Heavy Higgs Sector of the Two Higgs Doublet Model in the Natural Standard Model Alignment Limit

P. S. Bhupal Dev

with A. Pilaftsis, JHEP 1412, 024 (2014) [arXiv:1408.3405 [hep-ph]]

The Lancaster, Manchester, Sheffield Consortium for Fundamental Physics SHEP Seminar University of Southampton

MANCHESTER 1824

The University of Manchester

March 20, 2015

Outline

- Introduction
- Natural Alignment
- Maximally Symmetric 2HDM
- Collider Phenomenology
- Conclusion

A Higgs or the Higgs?

Unique opportunity for probing New Physics through the Higgs portal:

- Precision Higgs Study (Higgcision).
- Search for additional Higgses.

Why more Higgses?

Several theoretical motivations to go beyond the SM Higgs sector.

- Electroweak Baryogenesis
 - Additional sources of CP violation
 - Strong first order phase transition
- Dark Matter
- Supersymmetry
- Why not?

Two Higgs Doublets

- Any scalar sector in a local $SU(2) \times U(1)$ gauge theory must be consistent with $\rho_{exp} = 1.0004^{+0.0004}_{-0.0004}$. [PDG '14]
- With *n* Higgs multiplets Φ_i (with i = 1, 2, ..., n):

$$\rho_{\text{tree}} = \frac{\sum_{i=1}^{n} \left[T_i (T_i + 1) - Y_i^2 \right] v_i}{2 \sum_{i=1}^{n} Y_i^2 v_i} \,.$$

- Simplest choice: Add multiplets with $T(T+1) = 3Y^2$ so that $\rho_{\text{tree}} = 1$.
- SM: One $SU(2)_L$ doublet $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ with $Y = \frac{1}{2}$.

• A simple extension: Two $SU(2)_L$ doublets $\Phi_i = \begin{pmatrix} \phi_i^+ \\ \phi_i^0 \end{pmatrix}$ (with i = 1, 2).

Most general 2HDM potential in doublet field space Φ_{1,2}:

$$\begin{split} V &= -\mu_1^2 (\Phi_1^{\dagger} \Phi_1) - \mu_2^2 (\Phi_2^{\dagger} \Phi_2) - \left[m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{H.c.} \right] \\ &+ \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) \\ &+ \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \lambda_6 (\Phi_1^{\dagger} \Phi_1) (\Phi_1^{\dagger} \Phi_2) + \lambda_7 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_2) + \text{H.c.} \right]. \end{split}$$

- Four real mass parameters $\mu_{1,2}^2$, Re(m_{12}^2), Im(m_{12}^2).
- 10 real quartic couplings $\lambda_{1,2,3,4}$, Re($\lambda_{5,6,7}$), Im($\lambda_{5,6,7}$).
- Rich vacuum structure. [Battye, Brawn, Pilaftsis '11; Branco et al '12]

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}}(v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G^{\pm}, G^0) , eaten by W^{\pm} and Z.
- Five physical scalar fields: two *CP*-even (h, H), one *CP*-odd (a) and two charged (h^{\pm}) .

• In the charged sector,
$$\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$
.
$$M_{h^{\pm}}^2 = \frac{1}{s_\beta c_\beta} \left[\operatorname{Re}(m_{12}^2) - \frac{1}{2} \left(\{ \lambda_4 + \operatorname{Re}(\lambda_5) \} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \right) \right].$$

• In the *CP*-odd sector,
$$\begin{pmatrix} G^0 \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$$
.
 $M_a^2 = \frac{1}{s_\beta c_\beta} \left[\operatorname{Re}(m_{12}^2) - v^2 \left(\operatorname{Re}(\lambda_5) s_\beta c_\beta + \frac{1}{2} \left\{ \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \right\} \right) \right]$

$$= M_{b\pm}^2 + \frac{1}{2} \left[\lambda_4 - \operatorname{Re}(\lambda_5) \right] v^2.$$

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}}(v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G^{\pm}, G^0) , eaten by W^{\pm} and Z.
- Five physical scalar fields: two *CP*-even (h, H), one *CP*-odd (a) and two charged (h^{\pm}) .

• In the charged sector,
$$\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$
.

$$\mathsf{M}_{h^{\pm}}^{2} = \frac{1}{s_{\beta}c_{\beta}}\left[\operatorname{Re}(m_{12}^{2}) - \frac{1}{2}\left(\{\lambda_{4} + \operatorname{Re}(\lambda_{5})\}s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2}\right)\right].$$

• In the *CP*-odd sector,
$$\begin{pmatrix} G^0 \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$$
.

$$M_a^2 = \frac{1}{s_\beta c_\beta} \left[\operatorname{Re}(m_{12}^2) - v^2 \left(\operatorname{Re}(\lambda_5) s_\beta c_\beta + \frac{1}{2} \left\{ \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \right\} \right) \right]$$

= $M_{h\pm}^2 + \frac{1}{2} \left[\lambda_4 - \operatorname{Re}(\lambda_5) \right] v^2.$

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}}(v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, 3 Goldstone bosons (G^{\pm}, G^0) , eaten by W^{\pm} and Z.
- Five physical scalar fields: two *CP*-even (h, H), one *CP*-odd (a) and two charged (h^{\pm}) .

