detection efficiencies
and the reduction of related uncertainties on the ratios
R(D(∗)).

Candidate events originating from Υ (4S) → BB de-
cays are selected by fully reconstructing the hadronic de-
cay of one of the B mesons (Btag), and identifying the
semileptonic decay of the other B by a charm meson
(charged or neutral D or D∗ meson), a charged lepton
(either e or µ) and the missing momentum and energy in
the whole event.

Yields for the signal decays B → D(∗)τ−ντ and the
normalization decays B → D(∗)ℓ−νℓ are extracted by an
unbinned maximum-likelihood fit to the two-dimensional
distributions of the invariant mass of the undetected par-
ticles m2

miss = p2
miss = (pe+e− −pBtag −pD(∗) −pℓ)

2 (where
pe+e− , pBtag , pD(∗) , and pℓ refer to the four-momenta of

the colliding beams, the Btag, the D(∗), and the charged
lepton, respectively) versus the lepton three-momentum
in the B rest frame, |p∗

ℓ |. The m2
miss distribution for de-

cays with a single missing neutrino peaks at zero, whereas
signal events, which have three missing neutrinos, have a
broad m2

miss distribution that extends to about 9 GeV2.
The observed lepton in signal events is a secondary par-
ticle from the τ decay, so its |p∗

ℓ | spectrum is softer than
for primary leptons in normalization decays.

The principal sources of background originate from BB
decays and from continuum events, i.e., e+e− → ff(γ)
pair production, where f = u, d, s, c, τ . The yields and
distributions of these two background sources are derived
from selected data control samples. The background de-
cays that are most difficult to separate from signal decays
come from semileptonic decays to higher-mass, excited
charm mesons, since they can produce similar m2

miss and
|p∗

ℓ | values to signal decays and their branching fractions
and decay properties are not well known. Thus, their
impact on the signal yield is examined in detail.

The choice of the selection criteria and fit configura-
tion are based on samples of simulated and data events.
To avoid bias in the determination of the signal yield,
the signal region was blinded for data until the analysis
procedure was settled.

b c

q q

ντ

τ−

}D(∗)B{
W −/H−

FIG. 1. Parton level diagram for B → D(∗)τ−ντ decays.
The gluon lines illustrate the QCD interactions that affect
the hadronic part of the amplitude.

II. THEORY OF B → D(∗)τ−ντ DECAYS

A. Standard Model

Given that leptons are not affected by quantum chro-
modynamic (QCD) interactions (see Fig. 1), the matrix
element of B → D(∗)τ−ντ decays can be factorized in
the form [5]

Mλτ

λ
D(∗)

(q2, θτ ) =
GF Vcb√

2

∑

λW

ηλW Lλτ

λW
(q2, θτ )H

λ
D(∗)

λW
(q2),

(2)

where Lλτ

λW
and H

λ
D(∗)

λW
are the leptonic and hadronic

currents defined as

Lλτ

λW
(q2, θτ ) ≡ ϵµ(λW ) ⟨τ ντ |τ γµ(1 − γ5) ντ |0⟩ , (3)

H
λ

D(∗)

λW
(q2) ≡ ϵ∗µ(λW )

〈
D(∗) |c γµ(1 − γ5) b|B

〉
. (4)

Here, the indices λ refer to the helicities of the W , D(∗),
and τ , q = pB−pD(∗) is the four-momentum of the virtual
W , and θτ is the angle between the τ and the D(∗) three-
momenta measured in the rest frame of the virtual W .
The metric factor η in Eq. 2 is η{±,0,s} = {1, 1, −1},
where λW = ±, 0, and s refer to the four helicity states
of the virtual W boson (s is the scalar state which, of
course, has helicity 0).

The leptonic currents can be calculated analytically
with the standard framework of electroweak interactions.
In the rest frame of the virtual W (W ∗), they take the
form [18]:

L−
± = −2

√
q2vd±, L+

± = ∓
√

2mτvd0, (5)

L−
0 = −2

√
q2vd0, L+

0 =
√

2mτv(d+ − d−), (6)

L−
s = 0, L+

s = −2mτv, (7)

with

v =

√
1 − m2

τ

q2
, d± =

1 ± cos θτ√
2

, d0 = sin θτ . (8)

Given that the average q2 in B → D(∗)τ−ντ decays is
about 8 GeV2, the fraction of τ− leptons with positive
helicity is about 30% in the SM.

