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isospin symmetry

among the questions left open by the
standard model there is the origin of flavour

the two lightest quarks, the up and the down,
have different masses and different electric
charges

nevertheless

md −mu
ΛQCD

� 1

(eu − ed)αem � 1

for these reasons the group of rotations in
this bidimensional (complex) “flavour” space
is a good and very useful approximate
symmetry of the real world



isospin symmetry

rotations in the bidimensional flavour space
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the two light quarks are into an SU(2) doublet and hadrons can be classified according to the representations of the
“angular momentum” algebra

from isospin symmetry combined with parity we know, for example, that an even number of pseudoscalar mesons cannot
scatter (trough QCD) into an odd number of pseudoscalar mesons,

K
0 −→ ππ−→ πππ| {z }

forbidden

〈ππ|H∆S=1
W |K0〉 =

8<: A0 e
iδ0

A2 e
iδ2

where the strong phases δ0 and δ2 coincide with the scattering phases

(un)explained experimental evidence A0 � A2, the so called ∆I = 1/2 rule
RBC & UKQCD arXiv:1212.1474

. . .



why isospin breaking?

V
CKM

=

0@ Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1A

except for the ones in the third row, CKM matrix elements can be extracted
by (semi)leptonic decay rates, according to

Vgf =
experiment

theory

Vgf



why isospin breaking?

Unitarity of the CKM matrix implies several relations among the different
couplings, three of these are the so-called unitarity triangles:

VudV
?
us + VcdV

?
cs + VtdV

?
ts = 0

VusV
?
ub + VcsV

?
cb + VtsV

?
tb = 0

VudV
?
ub + VcdV

?
cb + VtdV

?
tb = 0

the unitarity triangle is the scalar product of the d-column times the
b-column of the CKM matrix
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Figure 1-2. The rescaled Unitarity Triangle, all sides divided by .

The rescaled Unitarity Triangle (Fig. 1-2) is derived from (1.82) by (a) choosing a phase convention

such that is real, and (b) dividing the lengths of all sides by ; (a) aligns one side

of the triangle with the real axis, and (b) makes the length of this side 1. The form of the triangle

is unchanged. Two vertices of the rescaled Unitarity Triangle are thus fixed at (0,0) and (1,0). The

coordinates of the remaining vertex are denoted by . It is customary these days to express the

CKM-matrix in terms of four Wolfenstein parameters with playing

the role of an expansion parameter and representing the -violating phase [27]:

(1.83)

is small, and for each element in , the expansion parameter is actually . Hence it is sufficient

to keep only the first few terms in this expansion. The relation between the parameters of (1.78)

and (1.83) is given by

(1.84)

This specifies the higher order terms in (1.83).
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why isospin breaking?

we do have a lot of precise experimental measurements in the quark flavour sector of the standard model that, combined with
CKM unitarity (first row), allow us to measure hadronic matrix elements

M.Antonelli et al. Eur.Phys.J.C69 (2010)
G.Colangelo PoS LATTICE2012 (2012)8>>>><>>>>:

˛̨̨
VusFK
VudFπ

˛̨̨
= 0.2758(5)

˛̨̨
VusF

Kπ
+ (0)

˛̨̨
= 0.2163(5)

8>><>>:
|Vud|2 + |Vus|2 = 1

|Vud| = 0.97425(22)

where |Vud| comes by combining 20 super-allowed nuclear β-decays and |Vub| has been neglected because smaller than the
uncertainty on the other terms, combine to give

|Vus| = 0.22544(95)

F
Kπ
+ (0) = 0.9595(46)

FK

Fπ
= 1.1919(57)

Intro FLAG-2 Current status of the review Conclusions

Vus and Vud – figures
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lattice result for f+(0), Nf = 2 
lattice results for Nf = 2+1 combined
lattice result for fK/f

π
, Nf = 2

lattice results for Nf = 2 combined
unitarity
nuclear β decay

lattice QCD is still needed to postdict these quantities and, in case, to falsify the standard model



FK/Fπ & FKπ+ (0) summary from FLAG

concerning theoretical predictions, and lattice QCD in particular, these matrix elements are among the well known quantities
FALG Eur.Phys.J. C71 (2011)

G.Colangelo PoS LATTICE2012 (2012)

Intro FLAG-2 Current status of the review Conclusions

Analysis assuming CKM unitarity
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HPQCD/UKQCD 07

ETM 10D

RBC/UKQCD 10A
MILC 10

ETM 10E

ETM 10D
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Assuming unitarity lattice predicts |Vud | with the same precision
as super-allowed Fermi β-decays

F
Kπ
+ (0) = 0.956(8) ∼ 0.8%

FK

Fπ
= 1.193(5) ∼ 0.5%

to do better we should include effects that we have been neglecting up to now. . .