• In the charged sector,
$$\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix}$$
.

$$M_{h^{\pm}}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - \frac{1}{2} \left(\{\lambda_{4} + \operatorname{Re}(\lambda_{5})\} s_{\beta}c_{\beta} + \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right) \right].$$

• In the *CP*-odd sector,
$$\begin{pmatrix} G^0 \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$$
.
 $M_a^2 = \frac{1}{s_\beta c_\beta} \left[\operatorname{Re}(m_{12}^2) - v^2 \left(\operatorname{Re}(\lambda_5) s_\beta c_\beta + \frac{1}{2} \left\{ \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \right\} \right) \right]$
 $= M_{h\pm}^2 + \frac{1}{2} \left[\lambda_4 - \operatorname{Re}(\lambda_5) \right] v^2.$

• In the *CP*-even sector,
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$$

 $M_S^2 \equiv \begin{pmatrix} A & C \\ C & B \end{pmatrix}$
 $= M_a^2 \begin{pmatrix} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{pmatrix}$
 $+v^2 \begin{pmatrix} 2\lambda_1 c_\beta^2 + \operatorname{Re}(\lambda_5) s_\beta^2 + 2\operatorname{Re}(\lambda_6) s_\beta c_\beta & \lambda_{34} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \\ \lambda_{34} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 & 2\lambda_2 s_\beta^2 + \operatorname{Re}(\lambda_5) c_\beta^2 + 2\operatorname{Re}(\lambda_7) s_\beta c_\beta \end{pmatrix}$
with $\tan 2\alpha = 2C/(A - B)$.

The SM Higgs boson is given by

 $H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha) .$

• SM alignment limit: $\alpha \rightarrow \beta$ (or $\beta - \pi/2$).

 Usually attributed to either decoupling or accidental cancellations. [Gunion, Haber '03; Ginzburg, Krawczyk '05; Carena, Low, Shah, Wagner '13]

Explore symmetries of the 2HDM potential to naturally justify the alignment limit.

• In the *CP*-even sector,
$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$$

 $M_S^2 \equiv \begin{pmatrix} A & C \\ C & B \end{pmatrix}$
 $= M_a^2 \begin{pmatrix} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{pmatrix}$
 $+v^2 \begin{pmatrix} 2\lambda_1 c_\beta^2 + \operatorname{Re}(\lambda_5) s_\beta^2 + 2\operatorname{Re}(\lambda_6) s_\beta c_\beta & \lambda_{34} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \\ \lambda_{34} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 & 2\lambda_2 s_\beta^2 + \operatorname{Re}(\lambda_5) c_\beta^2 + 2\operatorname{Re}(\lambda_7) s_\beta c_\beta \end{pmatrix}$

with $\tan 2\alpha = 2C/(A - B)$.

The SM Higgs boson is given by

 $H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha) .$

• SM alignment limit: $\alpha \rightarrow \beta$ (or $\beta - \pi/2$).

 Usually attributed to either decoupling or accidental cancellations. [Gunion, Haber '03; Ginzburg, Krawczyk '05; Carena, Low, Shah, Wagner '13]

Explore symmetries of the 2HDM potential to naturally justify the alignment limit.

Natural Alignment Condition

Rewrite CP-even mass matrix as

$$\begin{split} M_{S}^{2} &= \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \widehat{A}v^{2} & \widehat{C}v^{2} \\ \widehat{C}v^{2} & M_{a}^{2} + \widehat{B}v^{2} \end{pmatrix} \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \equiv O\widehat{M}_{S}^{2}O^{\mathsf{T}} \, . \\ \widehat{A} &= 2 \Big[c_{\beta}^{4}\lambda_{1} + s_{\beta}^{2}c_{\beta}^{2}\lambda_{345} + s_{\beta}^{4}\lambda_{2} + 2s_{\beta}c_{\beta} \left(c_{\beta}^{2}\lambda_{6} + s_{\beta}^{2}\lambda_{7} \right) \Big] \, , \\ \widehat{B} &= \lambda_{5} + 2 \Big[s_{\beta}^{2}c_{\beta}^{2} \left(\lambda_{1} + \lambda_{2} - \lambda_{345} \right) - s_{\beta}c_{\beta} \left(c_{\beta}^{2} - s_{\beta}^{2} \right) \left(\lambda_{6} - \lambda_{7} \right) \Big] \, , \\ \widehat{C} &= s_{\beta}^{3}c_{\beta} \Big(2\lambda_{2} - \lambda_{345} \Big) - c_{\beta}^{3}s_{\beta} \Big(2\lambda_{1} - \lambda_{345} \Big) + c_{\beta}^{2} \Big(1 - 4s_{\beta}^{2} \Big) \lambda_{6} + s_{\beta}^{2} \Big(4c_{\beta}^{2} - 1 \Big) \lambda_{7} \, . \end{split}$$

• Exact alignment (
$$\alpha = \beta$$
) iff $\widehat{C} = 0$, i.e.

$$\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0$$

• Natural alignment if happens for any value of tan β , independent of non-SM Higgs spectra:

$$\lambda_1 = \lambda_2 = \lambda_{345}/2 , \quad \lambda_6 = \lambda_7 = \mathbf{0}$$

• CP-even Higgs masses are given by

$$\begin{array}{rcl} M_H^2 &=& 2\lambda_2 v^2 \equiv \lambda_{\rm SM} v^2 \; , \\ M_h^2 &=& M_a^2 \, + \, \lambda_5 v^2 \; . \end{array}$$

Natural Alignment Condition

Rewrite CP-even mass matrix as

$$\begin{split} M_{S}^{2} &= \begin{pmatrix} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{pmatrix} \begin{pmatrix} \widehat{A}v^{2} & \widehat{C}v^{2} \\ \widehat{C}v^{2} & M_{a}^{2} + \widehat{B}v^{2} \end{pmatrix} \begin{pmatrix} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{pmatrix} \equiv O\widehat{M}_{S}^{2}O^{\mathsf{T}} \, . \\ \widehat{A} &= 2 \Big[c_{\beta}^{4}\lambda_{1} + s_{\beta}^{2}c_{\beta}^{2}\lambda_{345} + s_{\beta}^{4}\lambda_{2} + 2s_{\beta}c_{\beta}\left(c_{\beta}^{2}\lambda_{6} + s_{\beta}^{2}\lambda_{7}\right) \Big] \, , \\ \widehat{B} &= \lambda_{5} + 2 \Big[s_{\beta}^{2}c_{\beta}^{2}\left(\lambda_{1} + \lambda_{2} - \lambda_{345}\right) - s_{\beta}c_{\beta}\left(c_{\beta}^{2} - s_{\beta}^{2}\right)\left(\lambda_{6} - \lambda_{7}\right) \Big] \, , \\ \widehat{C} &= s_{\beta}^{3}c_{\beta}\left(2\lambda_{2} - \lambda_{345}\right) - c_{\beta}^{3}s_{\beta}\left(2\lambda_{1} - \lambda_{345}\right) + c_{\beta}^{2}\left(1 - 4s_{\beta}^{2}\right)\lambda_{6} + s_{\beta}^{2}\left(4c_{\beta}^{2} - 1\right)\lambda_{7} \, . \end{split}$$