Due to the nonperturbative nature of the QCD inter-
action at this energy scale, the hadronic currents cannot
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FIG. 20. (Color online). Comparison of the results of this
analysis (light band, blue) with predictions that include a
charged Higgs boson of type II 2HDM (dark band, red). The
widths of the two bands represent the uncertainties. The SM
corresponds to tanβ/mH+ = 0.
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FIG. 21. (Color online). Level of disagreement between this

measurement of R(D(∗)) and the type II 2HDM predictions
for all values in the tanβ–mH+ parameter space.

by B → Xsγ measurements [22], and therefore, the type
II 2HDM is excluded in the full tanβ–mH+ parameter
space.

The excess in both R(D) and R(D∗) can be explained
in more general charged Higgs models [44–47]. The ef-
fective Hamiltonian for a type III 2HDM is

Heff =
4GF Vcb√

2

[
(cγµPLb) (τγµPLντ )

+ SL(cPLb) (τPLντ ) + SR(cPRb) (τPLντ )
]
, (31)

where SL and SR are independent complex parameters,
and PL,R ≡ (1 ∓ γ5)/2. This Hamiltonian describes the
most general type of 2HDM for which m2

H+ ≫ q2.

In this context, the ratios R(D(∗)) take the form

R(D) = R(D)SM + A
′
DRe(SR + SL) + B

′
D|SR + SL|2,

R(D∗) = R(D∗)SM + A
′
D∗Re(SR − SL) + B

′
D∗ |SR − SL|2.

The sign difference arises because B → Dτ−ντ decays
probe scalar operators, while B → D∗τ−ντ decays are
sensitive to pseudo-scalar operators.
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FIG. 22. (Color online). Favored regions for real values of the
type III 2HDM parameters SR and SL given by the measured
values of R(D(∗)). The bottom two solutions are excluded by
the measured q2 spectra.

The type II 2HDM corresponds to the subset of
the type III 2HDM parameter space for which SR =
−mbmτ tan2β/m2

H+ and SL = 0.

The R(D(∗)) measurements in the type II 2HDM con-
text correspond to values of SR±SL in the range [−7.4, 0].
Given that the amplitude impacted by NP contributions
takes the form

|Hs(SR ± SL; q2)| ∝ |1 + (SR ± SL) × F (q2)|, (32)

we can extend the type II results to the full type III
parameter space by using the values of R(D(∗)) ob-
tained with Hs(SR ± SL) for Hs(−SR ∓ SL). Given the
small tanβ/mH+ dependence of R(D∗) (Fig. 20), this
is a good approximation for B → D∗τ−ντ decays. For
B → Dτ−ντ decays, this is also true when the decay am-
plitude is dominated either by SM or NP contributions,
that is, for small or large values of |SR +SL|. The shift in
the m2

miss and q2 spectra, which results in the 40% drop
on the value of R(D) shown in Fig. 20, occurs in the inter-
mediate region where SM and NP contributions are com-
parable. In this region, Hs(SR + SL) ̸= Hs(−SR − SL),
and, as a result, the large drop in R(D) is somewhat
shifted. However, given that the asymptotic values of
R(D) are correctly extrapolated, R(D) is monotonous,
and the measured value of R(D∗) is fairly constant, the
overall picture is well described by the Hs(SR ± SL) ≈
Hs(−SR ∓ SL) extrapolation.

Figure 22 shows that for real values of SR and SL,
there are four regions in the type III parameter space
that can explain the excess in both R(D) and R(D∗).
In addition, a range of complex values of the parameters
are also compatible with this measurement.

C. Study of the q2 spectra

As shown in Sec. II B, the q2 spectrum of B → Dτ−ντ

decays could be significantly impacted by charged Higgs
contributions. Figure 23 compares the q2 distribution of
background subtracted data, corrected for detector effi-
ciency, with the expectations of three different scenarios.