FK/Fπ & FKπ+ (q2) beyond the isospin limit

in practice, it is useful to divide the isospin breaking effects into strong and electromagnetic ones,

mu 6= md| {z }
QCD

eu 6= ed| {z }
QED

in the particular and (lucky) case of these observables, the correction to the isospin symmetric limit due to the difference of
the up and down quark masses (QCD) can be estimated in chiral perturbation theory,

8>>>>>><>>>>>>:

FKπ+ (0) = 0.956(8) ∼ 0.8%

0@ FK
+π0

+ (q2)

FK
0π−

+ (q2)
− 1

1A
QCD

= 0.029(4)

A. Kastner, H. Neufeld Eur.Phys.J.C57 (2008)

8>>>>><>>>>>:

FK
Fπ

= 1.193(5) ∼ 0.5%

„
F
K+/Fπ+
FK/Fπ

− 1

«
QCD

= −0.0022(6)

V. Cirigliano, H. Neufeld Phys.Lett. B700 (2011)

we need first principle lattice QCD calculations to avoid uncertainties coming from the effective theory

but the home message is: reducing the error on these quantities without taking into account isospin breaking is useless. . .
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the gauge configurations

β0 k0 (amud)0 (ams)0 L/a Nconf a0 (fm) Z0
P (MS, 2GeV )

3.80 0.164111 0.0080 0.0194 24 240 0.0977(31) 0.411(12)
0.0110 24 240

3.90 0.160856 0.0030 0.0177 32 150 0.0847(23) 0.437(07)
0.0040 32 150
0.0040 24 240
0.0064 24 240
0.0085 24 240
0.0100 24 240

4.05 0.157010 0.0030 0.0154 32 150 0.0671(16) 0.477(06)
0.0060 32 150
0.0080 32 150

4.20 0.154073 0.0020 0.0129 48 100 0.0536(12) 0.501(20)
0.0065 32 150

gauge configurations for this study have been taken from the nf = 2 gauge ensembles made publicly available by the
ETMC collaboration

caveat: the Twisted Mass discretization breaks isospin at finite lattice spacing

we have been working in a mixed-action setup by introducing O(a2) errors coming from violations of unitarity. . .



isospin breaking on the lattice

the calculation of QED isospin breaking effects on the lattice it has been done for the first time in
Duncan, Eichten, Thacker, Phys. Rev. Lett. 76 (1996)

QED is treated in the quenched approximation in its “non-compact” formulation

because the photons are massless and unconfined this approach may introduce large finite volume effects. . .

the calculation of isospin breaking effects on the lattice poses a theoretical problem

Z =

Z
DADUDψ e

−Se[A]−βSg [U]+Sf [A,U;mu,md]

=

Z
DADU e

−Se[A]−βSg [U]
det(Du[U,A] +mu) det(Dd[U,A] +md)| {z }

must be real and >0

if mu 6= md and eu 6= ed, this can be only achieved by recurring to non (ultra) local and, consequently, very expensive
fermion formulations or to reweighting

furthermore, the effect is very small and it can be extremely difficult to see it with limited statistical accuracy



our QCD isospin breaking on the lattice

our idea is to calculate QCD isospin corrections at first order in

md −mu
ΛQCD

∼ αem ∼ O(ε)

in order to calculate QED corrections to a given correlator O(x) we have to cope with

T 〈O(xi)〉 −→ T

Z
d
4
yd

4
z Dµν(y − z) 〈O(xi)J

µ
(y)J

ν
(z)〉

and solve the infrared problem associated with a proper definition of the finite volume lattice photon propagator

and solve the ultraviolet problem associated with the divergences coming from the contact interactions of the two
electromagnetic currents of the quarks. in the continuum one would get

