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1. INTRODUCTION

Sensor networks have recently generated a great deal of research interest within
the computer and physical sciences, and their use for the scientific monitoring of
remote and hostile environments is increasingly common-place. While early sensor
networks were a simple evolution of existing automated data loggers that collected
data for later off-line scientific analysis, more recent sensor networks now make
their data available in real-time through the internet, and increasingly perform
some form of real-time data processing or aggregation to provide useful summary
information to users [Hart and Martinez 2006].

Providing real-time access to sensor data in this way presents many novel chal-
lenges; not least the need for self-describing data formats, and standard protocols
such that the existence and capabilities of sensors can be advertised to poten-
tial users. However, more significantly for us, many of the information process-
ing tasks that would previously have been performed off-line by the expert owner
or single user of an environmental sensor network (such as detecting faulty sen-
sors, performing ‘data cleaning’ to remove erroneous readings, fusing noisy mea-
surements from several sensors, and deciding how frequently data should be col-
lected), must now be performed autonomously in real-time. Furthermore, since
such information processing is likely to be performed within centralised sensor
repositories — of which Weather Underground (http://www.wunderground. com,
pachube (http://www.pachube.com/) and Microsoft Research’s SensorMap (http:
//atom.research.microsoft.com/sensormap/) are embryonic examples — and
will be applied to open sensor networks where additional sensors may be deployed
at any time, and existing sensors may be removed, repositioned or updated after de-
ployment (such as the rooftop weather sensors within the Weather Underground),
these information processing tasks may have to be performed with only limited
knowledge of the precise location, reliability, and accuracy of each sensor.

Now, many of the information processing tasks described above have previously
been tackled by applying principled Bayesian methodologies from the academic
literature of geospatial statistics and machine learning: specifically, kriging [Cressie
1991] and Gaussian processes [Rasmussen and Williams 2006]. However, due to
the computational complexity of these approaches, to date they have largely been
used off-line in order to analyse and re-design existing sensor networks (e.g. to
reduce maintenance costs by removing the least informative sensors from an existing
sensor network [Fuentes et al. 2007], or to find the optimum placement of a small
number of sensors, after a trial deployment of a larger number has collected data
indicating their spatial correlation [Krause et al. 2006]). Alternatively, they have
been applied to single sensors and have ignored the correlations that exist between
different sensors within the network [Kho et al. 2009; Padhy et al. 2010]. Thus,
there is a clear need for more computationally efficient algorithms, in order that
this information processing can be performed at scale in real-time.

Against this background, this paper describes our work developing just such an
algorithm. More specifically, we present a novel iterative formulation of a multi-
output Gaussian process (GP) that uses a computationally efficient implementation
of Bayesian Monte Carlo to marginalise hyperparameters, efficiently re-uses previ-
ous computations by following an online update procedure as new data sequentially
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arrives, and uses a principled ‘windowing’ of data in order to maintain a reasonably
sized data set. We use this GP to build a probabilistic model of the environmental
variables being measured by sensors within the network, that is tolerant to data
that may be missing, delayed, censored and/or correlated. This model allows us to
then perform information processing tasks including: modelling the accuracy of the
sensor readings, predicting the value of missing sensor readings, predicting how the
monitored environmental variables will evolve in the near future, and performing
active sampling by deciding when and from which sensor to acquire readings. We
validate our approach using data collected from three networks of weather sensors
and show that it yields better inference performance than both conventional inde-
pendent single-output Gaussian processes, that model each sensor independently,
and the Kalman filter. Finally, we analyse the computational speed of our algo-
rithm. We show that our formalism efficiently re-uses previous computations by
following an online update procedure as new data sequentially arrives, and this re-
sults in a four-fold increase in computational speed in the largest cases considered.
Furthermore, it enables all of the information processing tasks described in this
paper to be performed in real-time.

The remainder of this paper is organised as follows: Section 2 describes the infor-
mation processing problem that we face. Section 3 presents our Gaussian process
formulation, and Section 4 describes the two sensor networks used to validate it.
In Section 5 we present experimental results using data from these networks, and
in Section 6 we present results on the computational cost of our algorithm. Finally,
related work is discussed in Section 7, and we conclude in Section 8.

2. THE INFORMATION PROCESSING PROBLEM

As discussed above, we require that our algorithm be able to autonomously perform
data acquisition and information processing despite having only limited specific
knowledge of each of the sensors in its local neighbourhood (e.g. their precise loca-
tion, reliability, and accuracy). To this end, we require that it explicitly represents:

(1) The uncertainty in the estimated values of environmental variables being mea-
sured, noting that sensor readings will always incorporate some degree of mea-
surement noise.

(2) The correlations or delays that exist between sensor readings; sensors that are
close to one another, or in similar environments, will tend to make similar
readings, while many physical processes involving moving fields (such as the
movement of weather fronts) will induce delays between sensors.

We then require that it uses this representation in order to:

(1) Perform regression and prediction of environmental variables; that is, interpo-
late between sensor readings to predict variables at missing sensors (i.e. sensors
that have failed or are unavailable through network outages), and perform short
term prediction in order to support decision making.

(2) Perform efficient active sampling by selecting when to take a reading, and which
sensor to read from, such that the minimum number of sensor readings are
used to maintain the estimated uncertainty in environmental variables below
a specified threshold (or similarly, to minimise uncertainty given a constrained
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number of sensor readings). Such constraints may reflect the computational
limitations of the processor on which the algorithm is running, or alternatively,
where the algorithm is actually controlling the sensors within the network, it
may reflect the constrained power consumption of the sensors themselves.

More specifically, the problem that we face can be cast as a multivariate regres-
sion and decision problem in which we have [ = 1,..., L environmental variables
x; € R of interest (such as air temperature, wind speed or direction specified at
different sensor locations). We assume a set of N potentially noisy sensor readings,
{ [[ll, t1], zl] e, [[IN, tn], zN] }, in which we, for example, observe the value z; for
the {11 variable at time t1, whose true unknown value is y;. Where convenient, we
may group the inputs as = [I,¢]. Note that we do not require that all the variables
are observed at the same time, nor do we impose any discretisation of our obser-
vations into regularly spaced time steps. We define our vector of observations as
zq £ [21,...,2n] of variables labelled by Iy £ [I,...,Ix] at times t4 £ [t1,...,tN].
Given this data, we are interested in inferring the vector of values y, for any other
vector of variables labelled by I, at times t,.

3. GAUSSIAN PROCESSES

Multivariate regression problems of the form described above are increasingly be-
ing addressed using Gaussian processes (GPs). These represent a powerful way to
perform Bayesian inference about functions; we consider our environmental vari-
ables as just such a function [Rasmussen and Williams 2006]. This function takes
as inputs the variable label and time pair z and produces as output the variable’s
value y. In this work, we will assume that our inputs are always known (e.g. our
data is time-stamped), and will incorporate them into our background knowledge,
or context, I. A GP is then a generalised multivariate Gaussian prior distribution
over the (potentially infinite number of) outputs of this function:

p(y | m, K, I)2N(y;p, K)

1 1 Tyr—1
\/WGXP< 5 (W —m) K (y u)) :

It is specified by prior mean and covariance functions, which generate p and K. The
multivariate Gaussian distribution is qualified for this role due to the fact that both
its marginal probabilities and conditional probabilities are themselves Gaussian.
This allows us to produce analytic posterior distributions for outputs of interest,
conditioned on whatever sensor readings have been observed. Furthermore, this
posterior distribution will have both a predictive mean and a variance to explicitly
represent our uncertainty.