Improved measurements of the ratios

R(D) =
BR(B → Dτ−ντ )

BR(B → D`−ν`)
, R(D∗) =

BR(B → D∗τ−ντ )

BR(B → D∗`−ν`)
,

Excess w.r.t. the SM predictions at 3.4σ. Charged Higgs interpretation?
Disfavored in Type-II 2HDM, but by the same token, SM is also excluded !!
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Table 2
Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)Y -invariant 2HDM potential. For each symmetry, the
maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the
Goldstone theorem.

No. Symmetry Generators
T a ↔ K a

Discrete group
elements

Maximally broken
SO(5) generators

Number of
pseudo-Goldstone bosons

1 Z2 × O(2) T 0 DCP1 – 0
2 (Z2)2 × SO(2) T 0 D Z2 – 0
3 (Z2)3 × O(2) T 0 DCP2 – 0
4 O(2) × O(2) T 3, T 0 – T 3 1 (a)
5 Z2 × [O(2)]2 T 2, T 0 DCP1 T 2 1 (h)
6 O(3) × O(2) T 1,2,3, T 0 – T 1,2 2 (h,a)
7 SO(3) T 0,4,6 – T 4,6 2 (h±)
8 Z2 × O(3) T 0,4,6 D Z2 · DCP2 T 4,6 2 (h±)
9 (Z2)2 × SO(3) T 0,5,7 DCP1 · DCP2 T 5,7 2 (h±)

10 O(2) × O(3) T 3, T 0,8,9 – T 3 1 (a)
11 SO(4) T 0,3,4,5,6,7 – T 3,5,7 3 (a,h±)
12 Z2 × O(4) T 0,3,4,5,6,7 D Z2 · DCP2 T 3,5,7 3 (a,h±)
13 SO(5) T 0,1,2,...,9 – T 1,2,8,9 4 (h,a,h±)

where θa ∈ [0,2π) are the group parameters of the SUM(4)/Z2
group.

It is interesting to determine the SO(5) generators related to a
particular accidental symmetry that remain (un)broken after elec-
troweak symmetry breaking. In this way, we can find the num-
ber of pseudo-Goldstone bosons predicted, according to the Gold-
stone theorem. In the 5-dimensional bilinear R I -space, a neutral
vacuum solution in its standard basis implies that φT

1 iσ 2φ2 = 0,
i.e. R4 = R5 = 0, or equivalently RµRµ = 0. Alternatively, a stan-
dard basis for writing down a neutral vacuum solution R I

0 may be

defined through the relation: T 0
I J R J

0 = 0. Consequently, an SO(5)

generator T a remains unbroken after electroweak symmetry break-
ing, if it satisfies the condition:

T a
I J R J

0 = 0. (20)

By definition, the hypercharge generator T 0 will always be unbro-
ken when acting on a neutral vacuum solution R I

0. This should not
be too surprising, as T 0 is equivalent to the electromagnetic gener-
ator, given by Q em = σ 0 ⊗ σ 0 ⊗ (σ 3/2) + K 0 in the Φ-space, once
we notice that the weak isospin generator σ 0 ⊗ σ 0 ⊗ (σ 3/2) has
no effect on the SU(2)L gauge-invariant 5-vector R I .

In Table 2, we exhibit the SO(5) (SUM(4)) symmetry generators
T a (K a) [cf. (14), (10)] and the discrete group elements [cf. (17)]
generating the 13 accidental symmetries of the U(1)Y -invariant
2HDM potential. We also display the maximally broken SO(5) gen-
erators compatible with a neutral vacuum for each symmetry,
along with the maximal number of pseudo-Goldstone bosons that
result from the Goldstone theorem. The pseudo-Goldstone bosons
associated with the maximal breaking of each symmetry have also
been identified in the last column of Table 2, using the explicit
analytic results presented in [25] for the minimization conditions
and the scalar mass matrices. Thus, we find that as well as CP1 ≡
Z2 × O(2), the symmetries SO(3) and Z2 × O(3) can maximally
break spontaneously via a CP non-invariant vacuum. Unlike in the
CP1 case, spontaneous breakdown of these two new symmetries
may lead to two pseudo-Goldstone bosons, i.e. the two charged
Higgs bosons h± . For the symmetry (Z2)

2 × SO(3), the maximal
breaking pattern leading to the two charged pseudo-Goldstone
bosons h± is obtained, when the restriction λ4 = −Reλ5 > 0 is
taken from Table 1.