J
µ

(x)Jµ(0) ∼ c1(x)1 +
X
f

c
f
m(x)mf ψ̄fψf + cg(x)GµνG

µν
+ · · ·

where the cfm coefficients correspond to the separate renormalization of the quark masses, cg to the renormalization of the
strong coupling constant and c1 to the vacuum polarization, all induced by QED



non-compact QED on the lattice

in order to perform combined QCD+QED lattice simulations one can use the non-compact formulation of QED:

SQED =
1

4

X
x;µ,ν

h
∇+
µAν(x)−∇+

ν Aµ(x)
i2

= −
1

4

X
x;µ,ν

n
Aν(x)∇−µ

h
∇+
µAν(x)−∇+

ν Aµ(x)
i
− Aµ(x)∇−ν

h
∇+
µAν(x)−∇+

ν Aµ(x)
io

by using a covariant gauge fixing, one gets:

∇−µ Aµ(x) = 0 −→ SQED =
1

2

X
x

Aµ(x)
h
−∇−ν ∇

+
ν

i
Aµ(x)

=
1

2

X
k

A
?
µ(k) [2 sin(kν/2)]

2
Aµ(k)

note that the zero momentum mode, the infrared problem, is not constrained by any “derivative” gauge fixing, and there is
a residual gauge ambiguity

∇−µ
ˆ
Aµ(x) + c

˜
= ∇−µ Aµ(x)



non-compact QED on the lattice: gauge invariance

by assuming that one is able to sample properly the QED gauge potential Aµ(x) (we shall discuss this point in the next few
slides), gauge invariance works as follows:

the QED links are defined by

Aµ(x) −→ Eµ(x) = e
−ieAµ(x)

QCD+QED covariant lattice derivatives are defined according to

ψ̄(x)D+
µ ψ(x) = ψ̄(x) Eµ(x) Uµ(x)ψ(x + µ)− ψ̄(x) ψ(x)

the “exact” gauge invariance is

ψ(x) −→ e
ieλ(x)

ψ(x)

ψ̄(x) −→ ψ̄(x)e
−ieλ(x)

Aµ(x) −→ Aµ(x) +∇+
µ λ(x)



non-compact QED on the lattice: the american’s way

in order to sample the QED gauge potential, the strategy followed by other groups is the following
. . .

MILC Collaboration, PoS LATTICE2008 (2008) 127

T.Blum et al. Phys. Rev. D82 (2010)

[BMW Collaboration] PoS LATTICE2010 (2010) 121

[T. Ishikawa et al.] Phys. Rev. Lett. 109 (2012)

choose periodic boundary conditions for the gauge potential,

Aµ(x + Lν) = Aµ(x) −→ kµ =
2πnµ

L
−→ SQED =

1

2

X
k 6=0

Aµ(k)
?

[2 sin(kν/2)]
2
Aµ(k)

the action is quadratic and diagonal in momentum space so, by excluding the zero momentum mode, Aµ(k) can be
obtained by an heat-bath algorithm (actually they choose a different gauge, diagonalize the action and perform a gaussian
sampling. . . ) and the gauge potential in coordinate space is obtained by (fast) fourier transform

it can be shown that the effect of this infrared regularization is a finite volume effect. classically:

SQED −→
1

2

X
x

Aµ(x)
h
−∇−ν ∇

+
ν

i
Aµ(x) +

1

L3

X
x

ξµAµ(x) −→ Aµ(k = 0) =
∂S

∂ξµ
= 0

at quantum level: this prescription does not affect short distance physics (no new divergences)

the prescription solves the “inconsistency” with the finite volume Gauss’s law because the following equation is valid for
k 6= 0 only:

∇−µ Fµν(x) = jν(x) −→ 0 =
X
~x

∇−i Ei(t, ~x) = e
X
~x

δ
3
(t, ~x) = 1



non-compact QED on the lattice: our approach

we want to deal with QED on the lattice at fixed order in the expansion with respect to α̂em

to this end, we need to expand the lattice action with respect to the electric charge

X
x

ψ̄(x) {D[U,E]−D[U, 1]}ψ(x) =

+
X
x,µ

eAµ(x) i

(
ψ̄(x)Uµ(x)

W − γµ

2
ψ(x + µ)− ψ̄(x + µ)U

†
µ(x)

W + γµ

2
ψ(x)

)

+
X
x,µ

e2

2
Aµ(x)Aµ(x)

(
ψ̄(x)Uµ(x)

W − γµ

2
ψ(x + µ) + ψ̄(x + µ)U

†
µ(x)

W + γµ

2
ψ(x)

)

+ . . .