While the fundamental theory of GPs is well established (see Rasmussen and
Williams [2006] for example), there is much scope for the development of computa-
tionally efficient implementations especially for applications such as sensor networks
which involve large numbers of sensors collecting large quantities of timestamped
data. To this end, in this work we present a novel on-line formalism of a multi-
dimensional GP that allows us to model the correlations between sensor readings,
and to update this model on-line as new observations are sequentially available.
In the next sections we describe the covariance functions that we use to represent

>
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correlations and delays between sensor readings, the Bayesian Monte Carlo method
that we use to marginalise the hyperparameters of these covariance functions, and
how we efficiently update the model as new data is received, by reusing the results
of previous computations, and applying a principled ‘windowing’ of our data series.

3.1 Mean and Covariance Functions

The prior mean of a GP represents whatever we expect for our function before seeing
any data. Throughout this paper, we will take this as a function constant in time
for each sensor, such that u([l,t]) = . The covariance function of a GP specifies
the correlation between any pair of outputs. This can then be used to generate a
covariance matrix over our set of observations and predictants. Fortunately, there
exist a wide variety of functions that can serve in this purpose [Abrahamsen 1997;
Stein 2005], which can then be combined and modified in a further multitude of
ways. This gives us a great deal of flexibility in our modelling of functions, with
covariance functions available to model periodicity, delay, noise and long-term drifts.

Examples of covariance functions are given by the Matérn class [Rasmussen and
Williams 2006], given by

Kten(t, '3 by w, 1) 2 12 il(;; (@ r>yﬁu <\/ﬂ r) (1)

where r = ‘77’, v > 0 is a smoothness hyperparameter (larger v implies smoother

functions) and £, is the modified Bessel function. Fortunately, (1) simplifies for
half-integer v, to give, for the example of v = 5/2

2
Kion (£t hy w, v = 5/2) £ ° (1 +VBr+ 53) ep (—Vir) . (@

and its modification for periodic signals

512
err-Mtn(tatl; h7 w, V= 5/2) = h2 (1 + \/nger + ger) exp (_\/grper) s (3)

t—t’

where 7per = sinm T‘ This modification of r to accommodate periodicity is

readily made for other covariance functions.

There are many ways to construct a covariance over a multi-dimensional input
space, such as our two-dimensional input space x = [l,t]. We will typically exploit
the fact that a product of covariances is a covariance in its own right, and write

K([1,1], [, ¢)) = Ki(t,t') Ka(L, 1)

taking independent covariance terms over time and sensor label. If the number of
sensors is not too large, we can arbitrarily represent the covariance matrix K) over
sensor labels using the spherical decomposition [Pinheiro and Bates 1996]. This
allows us to arbitrarily represent any possible covariance over sensor labels. For a
covariance matrix W, we write

W =S diag(r). (4)
Here S is an upper triangular matrix, whose nth column contains the spherical
coordinates in R™ of a point on the hypersphere S*~!, followed by the requisite
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number of zeros. As an example, S for a four dimensional space is

1 cosfy cosby cos 0y

0 sinf; sinfy cosf3 sinf, cosOs

00 sin @, sinf3 sin 6y sin f5 cos g
00 0 sin 04 sin 05 sin Og

S = (5)

This form ensures that STS has ones across its diagonal and hence all other en-
tries may be thought of as akin to correlation coefficients, lying between —1 and
1. Meanwhile, 7 is a vector of the scales for each dimension. If W is the co-
variance matrix parameterising the Mahalanobis distance, 7 represents a vector
of input scales for each input, and the off-diagonal elements of STS express the
correlation amongst inputs. If instead we have used W as a parameterisation of
K1, ..., L],[1, ..., L]), T gives a vector of output scales corresponding to the
different values [ = [1, ..., L]. STS gives the correlation coefficients for each pair
of values I might take.

These intuitive connections provide the motivation for the use of this parame-
terisation. Finally, note that the total number of hyperparameters required by the
spherical parameterisation is % n (n+ 1) if the side length of W is n. Note that this
is the same number as would be required to parameterise the non-zero elements of
an upper triangular Cholesky factor R = chol W directly. The spherical parametri-
sation hence requires a large number of hyperparameters, but allows us to express
any possible covariance matrix.

Finally, to represent measurement noise, we further extend the covariance func-
tion to

V(LA 1) = K(L 4, [, ) + o 6((1, 8] = 1, ¢])

where §(—) is the Kronecker delta and o2 represents the variance of additive Gaus-
sian noise.

The flexibility of our model comes at the cost of the introduction of a number
of hyperparameters, which we collectively denote as ¢. These include correlation
hyperparameters, along with others such as the periods and amplitudes of each
covariance term (i.e. w and h) and the noise deviation o. The constant prior
means f[1,..., M are also included as additional hyperparameters. Taking these
hyperparameters as given and using the properties of the Gaussian distribution, we
are able to write our predictive equations as

p(iB* | Ya ¢a I) = N(w*’m*vc*) ) (6)

where, collecting our inputs as x, = [l,,t,] and x4 = [lg4, t4], we have:
m. = p(@.; ) + K@, 24;0)V(@a, 2a;6) "' (ya — w(za; ) (7)
C. =K(z., z:;9) — K(@s, 245 9) V (2, 2a;9) T K(2a, 243 9) - (8)

For notational convenience, we will often drop the dependence upon ¢ from our
covariance and mean functions.
3.2 Marginalisation

Of course, it is rare that we can be certain a priori about the values of our hyperpa-
rameters. One common approach to dealing with this uncertainty is to explore the
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possible space of hyperparameters (using a local search method such as gradient
ascent) in order to select the set that exhibit the greatest log likelihood [Rasmussen
and Williams 2006]. However, this approach fails to represent the uncertainty in the
value of these hyperparameters, and thus, it fails to represent the true uncertainty
in the final predictions of the environmental variables beings measured.

To correctly represent this uncertainty we must marginalise over ¢, and thus,
rather than equation (6), we must consider

P _fdd)p(y*|Zd7¢71)p(zd|¢,-[)p((j)|[)
Py, [z l) = [dép(zal d.I)p(o]1) ‘

Unfortunately, both our likelihood p( z4 | ¢, I) and predictions p(y, | 24, ¢, I ) ex-
hibit non-trivial dependence upon ¢ and so our integrals are non-analytic. As such,
we resort to quadrature, which inevitably involves evaluating the two quantities

q((b) ép(y* | Zd, ¢7 I)
r(¢) £p(zal . 1)

at a set of sample points ¢, = {¢1,...,¢,}, giving g, = q(¢,) and 5 = 7(,).
Of course, this evaluation is a computationally expensive operation. Defining the
vector of all possible function inputs as ¢, we clearly can’t afford to evaluate g =
q(¢) or r = r(¢). Note that the more complex our model, and hence the greater
the number of hyperparameters, the higher the dimension of the hyperparameter
space we must sample in. As such, the complexity of models we can practically
consider is limited by the curse of dimensionality. We can view our sparse sampling
as introducing a form of uncertainty about the functions ¢ and r, which we can
again address using Bayesian probability theory.

To this end, we apply Bayesian Monte Carlo, and thus, assign further GP priors
to ¢ and r [Rasmussen and Ghahramani 2003]. This choice is motivated by the fact
that variables over which we have a multivariate Gaussian distribution are joint
Gaussian with any projections of those variables. As such, given that integration
is a projection, we can use our computed samples g, in order to perform Gaussian
process regression about the value of integrals over ¢(¢), and similarly for r. Note
that the quantity we wish to perform inference about,

A _ fd¢* ‘I((b*) T(¢*)p( b« | I)
e E O AT CA PR

possesses richer structure than that previously considered using Bayesian Monte
Carlo techniques. In our case, r(¢) appears in both our numerator and denominator
integrals, introducing correlations between the values we estimate for them. The
correlation structure of this system is illustrated in figure 1.