On the other hand, it is worth reiterating that the symme-
try SO(5) relates to the larger O(8) group [6] in the real field
space, once the latter gets further restricted such that the SU(2)L

gauge canonical form of the Φ kinetic term is maintained. In the
5-dimensional bilinear R I -space, SO(5) can break down to SO(4),
giving rise to four pseudo-Goldstone bosons: one of the two CP-
even Higgs bosons denoted as h, the CP-odd scalar a and the two
charged Higgs bosons h± . This is consistent with breaking pat-
tern of O(8) → O(7) in the Φ-space, leading to seven Goldstone
bosons, which include the three would-be Goldstone bosons asso-
ciated with the longitudinal polarizations of the W ± and Z bosons.
However, one gets a different result within the U (1)Y -restricted
SO(3) bilinear formalism of [16–18,21,24]. The higher HF/CP sym-
metry SO(5) appears as SO(3)HF in the U(1)Y -restricted bilinear
formalism, and according to Table 2 (symmetry No. 6), it may
break down to SO(2), giving rise to only two pseudo-Goldstone
bosons.

Another illustrative example is the symmetry SO(4), which is
equivalent to O(4) ⊗ O(4) [6] in the scalar-field space, where one
of the O(4) factors describes gauge-group transformations. As can
be seen from Table 2, the symmetry SO(4) may break to SO(3),
giving rise to three pseudo-Goldstone bosons: the CP-odd scalar a
and the two charged Higgs bosons h± . Again, this breaking sce-
nario cannot be clearly distinguished from a scenario based on
CP3 ≡ Z2 × [O(2)]2, which leads to an erroneous breaking pattern
predicting only one pseudo-Goldstone boson, within the U(1)Y -
constrained SO(3) bilinear formalism.

It is interesting to remark that the Majorana-constrained uni-
tary group SUM(4) in (15) contains the custodial symmetry
group SU(2)C [26] (for recent studies, see [27,23]). In the Φ-
basis, there are three independent realizations of SU(2)C induced
by the generators: (i) K 0,4,6; (ii) K 0,5,7; (iii) K 0,8,9. As stated in
Table 2, the HF/CP accidental symmetries 7–13 contain at least
one of the three generator sets (i), (ii) and (iii), and are therefore
custodial symmetric. As a consequence of the custodial symme-
try, the W ± and Z bosons are degenerate in mass and Veltman’s
ρ-parameter [28] retains its tree-level value ρ = 1, to all orders in
perturbation theory. As happens in the SM, however, the U(1)Y hy-
percharge and Yukawa interactions violate explicitly the custodial
symmetry in the 2HDM.

In summary, we have presented the symmetry generators K a

in (10) that describe the 13 accidental symmetries [1] of the
U(1)Y -invariant 2HDM potential (1) in the original scalar field
space Φ , by means of (19). We have derived an exact symmetry
relation in (13), which gives the one-to-one correspondence be-
tween the SUM(4) generators K a in the Φ-space and the SO(5)
generators T a in the R I -space. In Table 2, we have explicitly pre-
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T a and K a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).

T 0 is the hypercharge generator in R-space, which is equivalent to the electromagnetic
generator Qem = 1

2σ
0 ⊗ σ0 ⊗ σ3 + K 0 in Φ-space.

Sp(4) contains the custodial symmetry group SU(2)C .

Three independent realizations of custodial symmetry induced by
(i) K 0,4,6, (ii) K 0,5,7, (iii) K 0,8,9.
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T a and K a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).

T 0 is the hypercharge generator in R-space, which is equivalent to the electromagnetic
generator Qem = 1

2σ
0 ⊗ σ0 ⊗ σ3 + K 0 in Φ-space.



Quark Yukawa Couplings

By convention, choose hu
1 = 0. For Type-I (Type-II) 2HDM, hd

1 (hd
2 ) = 0.