• Exact alignment ($\alpha = \beta$) iff $\widehat{C} = 0$, i.e.

$$\lambda_7 t_{\beta}^4 - (2\lambda_2 - \lambda_{345}) t_{\beta}^3 + 3(\lambda_6 - \lambda_7) t_{\beta}^2 + (2\lambda_1 - \lambda_{345}) t_{\beta} - \lambda_6 = 0$$

- Natural alignment if happens for *any* value of tan β , independent of non-SM Higgs spectra: $\boxed{\lambda_1 = \lambda_2 = \lambda_{345}/2, \quad \lambda_6 = \lambda_7 = 0}$
- CP-even Higgs masses are given by

$$\begin{array}{lll} M_{H}^2 & = & 2\lambda_2 v^2 \equiv \lambda_{\rm SM} v^2 \; , \\ M_{h}^2 & = & M_{a}^2 \; + \; \lambda_5 v^2 \; . \end{array}$$

Higgs Couplings in a General 2HDM

• With respect to the SM Higgs couplings $H_{SM}VV$ ($V = W^{\pm}, Z$),

 $g_{hVV} = \sin(\beta - \alpha)$, $g_{HVV} = \cos(\beta - \alpha)$.

$$\begin{split} g_{haZ} &= \cos(\beta - \alpha) , \qquad g_{HaZ} &= \sin(\beta - \alpha) , \\ g_{h^+hW^-} &= \cos(\beta - \alpha) , \qquad g_{h^+HW^-} &= \sin(\beta - \alpha) . \end{split}$$

Similar behavior for CP-even Higgs self-couplings:

 $g_{hHH} \propto \sin(eta - lpha) \,, \qquad g_{Hhh} \propto \cos(eta - lpha) \,.$

• In the alignment limit $(\alpha \rightarrow \beta)$, one of the neutral Higgses (*h*) is gaugephobic.

Higgs Couplings in a General 2HDM

• With respect to the SM Higgs couplings $H_{\rm SM}VV$ ($V = W^{\pm}, Z$),

 $g_{hVV} = \sin(\beta - \alpha)$, $g_{HVV} = \cos(\beta - \alpha)$.

$$\begin{split} g_{haZ} &= \cos(\beta - \alpha) , \qquad g_{HaZ} = \sin(\beta - \alpha) , \\ g_{h^+hW^-} &= \cos(\beta - \alpha) , \qquad g_{h^+HW^-} = \sin(\beta - \alpha) . \end{split}$$

Similar behavior for CP-even Higgs self-couplings:

 $g_{hHH} \propto \sin(eta-lpha) \,, \qquad g_{Hhh} \propto \cos(eta-lpha) \,.$

• In the alignment limit ($\alpha \rightarrow \beta$), one of the neutral Higgses (*h*) is gaugephobic.

Only effective probe is through its Yukawa coupling to SM fermions.

Higgs Couplings in a General 2HDM

• With respect to the SM Higgs couplings $H_{\rm SM}VV$ ($V = W^{\pm}, Z$),

 $g_{hVV} = \sin(\beta - \alpha)$, $g_{HVV} = \cos(\beta - \alpha)$.

$$\begin{array}{ll} g_{haZ} &= \cos(\beta - \alpha) \,, \qquad g_{HaZ} \,= \, \sin(\beta - \alpha) \,, \\ g_{h^+hW^-} &= \, \cos(\beta - \alpha) \,, \qquad g_{h^+HW^-} \,= \, \sin(\beta - \alpha) \,. \end{array}$$

Similar behavior for CP-even Higgs self-couplings:

 $g_{hHH} \propto \sin(eta-lpha) \,, \qquad g_{Hhh} \propto \cos(eta-lpha) \,.$

• In the alignment limit ($\alpha \rightarrow \beta$), one of the neutral Higgses (*h*) is gaugephobic.

Only effective probe is through its Yukawa coupling to SM fermions.

Z₂-symmetric 2HDM

General Yukawa Lagrangian

 $-\mathcal{L}_Y \ = \ \bar{Q}_L(h_1^u \Phi_1 + h_2^u \Phi_2) u_R \ + \ \bar{Q}_L(h_1^d \widetilde{\Phi}_1 + h_2^d \widetilde{\Phi}_2) d_R \ + \ \bar{L}_L(h_1^e \widetilde{\Phi}_1 + h_2^e \widetilde{\Phi}_2) e_R \ .$

- Dangerous FCNC processes at tree-level.
- Can be naturally avoided by imposing a Z₂-symmetry. [Glashow, Weinberg '58]

		Z ₂ charge							Coupling	
	Φ ₁	Φ2	Q_L	L_L	u _R	d _R	e _R	U _R	d _R	e _R
Type-I	+	_	+	+	_	_	_	Φ2	Φ2	Φ2
Type-II (MSSM-type)	+	_	+	+	_	+	+	Φ2	Φ1	Φ1
Type-X (Lepton-specific)	+	_	+	+	_	_	+	Φ2	Φ2	Φ1
Type-Y (Flipped)	+	-	+	+	-	+	_	Φ2	Φ1	Φ2