In considering any problem of inference, we need to be clear about both what
information we have and which uncertain variables we are interested in. In our case,
both function values, g, and r,, and their locations, ¢, represent valuable pieces
of knowledge?. As with our convention above, we will take knowledge of sample

9)

(10)

(11)

2As discussed by O’Hagan [1987], traditional, frequentist Monte Carlo effectively ignores the
information content of ¢, leading to several unsatisfactory features.
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locations ¢, to be implicit within /. We respectively define m@ and m(") as the
means for g and  conditioned on g, and r, from (7), C") and C(") the similarly
conditional covariances from (8). The ultimate quantity of our interest is then

p(y* | qs7 Ts, 2d, I)
=///p<y*\q, roza 1) (% | @ 7, T) p(q | qs I) p(r | 7o, T) dpdgdr

= // ¢6<¢— fﬁj;q;T;Z();qﬁ |I§)> N(q;m(q),C(Q)) N(r;m(r),C(T)> dy dg dr
_ [dd.m@ r.p(¢, | 1)
fd¢*7“*p(¢* | 1)

Here, unfortunately, our integration over r becomes nonanalytic. However, we can
employ a maximum a posteriori approximation by assuming

N(fr; m"), C(r)) ~ 6(7“ - m(r)) .

Essentially, we assume that our uncertainty in the likelihood function is small and
trust that our more correct treatment of the uncertainty in the prediction function
q is sufficient. Given that we are likely to be uncertain about r(¢) at exactly the
same ¢ we are uncertain about ¢(¢), those points far removed from our samples ¢,
this approximation is not unreasonable. Before we can state our consequent results,
to each of our hyperparameters we assign a Gaussian prior distribution (or if our
hyperparameter is restricted to the positive reals, we instead assign a Gaussian
distribution to its log) given by

p(é | 1) & N(g;v,ATA) (13)

Note that the intuitive spherical parameterisation (5) assists with the elicitation of
priors over its hyperparameters. We then assign a squared erponential covariance
function for the GP over both ¢ and r given by

N(r;m("),C(")) dr. (12)

K(¢,¢') £ N(¢; ¢/, w'w) . (14)
Finally, using the further definition for i, j € Z, that
NN o1 [v] [NTA+wTw ATA
ms(l,]) - N<|:¢]:| ) |:V:| ) |: )\T)\ )\T)\+WTW ) (15)
our approximation gives us

where the weights of this linear combination are

2 K(¢)8’d)5)_1m5 K(¢sv¢s)_1 Ts
13‘,1 K(¢37 ¢s)_1 sjts K(¢sa d)s)_l Ts ’

and 1,; is a vector containing only ones of dimensions equal to q,. With a GP
on p(y, | ¢, I), each ¢; = p(y, | z4, @i, I) will be a slightly different Gaussian.
Hence we effectively approximate p(y, | z4,) as a Gaussian (process) mixture;
Bayesian Monte Carlo returns a weighted sum of our predictions evaluated at a

o (17)
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4

Fig. 1. Bayesian network for marginalising hyperparameters using Bayesian Monte Carlo. Shaded
nodes are known and double-circled nodes are deterministic given all their parents. All Q nodes
are correlated with one another, as are all R nodes, and the context I is correlated with all nodes.

sample set of hyperparameters. The assignment of these weights is informed by
the best use of all pertinent information. As such, it avoids the risk of overfitting
that occurs when applying a less principled technique such as maximum likelihood
[MacKay 2002].

3.3 Censored Observations

In the work above, we have assumed that observations of our variables of interest
were corrupted by simple Gaussian noise. However, in many contexts, we instead
observe censored observations. That is, we might observe that a variable was above
or below certain thresholds, but no more. Examples are rich within the weather
sensor networks considered. Float sensors are prone to becoming lodged on sen-
sor posts, reporting only that the water level is below that at which it is stuck.
Conversely, wind sensors may reach their maximum reading in very strong winds,
reporting that the wind is greater than this limit, but providing no more informa-
tion. Furthermore, readings are often rounded to the nearest integer, meaning that
if we observe a reading of z, we can say only that the true value was between x —0.5
and = + 0.5. We can readily extend our inference framework to allow for such a
noise model.

More precisely, we assume that we actually observe bounds b. that constrain
Gaussian-noise corrupted versions z. of the underlying variables of interest y, at
x.. This framework allows for imprecise censored observations. Note that the noise
variance for censored observations may differ from the noise variance associated
with other observations. Conditioned on a combination of censored and un-censored
observations, the distribution for our variables of interest is

p(y* | Zd,bc,.[) =
fd¢fbcdch(y* ‘ Zdazca¢a1)p(zc | Zdvd)a‘[)p(zd | ¢,I)p(¢)|‘[)
fd¢fbcdch(zc | Zd»¢vj)p(zd | ¢7I)p(¢ ‘ I)

While we cannot determine this full, non-Gaussian distribution easily, we can de-
termine the analytic forms for its mean and covariance. We use the abbreviations
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Mg, 2 m(z.|zq, ¢, 1) and Cela,6 £ C(z.|za, ¢, I). To reflect the influence of our
censored observations, our likelihoods become

p( Zd, bc ‘ ¢7 I) = N(Zd; m(zd‘qsv-[) 7C(zd|¢7 I))/ dzCN(zc; med,¢, Cc\d,rj)) )
bc
giving the new weights over hyperparameter samples p(?. We can then write our
predictive mean as

m(y* | Zd, bC7 I) = Z pz('Cd) <N(w*a ¢l) + K(w*? [:Bm wd]7 ¢Z)

i€s
fbc dz. z. N(Zc;mu\d,(bivcu\d,q&i) _ e
V([:Bw .’Bd], [mw md]v d)i)il [ fbc dz. N(zc;mc\da‘i’wcc\dv%) u(ym ¢Z) ]) )

zq — p(xd; ¢i)
noting that a censored observation is intuitively treated as an uncensored observa-
tion equal to the conditional mean of the GP over the bounded region. We have
also the predictive covariance

Clyar |2, be 1) = Y ol (K@, i 1) -

K(:B*, [m67 wd]? ¢Z)V<[w67 wd]> [3367 wd}; ¢i)_1K([a"C> (L'd], Y (bl)) :

We now have the problem of determining the integrals

/b dz, N(zd Me|d, g Cc\d,q&) and /b dz. z. N(zc; Meid,ps Cc|d,¢) )
which are non-analytic. With only a single censored observation, we can use stan-
dard functions for such integrals. Assuming that our censored observations are
independent of one another (conditioned on the other observations z,4) would also
allow us the use of such results, but is usually an unreasonable approximation. For-
tunately, there also exists an efficient Monte Carlo algorithm [Genz 1992] for the
purpose of resolving such integrals. It is this algorithm that we will choose for the
appropriate empirical tests to follow.

3.4 Efficient Implementation

Now the implementation of equations (7) and (8) involves the inverse of a matrix,
and the most stable way to implement this is through the use of the Cholesky
decomposition, R(xq, z4), of V(xg, x4), rather than inverting the matrix directly.
Performing this Cholesky decomposition represents the most computationally ex-
pensive operation we must perform; its cost scaling as O(N?) in the number of data
points N. However, as discussed earlier, we do not intend to use our GP with a
fixed set of data, but rather, within an on-line algorithm that receives new obser-
vations over time. As such, we must be able to iteratively update our predictions
in as little time as possible. Fortunately, we can do so by exploiting the special
structure of our problem. When we receive new data, our V matrix is changed only
in the addition of a few new rows and columns. Hence most of the work that went
into computing its Cholesky decomposition at the last iteration can be recycled
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to produce the new Cholesky decomposition (see Appendix A.1 for details of this
operation). Another problematic calculation required by (7) and (8) is the compu-
tation of the data-dependent term R(zg, z4) ! (y, — p(xq)), in which y, — p(zq)
is also only changing due to the addition of new rows. As such, efficient updating
rules are also available for this term (see Appendix A.2). Finally, we are also able
to perform an efficient update to the likelihood® of our hyperparameters, as per
Appendix A.3. As per (17), the updated sample likelihoods 7, then give rise to
updated weights p over our hyperparameter samples. With these efficient rules, we
are able to reduce the overall cost of an update from O(N?3) to O(N?).