Quark yukawa couplings w.r.t. the SM are given by

Coupling Type-I Type-II
ght t̄ cosα/ sinβ cosα/ sinβ
ghbb̄ cosα/ sinβ − sinα/ cosβ
gHtt̄ sinα/ sinβ sinα/ sinβ
gHbb̄ sinα/ sinβ cosα/ cosβ
gat t̄ cotβ cotβ
gabb̄ − cotβ tanβ
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Figure 1.2: Production of four top quarks via gluon-gluon fusion (a) and quark-antiquark annihila-
tion (b).

magnitude of the corresponding element of the CKM matrix, |Vtq|2 with q = b, s, d, respectively.
For the particular decay t ! Wb, this can be written in terms of the ratio of the branching
fractions. Assuming that the CKM matrix is unitary and that there are three generations of
quarks, this is given by

Rb =
BR(t ! Wb)

BR(t ! Wq)
=

|Vtb|2
|Vtb|2 + |Vts|2 + |Vtd|2

= 0.998, (1.31)

which means that the top quark decays almost uniquely into a W boson and a b-quark.

For an event with four top quarks, the final state is determined by the decay of the W
bosons. Each one of them can decay either leptonically, into a charged lepton-neutrino pair
(W ! `⌫`, with ` = e, µ, ⌧), or hadronically, into a quark-antiquark pair (ud̄ or cs̄5). There
are three possible combinations for the leptonic decay, while there are six possibilities for the
hadronic one6. Each of the nine decay modes occurs almost at the same frequency. The branching
fractions for these decays are shown in Table 1.3. As can be seen, each leptonic decay occurs
more or less with the same probability making around 33% of the total.

Decay mode Branching fraction

e+⌫e (10.75 ± 0.13)%
µ+⌫µ (10.57 ± 0.15)%
⌧+⌫⌧ (11.25 ± 0.20)%
qq̄0 (67.60 ± 0.27)%

Table 1.3: Branching fractions of the di↵erent decay modes of the W boson [22].

There are 35 final states for four top quarks depending on the W decay –q, e, µ, ⌧ . They
can be grouped into five channels, each one with a di↵erent signature:

5This is referred to the weak interaction eigenstates rather than the Cabibbo rotated mass eigenstates.
6This is because of each pair is always color neutral and can be formed for the three di↵erent color combinations.
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The full metric is given by

ds2 = e�2krc�⌘µ⌫dxµdx⌫ + r2
cd�

2, (1.33)

where k is a scale of order the Planck scale, ⌘µ⌫ refers to the flat Minkowski metric, xµ are the
usual four dimension coordinates, and � is the angular coordinate that parametrizes the fifth
dimension satisfying 0  �  ⇡, and whose size is set by rc. This last one represents the radius
of compactification of the extra dimension. The orbifold fixed points at � = 0, ⇡ are taken as the
location of two 3-branes, which extend in the xµ-directions, so that they represent the boundaries
of the five-dimensional spacetime. The boundary � = 0 is called the Planck or UV brane, while
the one at � = ⇡ is called the TeV or IR brane. The SM fields are constrained to the TeV brane,
while gravitons exist in the full five-dimensional spacetime. The warp factor is represented by
the exponential, which is the source of the large hierarchy between the observed Planck and
weak scales. The model predicts a discrete spectrum of Kaluza-Klein (KK) excitations of the
graviton, which couple to the SM fields with a coupling that is enhanced by the warp factor to
be of the order of electroweak strength.

While in the original model the SM fields are constrained to the TeV brane, variations of
the Randall-Sundrum model have been proposed in which the SM fermions and gauge bosons
propagate throughout all five dimensions [62, 63, 64, 65, 66]. These versions have desirable fea-
tures like the suppression of FCNC7, generating the large mass hierarchies, and also allow gauge
coupling unification at high energies. The interesting signal in this scenario is the production of
KK excitations of the gauge bosons, and for the LHC, the production of KK gluons (gKK).