=
X
x,µ

(
eAµ(x)V

µ
(x) +

e2

2
Aµ(x)Aµ(x)T

µ
(x) + . . .

)

the ”Wilson” contribution is W = {1, iγ5τ
3} in clover and twisted mass QCD respectively

note: tadpole currents Tµ(x) are required to have gauge invariance at order e2

note: the point split vector current is exactly conserved: ∇−µ V
µ(x) = 0



non-compact QED on the lattice: our approach

let us consider, for example, the following contribution to the mass splittings of the kaons:

− + disc. =
eseue

2

2

X
x,y

Dµν(x− y) T 〈0| s̄(t)γ5u(t)V
µ
s (x)V

ν
u (y) ū(0)γ5s(0) |0〉

where Dµν(x− y) is the propagator of the gauge potential Aµ: this means that we are also using the QED in its non-compact
lattice formulation. now, in order to properly define the lattice propagator of Aµ we must

fix the QED gauge; we have used

∇−µ Aµ(x) = 0 −→ SQED =
1

2

X
x

Aµ(x)
h
−∇−ν ∇

+
ν

i
Aµ(x) =

1

2

X
k

Aµ(k) [2 sin(kν/2)]
2
Aµ(k)

introduce the infrared regulated photon propagator,

P
⊥
φ(x) = φ(x)−

1

V

X
y

φ(y)

D
⊥
µν(x− y) =

"
δµν

−∇−ρ ∇
+
ρ

P
⊥
#

(x− y) =
X
k 6=0

eik(x−y)

[2 sin(kν/2)]2



non-compact QED on the lattice: our approach

we have decided to work directly in coordinate space, thus avoiding fourier transforms, by applying the following stochastic
technique

we extract a set of four independent real fields distributed according to a real Z2 distribution,

X
B

Bµ(x)Bν(y) = δµν δ(x− y)

for each field we solve numerically the equation

[−∇−ν ∇
+
ν ]Cµ[B; x] = P

⊥
Bµ(x) −→ Cµ[B; x] =

"
1

−∇−ν ∇
+
ν

P
⊥
#
Bµ(x)

=

"
P
⊥ 1

−∇−ν ∇
+
ν

P
⊥
#
Bµ(x)

=
X
z

D
⊥

(x− z)Bµ(z)

by using the properties of the Z2 noise we thus obtain

X
B

Bµ(y)Cν [B; x] = D
⊥

(x− z)
X
B

Bµ(y)Bν(z) = D
⊥
µν(x− y)



non-compact QED on the lattice: our approach

coming back to our example, we get

− =
eseue

2

2

X
x,y

D
⊥
µν(x− y) T 〈0| s̄(t)γ5u(t)V

µ
s (x)V

ν
u (y) ū(0)γ5s(0) |0〉

=
eseue

2

2

X
B

X
x,y

Bµ(y)Cν [B; x] T 〈0| s̄(t)γ5u(t)V
µ
s (x)V

ν
u (y) ū(0)γ5s(0) |0〉

the problem is thus reduced to the calculation of two sequential propagators

Df [U, 1]Ψ
f
B

(x) =
X
µ

Bµ(x)Γ
µ
V
Sf [U ; x]

Df [U, 1]Ψ
f
C

(x) =
X
µ

Cµ[B; x]Γ
µ
V
Sf [U ; x]

for different values of the Bµ(x) and Cµ[B; x] fields (we have used 3 electromagnetic stochastic sources per QCD gauge
configuration) and then calculate the corrected correlator according to

− = −
eseue

2

2

D
Tr
n

[Ψ
s
B ]
†
(t) Ψ

u
C(t)

o EB,U



non-compact QED on the lattice: our approach

− = −
eseue

2

2

D
Tr
n

[Ψ
s
B ]
†
(t) Ψ

u
C(t)

o EB,U

= −
eseue

2

2

*X
x,y

Bµ(x)Cν [B; y] Tr
n
γ5 Ss[U ; t− x]Γ

µ
V
Ss[U ; x] γ5 Sud[U ;−y]Γ

ν
V Sud[U ; y − t]

o+B,U

does it works?