However, we can further increase the efficiency of our updates by making a judi-
cious assumption. In particular, experience shows that our GP requires only a very
small number of recent observations in order to produce good estimates. Indeed,
most covariance functions have very light tails such that only points within a few
multiples of the time scale are at all relevant to the point of interest. Hence we seek
sensible ways of discarding information once it has been rendered ‘stale’, to reduce
both memory usage and computational requirements.

One pre-eminently reasonable measure of the value of data is the uncertainty
we still possess after learning it. In particular, we are interested in how uncertain
we are about x,; as given by the covariance of our Gaussian mixture equation
(16). Our approach is thus to drop our oldest data points (those which our covari-
ances typically deem least relevant to the current predictant) until this uncertainty
exceeds some predetermined threshold.

Just as we were able to efficiently update our Cholesky factor upon the receipt
of new data, so we can downdate to remove data (see Appendix A.4 for the details
of this operation). Unfortunately, there is no such efficient downdate for the data-
dependent term R(xq,xq) '(y,; — m(zy)). Naturally there is no computational
benefit here to be gained in downdating our hyperparameter likelihoods, whose
dimension remains constant regardless of the size of the dataset. Hence our likeli-
hoods are never downdated, and we retain all knowledge of otherwise dropped data
that is pertinent to our marginalisation of hyperparameters.

Our proposal allows us to rapidly remove unwanted data, compute our uncer-
tainty about y,, and then repeat as required; the GP will retain only as much data
as necessary to achieve a pre-specified degree of accuracy. This allows a principled
way of ‘windowing’ our data series.

Finally, we turn to the implementation of our marginalisation procedure. Essen-
tially, our approach is to maintain an ensemble of GPs, one for each hyperparameter
sample, each of which we update and downdate according to the proposals above.
Note that the computations for each hyperparameter sample can be treated inde-
pendently, lending our algorithm to parallelisation.

The predictions of each sample are then weighted and combined according to
equation (16). Note that the only computations whose computational cost grows
at greater than a quadratic rate in the number of samples, 7, are the Cholesky
decomposition and multiplication of covariance matrices in equation (17), and these
scale rather poorly as O(n?®). To address this problem, we take our Gaussian priors

3Note that likelihoods are commonly smaller than machine precision and so for numerical reasons
we prefer to instead work with log-likelihoods, exponentiating as required.
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for each different hyperparameter ¢() € ¢ as independent. We further take a
covariance structure given by the product of terms over each hyperparameter, the
common product correlation rule (e.g. Sasena [2002])

K6, ¢') = [T Ke (6001 (o)) - (18)

If we additionally consider a simple grid of samples, such that ¢, is the tensor
product of a set of samples @(e),s over each hyperparameter, then the problematic
term in equation (16) reduces to the Kronecker product of the equivalent term over
each individual hyperparameter:

K, ¢,) ' N K, )"
=K}y P1)s) NdD1).50 P1),s K D1y 60 P1y,s)
RK(P(2)6: D2),6) N D260 B2y, K B2y 5 D2)6)
X... (19)

This means that we only have to perform the expensive Cholesky factorisation
and multiplication with matrices whose size equals the number of samples for each
hyperparameter, rather than on a matrix of size equal to the total number of
hyperparameter samples. This hence represents an effective way to avoid the ‘curse
of dimensionality’.

Note that we can also leverage some of the benefits of maximum likelihood to
our own advantage. In particular, given an initial grid of samples, we can per-
form regular updates to their positions by performing single-stage gradient ascent.
That is, the value of ¢ ;, the ith sample in the eth hyperparameter, is adjusted
according to the average derivative with respect to ¢ of the likelihood of all
samples that share ¢ ;. Shifting a hyperparameter sample does, however, require
the fresh Cholesky decomposition of the covariance matrix associated with that
sample, along with the re-computation of the data-dependent term, likelihood and
the weights term (19). As such, we perform such sample shifting relatively rarely
to avoid too excessive a computational burden.

In general, limiting the number of hyperparameter samples is of critical impor-
tance to achieving practical computation. As such, we should exploit any and all
prior information that we possess about the system to limit the volume of hy-
perparameter space that our GP is required to explore online. For example, an
informative prior expressing that a tidal period is likely to be around half a day
will greatly reduce the number of samples required for this hyperparameter. Sim-
ilarly, an offline analysis of any available training data will return sharply peaked
posteriors over our hyperparameters that will further restrict the required volume
to be searched over on-line. For example, we represent the tidal period hyperpa-
rameter with only a single sample on-line, so certain does training data make us
of its value. Finally, a simpler and less flexible covariance model, with fewer hy-
perparameters, could be chosen if computational limitations become particularly
severe.

Applied together, these features provide us with an efficient on-line algorithm
that can be applied in real-time as data is sequentially collected from the sensor
network. Pseudo-code for our tracking algorithm is displayed in algorithm 1.
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Algorithm 1 GP-TRACK(x1.7, 21.7,0, MEAN(+; ), Cov(-,-;+), @)

// Returns the sequential lookahead predictions made with our GP algorithm.

//

{(z¢,2¢)}_,:  All data.
d:  Lookahead.
MEAN(z, ¢): Mean function (u), taking as arguments an input « and
hyperparameter vector ¢.
Cov(z,z';¢): Covariance function (K), taking as arguments two inputs
z and z’ and hyperparameter vector ¢.
¢, = {¢;}1_,: Hyperparameter samples.
Ty < {}
za < {}
for:=1tondo
GPli] < INITIALISE-GP (MEAN, Cov, ¢;) // Supply GP[i] with the mean

function MEAN(z, ¢;) and covariance function Cov(z,z’; ¢;).

5: end for

6: weights-term < CALCULATE-WEIGHTS-TERM(¢,) // Calculate the weights

term fI‘OIIl (19)3 K(¢s7 (bs)il ms K(¢s? ¢s)71'

7. fort=1to 7 — ¢ do

8 (xq, 24, drop-inds, add-ind) + INCREMENT—DATA((wd,zd), (xt,zt)7GP)

// Add new datum (index add-ind), and drop old data (indices drop-inds) as
necessary (as per Section 3.4).

9: fori=1tondo

10: GP[i] + DowWNDATE-GP (GPli],drop-inds) // Downdates a GP as per
Section 3.4, revising covariance matrix and data-dependent term to allow
for dropped data.

11: GP[i] < UPDATE-GP(GPIi], (%4, z4),add-ind) // Updates a GP as per
Section 3.4, revising covariance matrix, data-dependent term and likeli-
hoods to allow for added data.

12: (Mits4, Crysi) < MAKE—PREDICTIONS(It+5, GP[i]) // Compute the pos-
terior mean and variances for predictant y, = y;ys using (7) and (8).

13:  end for

14:  p < DETERMINE-WEIGHTS(weights-term, GP[1 : n]) // Using (17).

15:  (mj,5,C} 5)  COMBINE-PREDICTIONS({p;, M15.5, Crys,iti—y)

// Gaussians are combined in a weighted mixture, using (16).

16:  Return: (mj s, C{, ;)

17 if Is-TIME-TO-MOVE(t) // Infrequently true then

18: (¢, move-inds) <— MANAGE-HYPERSAMPLES(GP|L : 1], ¢, t)

// Move hyperparameter samples move-inds, as per Section 3.4.

19: for i € move-inds do

20: GPli] + OVERWRITE-GP (GPl[i], (4, z4), #;) // Recompute all quanti-

ties given the new hyperperparameter sample.

21: end for

22: weights-term < CALCULATE-WEIGHTS-TERM (&, )

23:  end if

24: end for
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BRAMBLEMET.CO.UK

STATUS REPORTS WEATHER REPORTS F! ASSOCIATED SITES:

FUNDED &
SUPPORTED BY

Fig. 2. The Bramble Bank weather station and web site.