Z₂-symmetric 2HDM

General Yukawa Lagrangian

 $-\mathcal{L}_Y \ = \ \bar{Q}_L(h_1^u \Phi_1 + h_2^u \Phi_2) u_R \ + \ \bar{Q}_L(h_1^d \widetilde{\Phi}_1 + h_2^d \widetilde{\Phi}_2) d_R \ + \ \bar{L}_L(h_1^e \widetilde{\Phi}_1 + h_2^e \widetilde{\Phi}_2) e_R \ .$

- Dangerous FCNC processes at tree-level.
- Can be naturally avoided by imposing a Z₂-symmetry. [Glashow, Weinberg '58]

		Z ₂ charge							Coupling		
	Φ ₁	Φ2	Q_L	L_L	U _R	d _R	e _R	UR	d _R	e _R	
Type-I	+	_	+	+	_	_	_	Φ2	Φ2	Φ2	
Type-II (MSSM-type)	+	-	+	+	-	+	+	Φ2	Φ1	Φ1	
Type-X (Lepton-specific)	+	-	+	+	-	-	+	Φ2	Φ2	Φ1	
Type-Y (Flipped)	+	_	+	+	_	+	-	Φ2	Φ1	Φ2	

Symmetry Classifications of the 2HDM Potential

Three classes of accidental symmetries of the 2HDM potential:

- Higgs Family (HF) Symmetries involving transformations of Φ_{1,2} only (but not Φ^{*}_{1,2}), e.g. Z₂ [Glashow, Weinberg '58], U(1)_{PQ} [Peccei, Quinn '77], SO(3)_{HF} [Deshpande, Ma '78; Ivanov '07; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- CP Symmetries relating $\Phi_{1,2}$ to $\Phi_{1,2}^*$, e.g. $\Phi_{1(2)} \rightarrow \Phi_{1(2)}^*$ (CP1) [Lee '73; Branco '80], $\Phi_{1(2)} \rightarrow (-)\Phi_{2(1)}^*$ (CP2) [Davidson, Haber '05], CP1 combined with SO(2)_{HF}/Z₂ (CP3) [Ivanov '07; Ferreira, Haber, Silva '09; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- Additional mixed HF and CP symmetries that leave the gauge-kinetic terms of Φ_{1,2} invariant [Battye, Brawn, Pilaftsis '11].
- Includes all custodial symmetries of the 2HDM potential.
- Maximum of 13 distinct accidental symmetries of the general 2HDM potential.
- Each of them imposes specific relations among the scalar parameters.

Symmetry Classifications of the 2HDM Potential

Three classes of accidental symmetries of the 2HDM potential:

- Higgs Family (HF) Symmetries involving transformations of Φ_{1,2} only (but not Φ^{*}_{1,2}),
 e.g. Z₂ [Glashow, Weinberg '58], U(1)_{PQ} [Peccei, Quinn '77], SO(3)_{HF} [Deshpande, Ma '78; Ivanov '07; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- CP Symmetries relating $\Phi_{1,2}$ to $\Phi_{1,2}^*$, e.g. $\Phi_{1(2)} \rightarrow \Phi_{1(2)}^*$ (CP1) [Lee '73; Branco '80], $\Phi_{1(2)} \rightarrow (-)\Phi_{2(1)}^*$ (CP2) [Davidson, Haber '05], CP1 combined with SO(2)_{HF}/Z₂ (CP3) [Ivanov '07; Ferreira, Haber, Silva '09; Ma, Maniatis '09; Ferreira, Haber, Maniatis, Nachtmann, Silva '10].
- Additional mixed HF and CP symmetries that leave the gauge-kinetic terms of Φ_{1,2} invariant [Battye, Brawn, Pilaftsis '11].
- Includes all custodial symmetries of the 2HDM potential.
- Maximum of 13 *distinct* accidental symmetries of the general 2HDM potential.
- Each of them imposes specific relations among the scalar parameters.

Bilinear Formalism

Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11; Pilaftsis '12]

$$\mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ i\sigma^2 \Phi_1^* \\ i\sigma^2 \Phi_2^* \end{pmatrix}.$$

• Φ satisfies the Majorana condition: $\Phi = C\Phi^*$, where $C = \sigma^2 \otimes \sigma^0 \otimes \sigma^2 = C^{-1} = C^*$.

Define a null 6-dimensional Lorentz vector bilinear in Φ:

$$R^A = \Phi^{\dagger} \Sigma^A \Phi$$

(with A = 0, 1, 2, 3, 4, 5), where

$$\begin{split} \Sigma^0 &= \frac{1}{2} \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \equiv \frac{1}{2} \mathbf{1}_8, \quad \Sigma^1 = \frac{1}{2} \sigma^0 \otimes \sigma^1 \otimes \sigma^0, \qquad \Sigma^2 = \frac{1}{2} \sigma^3 \otimes \sigma^2 \otimes \sigma^0, \\ \Sigma^3 &= \frac{1}{2} \sigma^0 \otimes \sigma^3 \otimes \sigma^0, \qquad \qquad \Sigma^4 = -\frac{1}{2} \sigma^2 \otimes \sigma^2 \otimes \sigma^0, \quad \Sigma^5 = -\frac{1}{2} \sigma^1 \otimes \sigma^2 \otimes \sigma^0. \end{split}$$

Bilinear Formalism

Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11; Pilaftsis '12]

$$\mathbf{\Phi} = \begin{pmatrix} \Phi_1 \\ \Phi_2 \\ i\sigma^2 \Phi_1^* \\ i\sigma^2 \Phi_2^* \end{pmatrix}.$$

• Φ satisfies the Majorana condition: $\Phi = C\Phi^*$, where $C = \sigma^2 \otimes \sigma^0 \otimes \sigma^2 = C^{-1} = C^*$.