R
exch
K (t) = ∼

∂
∂e2

 
G2
K

MK
e−tMK

!
G2
K

MK
e−tMK

=
R

ex
ch

K
(t
)

−1.25

−1

−0.75

−0.5

−0.25

0

t/a
8 10 12 14 16 18 20 22 24 26 28 30 32

well, from the numerical point of view it seems to work. ok, what about the physics?



the ultraviolet problem

on the lattice, the short distance expansion of two electromagnetic currents is

J
µ

(x)Jµ(0) + T
µ

(x) ∼ c1(x)1 +
X
f

c
f
k

(x)ψ̄f iγ5τ
3
ψf +

X
f

c
f
m(x)mf ψ̄fψf + cg(x)GµνG

µν
+ · · ·

on the left we have the (non Lorentz–invariant) tadpole contribution required for gauge invariance

on the right, with Wilson fermions, we have the linear divergent contributions associated with the electromagnetic shifts of
the critical masses of the quarks

our perturbative expansion is defined as follows

O(

~gz }| {
e
2
, gs,mu,md,ms, ku, kd, ks) = [O + ∆O] (0, g

0
s ,m

0
ud,m

0
ud,m

0
s, k0, k0, k0| {z }

~g0

)

∆O =

(
e2

2

∂2

∂e2
+

1

2

“
gs − g0

s

”2 ∂2

∂g2
s

+ (mf −m
0
f )

∂

∂mf
+ (kf − k0)

∂

∂kf

)
O(~g)

˛̨̨̨
˛
~g=~g0



matching QCD+QED with isosymmtric QCD

O(~g) = O(~g0) +

(
e2

2

∂2

∂e2
+

1

2

“
gs − g0

s

”2 ∂2

∂g2
s

+ (mf −m
0
f )

∂

∂mf
+ (kf − k0)

∂

∂kf

)
O(~g0)

the parameters ~g0 can eventually be fixed independently from ~g by performing “standard” QCD simulations, by neglecting
isospin breaking effects and by using external hadronic inputs to calibrate the isosymmetric lattice

on the other hand, when simulations of the full theory are performed, one can use the following matching condition

experiment −→ gi −→ ĝi(µ) = Zi(µ)gi −→ ĝ
0
i (µ

?
) = ĝi(µ

?
)

−→ g
0
i =

ĝ0
i (µ?)

Z0
i (µ?)

note that, once the critical masses have been adjusted the two theories are continuum–like and that a physical observable is
RGI invariant:

O(ĝi) = O
“
ĝ
0
i

”
+

8<: ê
2

2

∂2

∂ê2
+

1

2

 
ĝs −

Zgs

Z0
gs

ĝ
0
s

!2
∂2

∂ĝ2
s

+

0@m̂f − Zmf

Z0
mf

m̂
0
f

1A ∂

∂m̂f
+ ∆kf

∂

∂kf

9=;O(ĝ
0
i )

in other words, the counter–terms do araise because the renormalization constants (the bare parameters) of the two theories
are different



expansion of the lattice path–integral

let us consider the path–integral representation of a generic observable

O(~g) =

R
dAe
−SQED [A]

dU e
−βSQCD[U] Qnf

f=1
det (Df [U,E]) O[U,E]R

dAe
−SQED [A]

dU e
−βSQCD[U] Qnf

f=1
det (Df [U,E])

=

R
dAe
−SQED [A]

dU e
−β0SQCD[U] Qnf

f=1
det (Df [U, 1]) R[U,E] O[U,E]R

dAe
−SQED [A]

dU e
−β0SQCD[U] Qnf

f=1
det (Df [U, 1]) R[U,E]

=
〈 R[U,E] O[U,E] 〉
〈 R[U,E] 〉

, R[U,E] = e
−(β−β0)SQCD [U]

nfY
f=1

det
`
Df [U,E]

´
det

`
Df [U, 1]

´
| {z }

rf [U,E]

the corrections are obtained by applying the differential operator ∆ to the previous expression

∆O = 〈 ∆O[U, 1] 〉 + {〈 ∆R[U, 1] O[U, 1] 〉 − 〈 ∆R[U, 1] 〉〈 O[U, 1] 〉}| {z }
VP[O]



an example

by using the explicit expression of the lattice Dirac operator

D
±
f [U,E]ψ(x) = (mf ± iγ5kf )ψ(x) −

X
µ

∓iγ5 − γµ
2

Uµ(x)[Eµ(x)]
ef ψ(x + µ)