3.5 Active Data Selection

Finally, in addition to the regression and prediction problem described in Section
2, we are able to use the same algorithm to perform active data selection. This
is a decision problem concerning which observations should be taken. In this, we
once again take a utility that is a function of the uncertainty in our predictions.
We specify a utility of negative infinity if our uncertainty about any variable is
greater than a pre-specified threshold, and a fixed negative utility is assigned as the
cost of an observation (in general, this cost could be different for different sensors).
Note that the uncertainty increases monotonically in the absence of new data, and
shrinks in the presence of an observation. Hence our algorithm is simply induced to
make a reading whenever the uncertainty grows beyond a pre-specified threshold.

Our algorithm can also decide which observation to make at this time, by deter-
mining which sensor will allow it the longest period of grace until it would be forced
to observe again. This clearly minimises the number of costly observations. Note
that the uncertainty of a GP, as given by (8), is actually dependent only on the
location of the observation, not its actual value. Hence the uncertainty we imag-
ine remaining after taking an observation from a sensor can be quickly determined
without having to speculate about what data we might possibly collect. However,
this is true only so long as we do not consider the impact of new observations on
our hyperparameter sample weights (17). Our approach is to take the model, in
particular the weights over samples, as fixed, and investigate only how different
schedules of observations affect our predictions within it. With this proviso, we are
guaranteed to maintain our uncertainty below a specified threshold, while taking
as few observations as possible.

4. TRIAL IMPLEMENTATION

In order to empirically evaluate the information processing algorithm described in
the previous section, we have used data from three networks of weather sensors
of different sizes (specifically, 4, 16 and 670 sensors) that provide a range of dif-
ferent sensor measurements. These networks are the Bramblemet sensor network,
the Wannengrat Alpine Observatory, and the UK Met Office MIDAS land surface
weather stations. The use of these weather sensor networks is attractive since they
exhibit challenging correlations and delays whose physical processes are well un-
derstood. However, we stress that the approach that we describe in this paper is
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general, and can equally well be applied to any time series that exhibits complex
correlations and delays.

4.1 Bramblemet Weather Sensor Network

The Bramblemet network consists of four sensors (named Bramblemet, Sotonmet,
Cambermet and Chimet), each of which measures a range of environmental vari-
ables (including wind speed and direction, air temperature, sea temperature, and
tide height) and makes up-to-date sensor measurements available through separate
web pages (see figure 2 and http://www.bramblemet.co.uk/). To facilitate the au-
tonomous collection of sensor data by our information processing algorithm, we
have worked with the sensor network operators (Associated British Ports) and sup-
plemented each sensor web page with machine readable RDF data (see figure 3
for an example of this format — current sensor data in this format is available
at http://www.bramblemet.co.uk/bra.rdf). This format is attractive as it repre-
sents a fundamental element of the semantic web, and there exist a number of
software tools to parse, store and query it. More importantly, it allows the sen-
sor data to be precisely defined through standard ontologies [Lassila and Swick
1999]. For example, linking the predicate geo:lat to the ontology available at
http://www.w3.0rg/2003/01/geo/ugs84_pos# precisely defines the value “50.79472”
as representing a latitude in the WGS84 geodetic reference datum. While ontolo-
gies for sensor data have yet to be standardised, a number of candidates exist (see
[Barnaghi et al. 2009] for an example based upon Sensor Web Enablement (SWE)
and SensorML data component models).

In order to visualise the sensor data and the information processing algorithms
in operation, we have implemented a server-based application that collects the
RDF data from the sensors, parses and stores it using Jena (see http://jena.
sourceforge.net/), and displays sensor data in tabular and graphical forms using
a Google Maps interface (see figure 4). A live version of this system is available at
http://www.aladdinproject.org/situation/.

The use of the Bramblemet sensor network is particularly attractive since the net-
work is subject to real network outages that generate instances of missing sensor
readings on which we can evaluate our information processing algorithms. Further-
more, by working with the sensor network operators we have been able to recover the
missing data from these periods from the sensors’ local caches, and thus, perform
quantitative comparisons between our information processing algorithm’s predic-
tions and the actual data. Furthermore, within the Bramblemet network sensors,
the sensor measurements are rounded prior to their transmission over the wireless
link. This results in censored observations, and thus, again by accessing the raw
data from the sensors’ local caches, we are also able to compare the ability of our
information processing algorithms to handle these censored observations.

However, the Bramblemet sensor network only consists of four sensors, and thus,
in order to compare the performance of our approach on larger networks, we turn
to the Wannengrat Alpine observatory and the UK Met Office MIDAS land surface
stations.
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<sit:Location rdf:about="&sit;bramblemet"
rdfs:label="Bramble Bank"
geo:lat="50.79472"
geo:1lng="-1.2875"
sit:altitude="1">

</sit:Location>

<sit:Sensor rdf:about="&sit;bramblemet/windspeed"
rdfs:label="Wind speed">
<sit:sensorType rdf:resource="&sit;windspeed"/>
<sit:location rdf:resource="&sit;bramblemet"/>

</sit:Sensor>

<sit:SensorType rdf:about="&sit;windspeed"
rdfs:label="Wind speed">
</sit:SensorType>

<sit:Unit rdf:about="&sit;knots"
rdfs:label="Knots"
sit:unitAbbr="kn">
</sit:Unit>

<sit:Reading
rdf:about="&sit;bramblemet/windspeed/reading/1234"
rdfs:value="9.3"
sit:datetime="2007-10-25T21:55:00">
<sit:sensor rdf:resource="&sit;bramblemet/windspeed"/>
<sit:unit rdf:resource="&sit;knots"/>

</sit:Reading>

Fig. 3. Example RDF data from the Bramblemet sensor.

4.2 Wannengrat Alpine Observatory

The Wannengrat site consists of over twenty SensorScope stations to measure local
weather conditions?. This wireless sensor network is deployed with the aim of
understanding the complex meterological processes occurring on the snowpack. For
this network, we simply use the data from online data repository, and have had no

direct interaction with the sensor network operators.

4.3 MIDAS Land Surface Weather Stations

Finally, we use data from the UK Met Office MIDAS land surface stations data
[British Atmospheric Data Centre 2009], focusing on the network’s readings of max-
imum daily temperature at 670 sensors distributed across the UK. Our experiments
on the data collected from these several hundred sensors serve as a demonstration
of the ability of our algorithm to cope with larger sensor networks.

4see http://wuw.swiss-experiment.ch/index.php/Wannengrat : Sensorscopedeployment.
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> D

Sensor Type

Fig. 4. Server-based implementation of our information processing algorithm accessed through a
web based Google Maps interface (available at http://www.aladdinproject.org/situation/).

5. EMPIRICAL EVALUATION

In this section we empirically evaluate our information processing algorithm on real
weather data collected from the sensor networks described above. We will compare
the use of our GP formalism built around a multiple-sensor covariance against a
number of benchmarks:

Conventional independent GP in which each environmental variable is mod-
elled separately (i.e. correlations between these parameters are ignored).

Kalman filter in which a maximum a posteriori (MAP) recursion is used to gov-
ern the adaptions of the hyper-parameters (namely the state and observation
noise processes) by sequentially using the maximum-likelihood formulation first
proposed by Jazwinski [1970]. One step-ahead forecasts are successively iterated
through the algorithm to provide multi-step forecasts of arbitrary length. Miss-
ing values, if they occur, are accommodated for using the scheme advocated by
Shumway and Stoffer [2000]. The algorithm operates, for multiple time-series
forecasting, using a p-th order lookback into the data, including cross-coupling
between time-series, making it a recursive multivariate autoregressive, MAR(p),
process.

Naive algorithm in which the prediction of the variable at the next time step is
simply equal to that of the most recent observation at that sensor.