Define a null 6-dimensional Lorentz vector bilinear in Φ:

$$R^A = \Phi^{\dagger} \Sigma^A \Phi$$

(with A = 0, 1, 2, 3, 4, 5), where

$$\begin{split} \Sigma^{0} &= \frac{1}{2}\sigma^{0} \otimes \sigma^{0} \otimes \sigma^{0} \equiv \frac{1}{2}\mathbf{1}_{8}, \quad \Sigma^{1} = \frac{1}{2}\sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0}, \qquad \Sigma^{2} = \frac{1}{2}\sigma^{3} \otimes \sigma^{2} \otimes \sigma^{0}, \\ \Sigma^{3} &= \frac{1}{2}\sigma^{0} \otimes \sigma^{3} \otimes \sigma^{0}, \qquad \Sigma^{4} = -\frac{1}{2}\sigma^{2} \otimes \sigma^{2} \otimes \sigma^{0}, \quad \Sigma^{5} = -\frac{1}{2}\sigma^{1} \otimes \sigma^{2} \otimes \sigma^{0}. \end{split}$$

2HDM Potential in Bilinear Field Space

• The general 2HDM potential takes a simple form:

$$V = -\frac{1}{2}M_A R^A + \frac{1}{4}L_{AB}R^A R^B$$
.

2HDM Potential in Bilinear Field Space

• The general 2HDM potential takes a simple form:

$$V = -\frac{1}{2}M_A R^A + \frac{1}{4}L_{AB}R^A R^B.$$

$$M = \left(\mu_{1}^{2} + \mu_{2}^{2}, 2\operatorname{Re}(m_{12}^{2}), -2\operatorname{Im}(m_{12}^{2}), \mu_{1}^{2} - \mu_{2}^{2}, 0, 0\right),$$

$$R = \left(\begin{array}{c} \Phi_{1}^{\dagger}\Phi_{1} + \Phi_{2}^{\dagger}\Phi_{2} \\ \Phi_{1}^{\dagger}\Phi_{2} + \Phi_{2}^{\dagger}\Phi_{1} \\ -i(\Phi_{1}^{\dagger}\Phi_{2} - \Phi_{2}^{\dagger}\Phi_{1}) \\ \Phi_{1}^{\dagger}\Phi_{1} - \Phi_{2}^{\dagger}\Phi_{2} \\ \Phi_{1}^{\dagger}i\sigma^{2}\Phi_{2} - \Phi_{2}^{\dagger}i\sigma^{2}\Phi_{1}^{*} \\ -i(\Phi_{1}^{\dagger}i\sigma^{2}\Phi_{2} + \Phi_{2}^{\dagger}i\sigma^{2}\Phi_{1}^{*}) \end{array}\right),$$

$$L = \left(\begin{array}{ccc} \lambda_{1} + \lambda_{2} + \lambda_{3} & \operatorname{Re}(\lambda_{6} + \lambda_{7}) & -\operatorname{Im}(\lambda_{6} + \lambda_{7}) & \lambda_{1} - \lambda_{2} & 0 & 0 \\ \operatorname{Re}(\lambda_{6} + \lambda_{7}) & \lambda_{4} + \operatorname{Re}(\lambda_{5}) & -\operatorname{Im}(\lambda_{5}) & \operatorname{Re}(\lambda_{6} - \lambda_{7}) & 0 & 0 \\ -\operatorname{Im}(\lambda_{6} + \lambda_{7}) & -\operatorname{Im}(\lambda_{5}) & \lambda_{4} - \operatorname{Re}(\lambda_{5}) & -\operatorname{Im}(\lambda_{6} - \lambda_{7}) & 0 & 0 \\ \lambda_{1} - \lambda_{2} & \operatorname{Re}(\lambda_{6} - \lambda_{7}) & -\operatorname{Im}(\lambda_{6} - \lambda_{7}) & \lambda_{1} + \lambda_{2} - \lambda_{3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)$$

13 Symmetries of the 2HDM Potential

[Pilaftsis '12]

Table 1

Parameter relations for the 13 accidental symmetries [1] related to the $U(1)_{Y}$ -invariant 2HDM potential in the diagonally reduced basis, where Im $\lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash signifies the absence of a constraint.

No.	Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ_1	λ_2	λ_3	λ4	$\text{Re}\lambda_5$	$\lambda_6=\lambda_7$
1	$Z_2 \times O(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_{1}^{2}	0	-	λ1	-	-	-	0
4	$0(2) \times 0(2)$	-	-	0	-	-	-	-	0	0
5	$Z_2 \times [O(2)]^2$	-	μ_{1}^{2}	0	-	λ1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	$0(3) \times 0(2)$	-	μ_{1}^{2}	0	-	λ_1	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ4	Real
8	$Z_2 \times O(3)$	-	μ_{1}^{2}	Real	-	λ1	-	-	λ4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_{1}^{2}	0	-	λ1	-	-	$\pm\lambda_4$	0
10	$0(2) \times 0(3)$	-	μ_{1}^{2}	0	-	λ1	2λ1	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_{1}^{2}	0	-	λ1	-	0	0	0
13	SO(5)	-	μ_{1}^{2}	0	-	λ_1	$2\lambda_1$	0	0	0

• Recall natural alignment condition $\lambda_1 = \lambda_2 = \lambda_{345}/2$, $\lambda_6 = \lambda_7 = 0$.

Only three symmetries satisfy this.

13 Symmetries of the 2HDM Potential

[Pilaftsis '12]

Table 1

Parameter relations for the 13 accidental symmetries [1] related to the $U(1)_{Y}$ -invariant 2HDM potential in the diagonally reduced basis, where Im $\lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash signifies the absence of a constraint.