−
X
µ

∓iγ5 + γµ

2
U
†
µ(x− µ)[E

†
µ(x− µ)]

ef ψ(x− µ)

together with the following formulae and the associated graphical notation

∂Sf

∂e
= −Sf

∂Df

∂e
Sf = ef

1

2

∂2Sf

∂e2
= Sf

∂Df

∂e
Sf

∂Df

∂e
Sf −

1

2
Sf
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an example

by using the explicit expression of the lattice Dirac operator

D
±
f [U,E]ψ(x) = (mf ± iγ5kf )ψ(x) −

X
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∓iγ5 − γµ
2
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together with the following formulae and the associated graphical notation
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an example

the corrections to the quark propagator in a fixed QCD gauge are given by

∆
±

= (ef e)
2

+ (ef e)
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an example

the corrections to the quark propagator in a fixed QCD gauge are given by

∆
±

= (ef e)
2

+ (ef e)
2 ∓∆kf

− [mf −m
0
f ] − e2ef

X
f1

ef1

+ [isosym. vac. pol.]

all isosymmetric vacuum polarization effects will cancel in the calculation of genuine isospin breaking effects, i.e.
M
π+ −Mπ0 and M

K+ −MK0 in our case



hadron masses

let’s consider a two-point correlator in the full theory (mu 6= md and eq 6= 0)

CHH (t;~g) = 〈 OH (t) O†
H

(0) 〉~g −→ e
MH =

CHH (t− 1;~g)

CHH (t;~g)
+ non leading exps.

where OH is an interpolating operator having the quantum numbers of a given hadron H

if H is a charged particle, the correlator CHH (t;~g) is not QED gauge invariant. for this reason it is not possible, in
general, to extract physical informations directly from the residues of the different poles

on the other hand, the mass of the hadron is gauge invariant and finite in the continuum limit, provided that the parameters
of the actions have been properly renormalized. it follows that, at any given order in a perturbative expansion with respect
to any of the parameters of the action, the ratio CHH (t− 1;~g)/CHH (t;~g) is both gauge and renormalization group
(RGI) invariant

by applying the differential operator ∆ to full theory correlators, we shall find expressions of the form

CHH (t;~g) = CHH (t;~g
0
)

"
1 +

∆CHH (t;~g0)

CHH (t;~g0)
+ . . .

#

MH −M
0
H = −∂t

∆CHH (t;~g0)

CHH (t;~g0)
+ . . .

where we have defined ∂tf(t) = f(t)− f(t− 1)



the physics: pions mass difference

∆M
π0 = −

e2u + e2d

2
e
2
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2
e
2
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− (e
2
u + e

2
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2
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+ (eu + ed)e
2 X
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ef∂t − (∆ku + ∆kd)∂t + [isosym. vac. pol.]

in practice, our mixed action approach consists in neglecting all the contributions that are not present in the continuum and that

are cutoff effects. to the (non– unitary) lattice theory it can be given a local formulation by using a suitable number of valence

fields



the physics: pions mass difference

by expanding the two-point function of an interpolating operator having the quantum numbers of the charged pions, we get

∆M
π+ = − euede
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+ 2[mud −m
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the physics: pions mass difference
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in order to take into account the effect of periodic boundary conditions along the time direction
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the physics: pions mass difference VERY PRELIMINARY
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the pions mass difference at first order is a very “clean” theoretical prediction!

M
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−

, e
2

= ê
2

= 4πα̂em =
4π

137

the neglected contribution vanishes in the chiral limit, it is O(α̂emm̂ud).



the physics: pions mass difference

our data need to be extrapolated with respect to the simulated quark masses, to the continuum and to the infinite volume
limits

chiral formulae and finite volume effects have been calculated in chiral perturbation theory coupled to electromagnetism by
using the same infrared regularization of our work (removal of the zero momentum mode)

M.Hayakawa, S.Uno Prog.Theor.Phys. 120 (2008)

h
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2
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«

finite volume effects are predicted to be large. these are not peculiar of our method, QED is a long–range interaction and
any lattice calculation comes with power–law fve. . .