The first benchmark illustrates the effectiveness of our Gaussian process formalism
that expresses correlations between different sensors. The second benchmark is a
state-of-the-art alternative, that has previously been used for tracking environmen-
tal sensor data [Bertino et al. 2003]. Finally, the naive third benchmark provides
a lower bound on the performance of a prediction algorithm.
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For the purposes of illustration, we will plot the sensor readings acquired by
our algorithm (shown as markers), the mean and standard deviation of the GP
prediction (shown as a solid line with plus or minus a single standard deviation
shown as shading), and the true fine-grained sensor readings (shown as bold) that
were downloaded directly from the sensor (rather than through the web site) after
the event. Note that we present a limited number of sensors for reasons of space,
but we use readings from all relevant sensors in order to perform inference.

Where appropriate, predictive quality will be evaluated using the standard root
mean squared error (RMSE), defined as

N
1
RMSE(m, y) = | 1 >_(mi = 4:)?

i=1

Here m is a vector of N estimates for the vector of variables y. The estimates we
use are the means for y conditioned on some set of observations z (as dependent
on the application). We also provide the normed mean squared errors (NMSEs),
defined as

YN S (i — i)
yn (S 02) - (v 2 iw)

NMSE(m, y) = 10log;,

2

which have decibels as units.

It is commonly the case that after a significant volume of data, the majority
of the weight will be concentrated at a single trial hyperparameter sample — the
posterior distribution for the hyperparameter p( ¢ | z4, 1) will be close to a delta
function at that value. In this case, we will say, informally, that we have learned
the hyperparameter to have that single value. Where this appears to be the case,
performing a local optimisation of the likelihood p(z4 | ¢, I') can help to find the
point of highest posterior density.

In the subsections that follow we first evaluate our approach on tide height, air
temperature and rounded air pressure data from the Bramblemet weather sensor
network, and then discuss the prediction of maximum daily air temperature over
the larger MIDAS land surface weather station network. In each case, we describe
the covariance function used, and present quantitative comparisons of prediction
quality. We then go on to discuss our approach to active data selection using the
tide and wind speed sensors of the Bramblemet weather sensor network, and the
air temperature sensors of the Wannangrat Alpine Observatory.

5.1 Prediction of Tide Heights

Figure 5 illustrates the efficacy our GP prediction for a tide height dataset. That
is, at time t, figure 5 depicts the posterior distribution of the GP, conditioned on
all observations prior to and inclusive of ¢. In order to manage the four outputs of
our tide function (one for each sensor), we rewrite so that we have a single output
and inputs ¢, time, and [, a sensor label. As such, our covariance function is of the
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Fig. 5. Prediction and regression of tide height data for (a) independent and (b) multi-output
Gaussian processes.

form
(1t U, 1 1) = W V) (Kperntin(t = At = Auihp =1, wp,v = 3)+
Kuin (t — At — Apshp, wp,v = %)) , (20

where W is a covariance matrix parameterised using the spherical parameterisation
(5). We used two different GP models: one in which the parameters of the spherical
decomposition were inferred from the data; and one for which the matrix S was
taken as an identity matrix. In the former case, we consequently have a multi-
output formalism, in the latter, independent GPs for each sensor.

Note that our covariance over time is the sum of a periodic term and a disturbance
term. Both are of the Matérn form with v = 2, (3) and (2) respectively. This form
is a consequence of our expectation that the tides would be well modelled by the
superposition of a simple periodic signal and an occasional disturbance signal due
to exceptional conditions. Of course, for a better fit over the course of, say, a year,
it would be possible to additionally incorporate longer-term drifts and periods.

The period wp of the first term was unsurprisingly learnt as being about half a
day, whereas for the disturbance term the time scale wp was found to be about two
and a half hours. Note that this latter result is concordant with our expectations
for the time scales of the weather events we intend our disturbance term to model.

Our algorithm learned that all four sensors were very strongly correlated, with
STS (where S is from (5)) containing elements all very close to one. W additionally
gives an appropriate length scale for each sensor. Over this data set, the Chimet
sensor was found to have a length scale of 1.4m, with the remainder possessing scales
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Table I. Predictive performances for five-day Bramblemet tide height dataset.

Algorithm RMSE (m) NMSE (dB)
Naive 7.5 x10~1 -2.1
Kalman filter 3.9 x10° 112.2
Independent GPs 8.7 x10~2 -20.3
Multi-output GP 3.8 x10~2 -27.6

of close to 1m. Note that hp and hp in (20) are dimensionless ratios, serving as
weightings between our various covariance terms. Hence we can set hp = 1 without
loss of generality, upon which we learn that hp is around 0.2. Hence weather events
were observed to have induced changes in tide height on the order of 20%.

We also make allowances for the prospect of relative latency amongst the sensors
by incorporating delay variables, represented by the vector A. We found that
the tide signals at the Cambermet and Chimet stations were delayed by about 10
minutes relative to the other two. This makes physical sense — the Bramblemet and
Sotonmet stations are quite exposed to the ocean, while water has to run further
through reasonably narrow channels before it reaches the Cambermet and Chimet
stations.

Only the correlations amongst sensors and their individual delays were sampled
over, all other hyperparameters for our covariance were learned by the GP prior
to the depicted data set. Such hyperparameters were then specified with single
samples at the learned values.

Note the performance of our multi-output GP formalism when the Bramblemet
sensor drops out at ¢ = 1.45 days. In this case, the independent GP quite reason-
ably predicts that the tide will repeat the same periodic signal it has observed in
the past. However, the GP can achieve better results if it is allowed to benefit from
the knowledge of the other sensors’ readings during this interval of missing data.
Thus, in the case of the multi-output GP, by ¢ = 1.45 days, the GP has successfully
determined that the sensors are all very strongly correlated. Hence, when it sees
an unexpected low tide in the Chimet sensor data (caused by the strong Northerly
wind), these correlations lead it to infer a similarly low tide in the Bramblemet
reading. Hence, the multi-output GP produces significantly more accurate predic-
tions during the missing data interval, with associated smaller error bars. Exactly
the same effect is seen in the later predictions of the Chimet tide height, where
the multi-output GP predictions use observations from the other sensors to better
predict the high tide height at ¢t = 2.45 days.

Note also that there are two brief intervals of missing data for all sensors just after
both of the first two peak tides. During the second interval, the GP’s predictions
for the tide are notably better than for the first — the greater quantity of data it
has observed allows it to produce more accurate predictions. With time, the GP is
able to build successively better models for the series.

The predictive performances for our various algorithms over this dataset can be
found in table I. Note that for the Kalman filter tested, the lookback p was taken
as 16. Note that our multi-output GP which exploits correlations between the
sensors, and the periodicity in each individual sensors’ measurements, significantly
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Bramblemet — Multi-output GP Bramblemet — Kalman Filter

15

Air Temperature°C)
5
Air Temperature°C)

5 2 25 35
Time (days)

Chimet — Kalman Filter

5 2 25
Time (days)
Chimet — Multi-output GP
15 . . .

15

Air Temperature°C)
S

Air Temperature°C)
=
o

5 2 25 5 2 25
Time (days) Time (days)

(a) (b)

Fig. 6. One-step lookahead prediction of air temperature data for (a) a multi-output Gaussian
process and (b) a Kalman filter.

outperforms the Kalman filter and the independent GP.