No.	Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ_1	λ_2	λ_3	λ4	$\text{Re}\lambda_5$	$\lambda_6=\lambda_7$
1	$Z_2 imes 0(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_{1}^{2}	0	-	λ_1	-	-	-	0
4	$0(2) \times 0(2)$	-	-	0	-	-	-	-	0	0
5	$Z_2 \times [O(2)]^2$	-	μ_{1}^{2}	0	-	λ_1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	$0(3) \times 0(2)$	-	μ_{1}^{2}	0	-	λ1	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ4	Real
8	$Z_2 \times O(3)$	-	μ_{1}^{2}	Real	-	λ_1	-	-	λ4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_{1}^{2}	0	-	λ_1	-	-	$\pm\lambda_4$	0
10	$0(2) \times 0(3)$	-	μ_{1}^{2}	0	-	λ1	$2\lambda_1$	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_{1}^{2}	0	-	λ_1	-	0	0	0
13	SO(5)	-	μ_{1}^{2}	0	-	λ_1	$2\lambda_1$	0	0	0

- Recall natural alignment condition $\lambda_1 = \lambda_2 = \lambda_{345}/2$, $\lambda_6 = \lambda_7 = 0$.
- Only three symmetries satisfy this.

13 Symmetries of the 2HDM Potential

[Pilaftsis '12]

Table 1

Parameter relations for the 13 accidental symmetries [1] related to the U(1)_Y-invariant 2HDM potential in the diagonally reduced basis, where $Im \lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash signifies the absence of a constraint.

No.	Symmetry	μ_1^2	μ_2^2	m_{12}^2	λ1	λ_2	λ_3	λ4	$\text{Re}\lambda_5$	$\lambda_6 = \lambda_7$
1	$Z_2 \times O(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_{1}^{2}	0	-	λ1	-	-	-	0
4	$0(2) \times 0(2)$	-	-	0	-	-	-	-	0	0
5	$Z_2 \times [O(2)]^2$	-	μ_{1}^{2}	0	-	λ1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	0(3) × 0(2)	-	μ_1^2	0	-	λ ₁	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ4	Real
8	$Z_2 \times O(3)$	-	μ_{1}^{2}	Real	-	λ1	-	-	λ_4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_1^2	0	-	λ_1	-	-	$\pm\lambda_4$	0
10	0(2) × 0(3)	-	μ_{1}^{2}	0	-	λ1	2λ1	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_1^2	0	-	λ_1	-	0	0	0
13	SO(5)	-	μ_{1}^{2}	0	-	λ1	2λ1	0	0	0

• Recall natural alignment condition $\lambda_1 = \lambda_2 = \lambda_{345}/2$, $\lambda_6 = \lambda_7 = 0$.

• Only three symmetries satisfy this.

Maximal Symmetry Group

- *Maximal* symmetry group in the bilinear field space: $G_{2HDM}^{R} = SO(5)$.
- In the original Φ -field space, $G_{2HDM}^{\Phi} = (Sp(4)/Z_2) \otimes SU(2)_L$.
- Conjecture: In a general nHDM, $G_{nHDM}^{\Phi} = (Sp(2n)/Z_2) \otimes SU(2)_L$.
- For the SM, reproduces the well-known custodial symmetry $G_{SM}^{\Phi} = (SU(2)_C/Z_2) \otimes SU(2)_L$. [Sikivie, Susskind, Voloshin, Zakharov '80].
- In 2HDM, 3 different realizations of custodial symmetry with [Pilaftsis '12; BD, Pilaftsis '14]

(i)
$$h_1^u = e^{i\theta}h_1^d$$
 and $h_2^u = e^{i\theta}h_2^d$,
(ii) $h_1^u = e^{i\theta}h_1^d$ and $h_2^u = -e^{i\theta}h_2^d$.
(iii) $h_1^u = e^{i\theta}h_2^d$ and $h_2^u = e^{-i\theta}h_1^d$.

Equivalent only in the SO(5) limit.

Maximal Symmetry Group

- *Maximal* symmetry group in the bilinear field space: $G_{2HDM}^{R} = SO(5)$.
- In the original Φ -field space, $G_{2HDM}^{\Phi} = (Sp(4)/Z_2) \otimes SU(2)_L$.
- Conjecture: In a general nHDM, $G_{nHDM}^{\Phi} = (Sp(2n)/Z_2) \otimes SU(2)_L$.
- For the SM, reproduces the well-known custodial symmetry $G_{SM}^{\Phi} = (SU(2)_C/Z_2) \otimes SU(2)_L$. [Sikivie, Susskind, Voloshin, Zakharov '80].
- In 2HDM, 3 different realizations of custodial symmetry with [Pilaftsis '12; BD, Pilaftsis '14]

(i)
$$h_1^{U} = e^{i\theta}h_1^{d}$$
 and $h_2^{U} = e^{i\theta}h_2^{d}$,
(ii) $h_1^{U} = e^{i\theta}h_1^{d}$ and $h_2^{U} = -e^{i\theta}h_2^{d}$.
(iii) $h_1^{U} = e^{i\theta}h_2^{d}$ and $h_2^{U} = e^{-i\theta}h_1^{d}$.

Equivalent only in the SO(5) limit.

Maximally Symmetric 2HDM

In the SO(5) limit, the 2HDM potential is very simple:

$$V \;=\; -\,\mu^2 \left(|\Phi_1|^2 + |\Phi_2|^2
ight) \,+\, \lambda \left(|\Phi_1|^2 + |\Phi_2|^2
ight)^2 \;=\; -\, rac{\mu^2}{2} \, \Phi^\dagger \, \Phi \;+\; rac{\lambda}{4} \left(\Phi^\dagger \, \Phi
ight)^2 \,.$$

- More minimal than the MSSM scalar potential, which in the custodial limit g' → 0, has a smaller symmetry: O(2) ⊗ O(3) ⊂ SO(5).
- After EWSB in the MS-2HDM, one massive Higgs boson H with $M_{H}^{2} = 2\lambda_{2}v^{2}$, whilst remaining four (h, a and h^{\pm}) are massless [Goldstone theorem].
- Natural SM alignment limit with $\alpha = \beta$. [Recall $H_{SM} = H \cos(\beta \alpha) + h \sin(\beta \alpha)$]
- (Pseudo)-Goldstones in MS-2HDM acquire mass due to custodial symmetry-breaking g' and Yukawa coupling effects.