the physics: pions mass difference VERY PRELIMINARY
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we have considered different fitting functions. in particular

f
π
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χπ
L

[C] + Aπ [a
0
]
2

f
π
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2

f
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π
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2

extrapolated results are compatible and all the fits have χ2/dof ∼ 1

fitted finite volume effects are much smaller than the χpt prediction

lighter pions and larger volumes will be required in order to make a definite statement concerning this point. . .



the physics: kaons mass difference

by expanding the two-point functions of the kaons we get

M
K+ −MK0 = −2∆mud∂t − (∆ku −∆kd)∂t + (e

2
u − e

2
d)e

2
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− (e
2
u − e

2
d)e

2
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+

+ (eu − ed)e
2X
f

ef∂t

in order to use this formula for physical applications we first need to discuss the numerical determination of the
electromagnetic critical masses ∆ku and ∆kd

afterwards, the kaons mass difference can be used in order to extract ∆mud and/or to define a renormalization
prescription in order to separate QCD from QED isospin breaking corrections

the OZI violating “sea–tadpole” contributions will be neglected in the following by relying on what we call the
electroquenched approximation



tuning critical masses

according to Dashen’s theorem, in the SU(3) chiral limit, also in presence of electromagnetic interactions, the neutral pion
and the neutral kaons are Goldstone’s bosons

lim
m̂f 7→0

M
π0 = lim

m̂f 7→0
M
K0 = 0

by using the formulae for the corrections to M
π0 and to M

K0 in the electroquenched approximation and by noting that
for the exact vector symmetries of the chiral theory ∆kd = ∆ks, we get
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tuning critical masses
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an alternative determination of the electromagnetic critical masses, that does not require chiral extrapolations, can be
obtained by using the following Ward identity of the twisted theory

〈 ∇µ
h
ψ̄fγ

µ
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1
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2
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by working as in the case of the pions and kaons masses and by expanding the previous relation, we get
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e2f

2
e
2

∇0
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the physics: kaons mass difference
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the physics: kaons mass difference
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the physics: kaons mass difference

by using the numerical determinations of the critical masses counter terms, the formulae for M
K+ −MK0 can be used

in order to separate QCD from QED isospin breaking contributions

M
K+ −MK0 = −2∆mud∂t − (∆ku −∆kd)∂t + (e
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the physics: kaons mass difference

to this end we need to observe that the bare parameters of the full theory ∆mud and mud mix under renormalization

∆mud =
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this happens because the up and the down have different electric charge and
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the mixing does not happen in isosymmetric QCD and we have

1

Z0
ud

= Z
0
P

1

Z0
ud

= 0 −→ ∆mud = Z
0
P∆m̂ud +

m̂ud

Zud

note that by neglecting all the contributions of O(αem∆mud) also the divergent contributions of this order appearing in
the ∆mud formula above have to be neglected



the physics: kaons mass difference

QCD and QED isospin breaking corrections to M
K+ −MK0 can be now conveniently separated according to
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the physics: kaons mass difference VERY PRELIMINARY
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in what we call the electroquenched approximation, we have computed the Dashen’s theorem breaking parameter

εγ(µ) =

h
M2
K+ −M

2
K0
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(µ)

M2
π+ −M

2
π0

− 1 , εγ ∼ 0.7 from FLAG

in our previous work on the calculation of QCD isospin breaking corrections we had used εγ = 0.7(5) to calculated the
QCD corrections to the K`2 decay rate



the physics: kaons mass difference VERY PRELIMINARY
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we have considered different fitting functions. in particular
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all the fits have χ2/dof ∼ 1

the data are flat within the quoted errors and we have not attempted a complicated SU(3) chiral extrapolation. we get
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summary of the results VERY PRELIMINARY
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outlooks

we have a method to calculate both QED and QCD leading isospin breaking effects on the lattice, and in general to handle
with QED+QCD lattice simulations

we have shown that the ultraviolet divergences associated with a double insertion of the quarks electromagnetic currents
can be removed, also with Wilson quarks, by a redefinition of the parameters of the full theory with respect to the
corresponding isosymmetric quantities

we have provided a theoretically well defined prescription in order to separate QED from QCD isospin breaking corrections
to hadron masses

first results are encouraging, though. . .

our results are affected by systematic errors: particularly important are the ones associated with chiral extrapolations and
finite volume effects

finite volume effects may be large! this is not because of our method, this is physics: QED is a long–range interaction!

more work required for electromagnetic corrections to decay rates. . .