5.2 Prediction of Air Temperatures

We next tested on air temperature data. Figure 6 demonstrates our algorithm’s
5 minute lookahead predictive performance, where 5 minutes was also the usual
(although not exclusive) time increment from one datum to the next. That is,
figure 6 depicts the posterior distribution at time ¢ conditioned on all observations
prior to and inclusive of ¢ — 5mins. Note that the Cambermet station does not
record air temperature, and is hence discluded from consideration here. Taking the
covariance function used for tide height data shown in equation (20) as a model,
we assumed the covariance function

K([t, ], [t', ') =W, 1)
(Kpcr-Mtn(t - Alat/ - Al’; hp =1, wp,v = %)""

Kyien (t = At — Aps by, wp, v = %))4-

§(—1") Knign (8,5 hp, wp,v = 2)

Our covariance over time consisted of three terms. The first was periodic, whose
period wp was learned as 1 day, describing nightly dips in temperature. The second
term describes longer-term trends in temperature. Its time scale wp was learned
as 3 days, with a relative magnitude hp just over twice that of the periodic term,
hp. From this we can induce that the periodic term represents only a relatively
minor component of this model. Finally, the third term represents higher frequency
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Fig. 7. Prediction and regression of air pressure data for (a) a Gaussian process employing censored
observations and (b) a Kalman filter.

disturbances, with a time scale learned as 4 hours. Note that this final term is not
correlated amongst sensors as were the other two; these disturbances appear to
be local to each sensor. The individual output scales for each sensor given by
W were learned as 2°C, 6°C and 2.6°C respectively. These give the scales of the
periodic fluctuations and longer-term drifts in the air temperature at each sensor.
For comparison, the scale of the disturbances hp were learned as 1°C. As for the
tide heights example, only the sensor correlations and delays were sampled over for
the depicted predictions.

The predictive performances for this dataset are shown in table II. The Kalman
filter was tested with an order of p = 15. Note again that the multi-output GP
outperforms the other benchmarks with the Kalman filter performing particularly
badly as it significantly lags the real temperature measurement.

5.3 Prediction of Air Pressures

Figure 7 demonstrates regression and prediction over the heavily rounded air pres-
sure observations from the Bramblemet sensor alone. We used a GP model with
the Matérn covariance of the non-periodic form shown in equation (2). We fur-
ther made use of the methods described in Section 3.3 for managing the censored
(rounded) observations that are all we possess for this data. Here we can demon-
strate a dramatic improvement over Kalman filter prediction, as demonstrated in
table III. Both the GP and Kalman filter have an order of 16; that is, they store
only up to the 16 most recent observations (i.e., p = 16).

5.4 Prediction of MIDAS data

We now turn to a larger sensor network and demonstrate the suitability of our
prediction algorithm for such networks. In particular, we apply our algorithm to
data from January 1990 collected by the 670 sensors that comprised UK Met Office
MIDAS land surface stations at the time. We arbitrarily selected maximum air
temperature as the environmental variable of interest for our experiments, and
aimed to perform one-step lookahead prediction. Specifically, we aim to predict
the value of the next observation to be received by the network, which may be an
observation from a day equal to that of the current observation, but from a sensor
different to that most recently observed. The use of a model over both space and
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Table II. Predictive performances for five-day Bramblemet air temperature dataset.

Algorithm RMSE (°C) NMSE (dB)
Naive 0.84 -10.0
Kalman filter 3.94 3.1
Multi-output GP 0.45 -15.4

Table ITI. Predictive performances for five-day Bramblemet air pressure dataset.

Algorithm RMSE (Pa) NMSE (dB)
Naive 3.61 -4.75
Kalman filter 3.29 -5.55
GP for censored data 0.43 -20.49

Table IV. Predictive performances for MIDAS maximum air temperature data.

Algorithm RMSE (°C) NMSE (dB)
Naive 3.93 3.61
Multi-output GP 1.53 -4.57

time is integral to success on this task.

The dataset comes equipped with latitude and longitude measurements for each
sensor, which we can use to express the covariance between any pair of sensors.
That is, we take the covariance

K([t, 1, [t', I']) = Kmn (LU By wiv = 3) K (8,850 = 1, we,v = 3), (21)

where for the covariance between [ and I’ we replace r with the great-circle dis-
tance between the positions of sensors [ and I/, divided by isotropic spatial scale
hyperparameter w;. Note that our approach here is an alternative to the arbitrary
parameterisation presented in equation (5). This parameterisation requires a hy-
perparameter for every distinct pair of sensors and is hence impractical for larger
numbers of sensors.

Results from our tests on this dataset are displayed in table IV. Note that the
GP is easily able to outperform its naive competitor.

5.5 Active Data Selection of Tide Heights

We now demonstrate our active data selection algorithm. Using the fine-grained
data (downloaded directly from the Bramblemet weather sensors), we can simulate
how our GP would have chosen its observations had it been in control. Results
from the active selection of observations from all the four tide sensors are displayed
in figure 8. Again, these plots depict dynamic choices; at time ¢, the GP must
decide when next to observe, and from which sensor, given knowledge only of the
observations recorded prior to ¢, in an attempt to maintain the uncertainty in tide
height below 10cm. The covariance function used was that described in (20).
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Fig. 8. Comparison of active sampling of tide data using (a) independent and (b) multi-output
Gaussian processes.

Consider first the case shown in figure 8(a), in which separate independent GPs
are used to represent each sensor. Note that a large number of observations are
taken initially as the dynamics of the sensor readings are learnt, followed by a
low but constant rate of observation. In contrast, for the multi-output case shown
in figure 8(b), the GP is allowed to explicitly represent correlations and delays
between the sensors. As mentioned above, this data set is notable for the slight
delay of the tide heights at the Chimet and Cambermet sensors relative to the
Sotonmet and Bramblemet sensors, due to the nature of tidal flows in the area.
Note that after an initial learning phase as the dynamics, correlations, and delays
are inferred, the GP chooses to sample predominantly from the undelayed Sotonmet
and Bramblemet sensors®. Despite no observations of the Chimet sensor being made

5The dynamics of the tide height at the Sotonmet sensor are more complex than the other sensors
due to the existence of a ‘young flood stand’ and a ‘double high tide’ in Southampton. For this
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Fig. 9. Comparison of active sampling of wind speed using (a) independent and (b) multi-output
Gaussian processes.

within the time span plotted, the resulting predictions remain remarkably accurate.
Consequently only 119 observations are required to keep the uncertainty below the
specified tolerance, whereas 358 observations were required in the independent case.
This represents another clear demonstration of how our prediction is able to benefit
from the readings of multiple sensors.

5.6 Active Data Selection of Wind Speeds

Figure 9 shows similar results for the wind speed measurements from three of the
four sensors (the Cambermet sensor being faulty during this period) where the goal
was to maintain the uncertainty in wind speed below 1.5 knots. By analogy to the
covariance function over tides (20), we used the following covariance function

K([tv ZL [t/a l/]) = W(lv l,) err—Mtn(t - Aht/ —Apshp =1, wp,v = %)"'

5([ — l,) KMtn(t,t/; hD, Wp,V = %) .

In this case, for purposes of clarity, the fine-grained data is not shown on the plot.
Note that the measurement noise is much greater in this case, and this is reflected in

reason, the GP selects Sotonmet as the most informative sensor and samples it most often.
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Fig. 10. Active sampling of ambient temperatures at 16 Wannengrat sensor stations.

the uncertainty in the GP predictions. Furthermore, note that while the Sotonmet
and Chimet sensors exhibit a noticeable correlation, Bramblemet appears to be
relatively uncorrelated with both. This observation is reflected in the sampling
that the GP performs. The independent GPs sample the Bramblemet, Sotonmet
and Chimet sensors 126, 120 and 121 times respectively, while over the same period,
our multi-output GP samples the same sensors 115, 88 and 81 times. Our multi-
output GP learns on-line that the wind speed measurements of the Sotonmet and
Chimet sensors are correlated, and then exploits this correlation in order to reduce
the number of times that these sensors are sampled (inferring the wind speed at one
location from observations of another). However, there is little or no correlation
between the Bramblemet sensor and the other sensors, and thus, our multi-output
GP samples Bramblemet almost as often as the independent GPs.