The KK gluon couples strongly to the right-handed top quark. As a consequence, it decays
predominantly to top pairs [67]. Four top quarks can be obtained via pair production of KK
gluons or via their single production in association with a tt̄ pair [8, 67, 68]. One example of the
Feynman diagram is shown in Fig. 1.5.

g

g t̄

t

t̄

t̄

gKK

t̄

t

Figure 1.5: Feynman diagram example illustrating the production of four top quarks in an extended
version of the Randall-Sundrum model.

7Flavor-Changing Neutral Current.
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1.5.1.2 Top compositeness

Many models exist in which the top quark is composite [69, 70, 71, 72, 11]. In general, they are
motivated by the large mass of the top quark.

In some of these theoretical frameworks, the standard search for compositeness looks for
higher dimensional (non-renormalizable) operators, where only the right-handed component of
the top is composite [72, 11]. The largest of these operators is a four-point interaction of tR of
the form:

(t̄R�
µtR)(t̄R�µtR). (1.34)

An example of this four-top quark contact interaction is shown in Fig. 1.6. In these models,
the top quark is composed of some new constituent particles, called preons, which are bound
together by a new confining force. Above the scale of confinement, there should exist a weakly
coupled description in terms of its constituents. Below this scale, the physics should be described
by an e↵ective field theory which contains the bound states that result. The right-handed top
quark should be the lightest of the bound states of this new sector. At the LHC, the energy
should be high enough as to explore for top compositeness, where the operator given by Eq. 1.34
will lead to an enhancement of the tt̄tt̄ production rate.

g

g

t̄

t̄t

t

t̄

t

Figure 1.6: Feynman diagram example illustrating the production of four top quarks via contact inte-
raction.

1.5.1.3 Low energy e↵ective field theory

The low energy e↵ective field theory assumes that the e↵ects of new physics can be well captured
by higher dimensional interactions among the SM particles, which respect all the symmetries of
the SM.

In the framework given by Degrande et al. in Ref. [13], a model independent approach is
presented. It includes operators which are not specific to a BSM theory, and therefore it can
be used to test models where new physics can manifests itself as four-right-handed top contact
interaction. This is the case of theories predicting new heavy vector particles strongly coupled
to the right-handed top such as top compositeness [73, 72, 11] or Randall-Sundrum theories [67].
Due to the general character to test di↵erent new physics theories of this approximation, it would
be the theoretical framework to look for New Physics in this thesis. This is described below.
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1.5.2 Other models involved in the four-top production

This section describes only a couple of other models involved in the four-top production that are
not studied in this thesis.

1.5.2.1 Universal extra dimensions (UED/RPP) model

This model is a Universal Extra Dimension (UED) model. It considers two extra dimensions
which are compactified under the Real Projective Plane geometry (RPP) [78, 79, 9].

In the framework presented in [9], a UED on the flat RPP is considered. This geometry is
the consequence of requiring the absence of fixed points/lines of the orbifold, together with the
existence of chiral zero modes for fermions. This model provides a dark matter candidate which
is a direct consequence of the geometry of the orbifold. It can be thought of as a rectangular
patch of a torus with the opposite sides identified as twisted, in the way of a double Möbius
strip. The Real Projective Plane can also be obtained from a sphere with identified antipodal
points.

The lowest order Lagrangian is given by the SM Lagrangian, but extended to 6 dimensions.
A tower of massive resonances corresponds to each SM field. The towers are organized in tiers,
and labelled by the intergers k and l. They correspond to the discretization of the momenta
along the extra directions. At leading order, the states in each tier are degenerate. Their masses
are determined by the two integers

m2
l,k =

l2

R2
5

+
k2

R2
6

, (1.53)

where R5,6 are the radii of the two extra dimensions. The absence of fixed points in the orbifold
ensures that the residual symmetry (after the compactification of the 6D space-time with its 6D
Lorentz symmetry) is left unbroken. This symmetry forbids the decay of the lightest particle
from tier (1, 0) (and tier (0, 1) in case of equal radii) to SM particles, thus allowing for a natural
dark matter candidate.
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Figure 1.7: Feynman diagram example illustrating the four tops production in the UED/RPP model.

The four tops final state arises from particles of tier (1, 1). Particles from this tier are
pair produced via bulk interactions. Once a heavy state of this tier is produced, it then chain
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