Maximally Symmetric 2HDM

In the SO(5) limit, the 2HDM potential is very simple:

$$V \;=\; -\,\mu^2 \left(|\Phi_1|^2 + |\Phi_2|^2
ight) \,+\, \lambda \left(|\Phi_1|^2 + |\Phi_2|^2
ight)^2 \;=\; -\, rac{\mu^2}{2} \, \Phi^\dagger \, \Phi \;+\; rac{\lambda}{4} \left(\Phi^\dagger \, \Phi
ight)^2 \,.$$

- More minimal than the MSSM scalar potential, which in the custodial limit g' → 0, has a smaller symmetry: O(2) ⊗ O(3) ⊂ SO(5).
- After EWSB in the MS-2HDM, one massive Higgs boson *H* with $M_H^2 = 2\lambda_2 v^2$, whilst remaining four (*h*, *a* and h^{\pm}) are massless [Goldstone theorem].
- Natural SM alignment limit with $\alpha = \beta$. [Recall $H_{SM} = H \cos(\beta \alpha) + h \sin(\beta \alpha)$]
- (Pseudo)-Goldstones in MS-2HDM acquire mass due to custodial symmetry-breaking g' and Yukawa coupling effects.

g' and Yukawa Coupling Effects

Custodial symmetry broken by non-zero g' and Yukawa couplings.

$$\begin{array}{ll} \mathrm{SO}(5)\otimes\mathrm{SU}(2)_L & \xrightarrow{g'\neq 0} & \mathrm{O}(3)\otimes\mathrm{O}(2)\otimes\mathrm{SU}(2)_L \sim & \mathrm{O}(3)\otimes\mathrm{U}(1)_Y\otimes\mathrm{SU}(2)_L \\ & \xrightarrow{\mathrm{Yukawa}} & \mathrm{O}(2)\otimes\mathrm{U}(1)_Y\otimes\mathrm{SU}(2)_L \sim & \mathrm{U}(1)_{\mathrm{PQ}}\otimes\mathrm{U}(1)_Y\otimes\mathrm{SU}(2)_L \\ & \xrightarrow{\langle\Phi_{1,2}\rangle\neq 0} & \mathrm{U}(1)_{\mathrm{em}} \ . \end{array}$$

- Assume SO(5)-symmetry scale $\mu_X \gg v$.
- Use two-loop RGEs to find the mass spectrum at weak scale.

Soft Breaking Effects

In the SO(5) limit for quartic couplings,

$$M_{H}^2 = 2\lambda_2 v^2 , \qquad M_{h}^2 = M_{a}^2 = M_{h^{\pm}}^2 = \frac{\operatorname{Re}(m_{12}^2)}{s_{\beta} c_{\beta}}$$

Still preserves natural alignment, irrespective of other 2HDM parameters.
Predicts a quasi-degenerate heavy Higgs sector.

Quartic Coupling Unification

Constraints from Global Fit

- Electroweak precision observables.
- LHC signal strengths of the light *CP*-even Higgs boson.
- Limits on heavy *CP*-even scalar from $H \rightarrow WW, ZZ, \tau\tau$ searches.
- Flavor observables such as B_s mixing and $B \rightarrow X_s \gamma$.
- Stability of the potential:

$$\lambda_{1,2} > 0, \quad \lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0, \quad \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} - \operatorname{Re}(\lambda_5) > 0.$$

Perturbativity of the Higgs self-couplings: ||S_{ΦΦ→ΦΦ}|| < ¹/₈.

Lower Limit on Charged Higgs Mass

Lower and Upper Limits on Charged Higgs Mass

Implications for the LHC Searches

Higgs production processes:

- Recall that $g_{hVV} = \sin(\beta \alpha)$, $g_{HVV} = \cos(\beta \alpha)$.
- In the alignment limit $\alpha \rightarrow \beta$, *H* is SM-like and the heavy Higgs *h* is gaugephobic.
- Dominant production modes at the LHC: ggF and associated production with tt.

Branching Fractions

Branching Fractions

Branching Fractions

$\tan\beta$ Dependance

LHC Searches so far

- Existing collider limits on the heavy Higgs sector derived from WW and ZZ modes are not applicable in the alignment limit.
- Limits from $gg \rightarrow h \rightarrow \tau^+ \tau^-$ and $gg \rightarrow b\bar{b}h \rightarrow b\bar{b}\tau^+ \tau^-$ are easily satisfied.
- Similarly for $h \rightarrow HH \rightarrow \gamma \gamma bb$.

- In the charged-Higgs sector, most of the searches focus on the low-mass regime $(M_{h^{\pm}} < M_t)$: $pp \rightarrow tt \rightarrow Wbbh^+$, $h^+ \rightarrow cs$.
- Recently, the search was extended beyond the top-threshold: [CMS-PAS-HIG-13-026]

Predictions in the MS-2HDM

Simulations for $\sqrt{s} = 14$ TeV LHC

Used MadGraph5_aMC@NLO.

Event reconstruction using the CMS cuts:

For charged Higgs mass reconstruction, used 'stransverse mass' variable [Lester, Summers '99]

$$M_{T2} = \min_{\left\{ \mathbf{p}_{T_1} + \mathbf{p}_{T_2} = \mathbf{p}_T \right\}} \left[\max \left\{ m_{T_1}, m_{T_2} \right\} \right].$$

Mass Reconstruction using M_{T2}

Reach at 14 TeV LHC

New Signal in the Neutral Higgs Sector

$$gg
ightarrow t\overline{t}h
ightarrow t\overline{t}t\overline{t}$$

- Existing 95% CL experimental upper limit on σ_{tttt} is 32 fb (CMS).
- SM prediction for $\sigma(pp \rightarrow t\bar{t}t\bar{t} + X) \simeq$ 10–15 fb at NLO. [Bevilacqua, Worek '12]
- Still lot of room for BSM contribution.

Towards a Full Analysis of the *tttt* Signal

35 final states, grouped into five channels:

- Fully hadronic: 12 jets, with 4 *b*-jets.
- Semi-leptonic/hadronic: 4 light jets, 4 b-jets, 2 charged leptons and ∉_T.
- Mostly leptonic: 2 light jets, 4 *b*-jets, 3 charged leptons and $\not\!\!\!E_T$.
- Fully leptonic: 4 *b*-jets, 4 charged leptons and $\not\!\!E_T$.

Figure 1.4: Branching fractions for the different decays of the four top quarks, depending on whether the W boson decays hadronically (h) or leptonically (ℓ) .

Towards a Full Analysis of the *tttt* Signal

35 final states, grouped into five channels:

- Fully hadronic: 12 jets, with 4 *b*-jets.
- Mostly hadronic: 6 light jets, 4 b-jets, one charged lepton and ∉_T.
- Semi-leptonic/hadronic: 4 light jets, 4 *b*-jets, 2 charged leptons and $\not\!\!\!E_T$.
- Mostly leptonic: 2 light jets, 4 *b*-jets, 3 charged leptons and $\not\!\!\!E_T$.
- Fully leptonic: 4 *b*-jets, 4 charged leptons and $\not\!\!E_T$.

Figure 1.4: Branching fractions for the different decays of the four top quarks, depending on whether the W boson decays hadronically (h) or leptonically (ℓ) .

Mass Reconstruction using M_{T2}

$pp \rightarrow t\bar{t}h \rightarrow t\bar{t}t\bar{t}$ Signal

Conclusions

- Examined the SM alignment limit of the 2HDM potential.
- Listed the symmetries leading to natural alignment.
- Analyzed the simplest one, namely, the Maximally Symmetric 2HDM potential with SO(5) symmetry.
- Deviations from alignment are induced naturally by RG effects due to g' and Yukawa couplings, and due to soft-breaking mass parameter.
- Predicts a quasi-degenerate and 'gaugephobic' heavy Higgs sector.
- Using the alignment constraints, we predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- Initiated study on a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

Conclusions

- Examined the SM alignment limit of the 2HDM potential.
- Listed the symmetries leading to natural alignment.
- Analyzed the simplest one, namely, the Maximally Symmetric 2HDM potential with SO(5) symmetry.
- Deviations from alignment are induced naturally by RG effects due to g' and Yukawa couplings, and due to soft-breaking mass parameter.
- Predicts a quasi-degenerate and 'gaugephobic' heavy Higgs sector.
- Using the alignment constraints, we predict lower limits on the heavy Higgs spectrum, which prevail the present limits in a wide range of parameter space.
- Depending on the SO(5)-breaking scale, we also obtain an upper limit on the heavy Higgs masses, which could be completely probed during LHC run-II.
- Initiated study on a new collider signal with four top quarks in the final state, which can become a valuable observational tool to directly probe the heavy Higgs sector in the alignment limit.

ps: BABAR Result

Improved measurements of the ratios

$$\mathcal{R}(D) \;=\; \frac{\mathrm{BR}(\overline{B} \to D\tau^- \overline{\nu}_\tau)}{\mathrm{BR}(\overline{B} \to D\ell^- \overline{\nu}_\ell)} \;, \qquad \mathcal{R}(D^*) \;=\; \frac{\mathrm{BR}(\overline{B} \to D^* \tau^- \overline{\nu}_\tau)}{\mathrm{BR}(\overline{B} \to D^* \ell^- \overline{\nu}_\ell)} \;,$$

Excess w.r.t. the SM predictions at 3.4σ. Charged Higgs interpretation?
 Disfavored in Type-II 2HDM, but by the same token, SM is also excluded !!

Symmetry Generators

Table 2

Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)₂-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T^0	D _{CP2}	-	0
4	$O(2) \times O(2)$	T^{3}, T^{0}	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	$O(3) \times O(2)$	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h, a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	$O(2) \times O(3)$	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

[Pilaftsis '12]

- T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
- T^0 is the hypercharge generator in *R*-space, which is equivalent to the electromagnetic generator $Q_{\rm em} = \frac{1}{2}\sigma^0 \otimes \sigma^0 \otimes \sigma^3 + K^0$ in Φ -space.
- Sp(4) contains the custodial symmetry group $SU(2)_C$.
- Three *independent* realizations of custodial symmetry induced by
 (i) K^{0,4,6}, (ii) K^{0,5,7}, (iii) K^{0,8,9}.

Symmetry Generators

Table 2

Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)+-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	0(2) × 0(2)	T^{3}, T^{0}	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	T ^{1,2,3} , T ⁰	-	T ^{1,2}	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	0(2) × 0(3)	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

[Pilaftsis '12]

- T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
- T^0 is the hypercharge generator in *R*-space, which is equivalent to the electromagnetic generator $Q_{\rm em} = \frac{1}{2}\sigma^0 \otimes \sigma^0 \otimes \sigma^3 + K^0$ in Φ -space.

Quark Yukawa Couplings

- By convention, choose $h_1^u = 0$. For Type-I (Type-II) 2HDM, $h_1^d(h_2^d) = 0$.
- Quark yukawa couplings w.r.t. the SM are given by

Coupling	Type-I	Type-II
$g_{ht\overline{t}}$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$
$g_{hbar{b}}$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$
$g_{Ht\overline{t}}$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$
$g_{Hbar{b}}$	$\sin lpha / \sin eta$	$\cos\alpha/\cos\beta$
$g_{at\overline{t}}$	$\cot \beta$	$\cot \beta$
$g_{abar{b}}$	$-\cot\beta$	$\tan eta$

g' Effect

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T ³ , T ⁰	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	0(2) × 0(3)	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	$T^{0,1,2,,9}$	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

Yukawa Coupling Effects

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D _{Z2}	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T ³ , T ⁰	-	T ³	1 (a)
5	$Z_2 \times [O(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h, a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	0(2) × 0(3)	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

Production of 4 tops in the SM

Production of 4 tops in BSM