5.7 Active Data Selection of Air Temperature

To investigate the practicality of our active data selection algorithm on larger sensor
networks, we apply it to data from 16 air temperature sensors from the Wannengrat
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Alpine Observatory. As in the case of the MIDAS data described above we use the
latitude and longitude co-ordinates of these sensors within the covariance function
shown in equation (21).

Figure 10 shows the detailed predictions and samples for five of the sensors,
and a summary plot showing the sample times of all 16 sensors. Note that the
sensor sampling rate is relatively low at first, however, as the volatile fluctuations
in temperature begin to occur at about ¢ = 0.7 days, the sampling frequency
automatically increases to ensure that the prediction uncertainty is maintained
below the specified threshold.

6. COMPUTATION TIME

As described earlier, a key requirement of our algorithm is computational efficiency,
in order that it can be used to represent multiple correlated sensors, and hence,
used for real-time information processing. Here we consider the computation times
involved in producing the results presented in the previous section. We should note
at this point that we are not comparing the computation time of our approach
against the Kalman filter. The computation performed by the Kalman filter is
far less intensive than that of the Gaussian process (in our empirical evaluations,
the update time of the Kalman filter was typically < 0.01 seconds). However, as
demonstrated in the previous section, the Kalman filter is unable to represent the
complex correlations and periodicities seen in the sensor data, and thus, it provides
significantly worse predictions than our approach.

Rather, in this section, we are evaluating the computation time required in order
to update the Gaussian process as a new observation is received. This computation
time represents the cost of computing the Cholesky factor R of V, the associated
data-dependent term R(zg4,z4) !(y, — p(za4)) in equations (7) and (8), and the
hyperparameter sample likelihoods and subsequently the weights of equation (16).
Once these terms have been calculated, by either method, making predictions at
any point in time is extremely fast, requiring simply the adding of another element
to x,. The conventional approach to performing this update would be to simply
recompute the relevant quantities from scratch upon receipt of new data (using
the highly optimised LAPACK routines within Matlab - see http://www.netlib.
org/lapack/ for more details of this linear algebra package). In contrast, in our
formalism, we make use of the computationally efficient online rules described in
Section 3.4 to perform an online update of previously calculated results.

Thus, against this background, Table V shows the computation time required
using MATLAB on an Intel Core i7 Processor 860 (2.80GHz, 8MB) with 8GB of
RAM, with displayed results the average of 10 trials®. In more detail, Table V(a)
the results when our computationally efficient online rules are used, and Table V(b)
shows the results when the conventional approach is used.

Note that with our efficient updates, we expect the cost of computation to grow
as O(N?) in the number of stored data points. Our proposed algorithm will au-
tomatically determine the quantity of data to store in order to achieve the desired
level of accuracy. In the problems we have studied, a few hundred points were

6Note that these computations would typically be performed at the base station or data portal,
and not on the sensors themselves, so reasonable computational resources can be assumed.
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Table V. The required computation time (seconds) per GP update, with (a) and without (b) our
efficient update rules, over N the number of stored data points and 7 the number of hyperparam-
eter samples.

N N
n 10 100 500 n 10 100 500
1 <001 <001 <001 1 <001 <001 006
10 0.01 0.01 0.08 10 0.01 0.02  0.34
100 0.11 0.13 0.74 100 0.09 017  3.32
1000 1.30 1.39 4.51 1000 0.92 171 17.34

(a) (b)

Table VI. The numbers of stored data points, N, and hyperparameter samples, 1, used for the
various datasets presented in this paper.

Dataset N n
Bramblemet Tide Heights 200 1620
Bramblemet Air Temperatures 500 972
Bramblemet Air Pressures 16 125
MIDAS Air Temperature 1500 105
Bramblemet Wind Speeds 454 675

Wannengrat Air Temperature 500 125

typically sufficient. The largest number we required was 1500, for the MIDAS air
temperature data. Note also that the cost of computing equation (19) will grow in
the cube of the number of samples in each hyperparameter. However, we consider
only a fixed set of samples in each hyperparameter, and thus, equation (19) need
only be computed once, off-line. In this case, our on-line costs are limited by the
multiplication of that term by the likelihoods 74 to give the weights of equation
(16), and this only grows as O(n?). Furthermore, note that this cost is independent
of how the n samples are distributed amongst the hyperparameters. For complete-
ness, Table VI shows the number of data points and the number of hyperparameter
samples used for each of the empirical evaluations.

In practice, we see that our efficient updates result in substantial improvements in
computational speed once the quantity of data N exceeds the threshold required to
offset the small computational overheads introduced by using our approach instead
of the already highly optimised LAPACK routines. For the largest cases investi-
gated here we see an approximate four-fold increase in computation speed. For our
weather datasets, samples are taken no more frequently than once a minute. Thus
all of the information processing that we have described in this paper can easily
be performed in real-time, and the increase in computational speed seen in our ap-
proach can be used to increase the number of data points considered or the number
of hyperparameters samples used; both of which will likely increase the predictive
power of the Gaussian process.
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7. RELATED WORK

Gaussian process regression has a long history of use within geophysics and geospa-
tial statistics (where the process is known as kriging [Cressie 1991]), but has only
recently been applied within sensor networks. For example, Gaussian processes
have been used to represent spatial correlations between sensors so that the near-
optimal sensor placement (in terms of mutual information) can be determined, for
modelling wireless propagation between sensor nodes subject to censored obser-
vations of received signal strength [Ertin 2007], and in the form of multi-variate
Gaussian distributions to represent correlations between different sensors and sen-
sor types for energy efficient querying of a sensor network [Deshpande et al. 2004].
They have also been used to represent temporal correlations between the read-
ings from a single sensor in order to perform adaptive sampling — maximising the
information gain subject to a sampling constraint [Kho et al. 2009].

Our work differs in that we use GPs to represent temporal correlations, and rep-
resent correlations and delays between sensors with additional hyperparameters. It
is thus closely related to other work using GPs to perform regression over multi-
ple responses [Boyle and Frean 2005; Teh et al. 2005]. However, our focus is to
derive a computationally efficient algorithm, and thus, we use a number of novel
computational techniques to allow the re-use of previous calculations as new sensor
observations are made. We additionally use a novel Bayesian Monte Carlo tech-
nique to marginalise the hyperparameters that describe the correlations and delays
between sensors. Finally, we use the variance of the GP’s predictions in order to
perform active data selection. Likewise, our work differs from that previously using
censored sensor readings within a GP framework [Ertin 2007], since our work pro-
poses a principled Bayesian Monte Carlo method for adapting our models to the
data, where Ertin’s model assumes that the hyperparameters are known a priori,
and hence, does not consider how likelihoods should be computed in this context.
Furthermore, in our work, Monte Carlo techniques are also used to evaluate our
other integrals, rather than taking Laplace approximations, allowing more accurate
representation of the correlation amongst censored readings.

Finally, our approach has several advantages relative to sequential state-space
models such as the Kalman filter [Girard et al. 2003; Jazwinski 1970] which have
also been applied in environmental settings for tracking sensor readings [Bertino
et al. 2003]. Firstly, these state-space models require the discretisation of the
time input, representing a discarding of potentially valuable information. Secondly,
their sequential nature means they must necessarily perform difficult iterations in
order to manage missing or late data, or to produce long-range forecasts. In our
GP approach, what observations we have are readily managed, regardless of when
they were made. Equally, the computation cost of all our predictions is identical,
irrespective of the time or place we wish to make them about. Finally, a sequential
framework requires an explicit specification of a transition model. In our approach,
we are able to learn a model from data even if our prior knowledge is negligible,
and the benefits of our approach are empirically supported by the results presented
in Section 5.
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8. CONCLUSIONS

In this paper we addressed the need for algorithms capable of performing real-time
information processing of sensor network data, and we presented a novel computa-
tionally efficient formalism of a multi-output Gaussian process. Using weather data
collected from three sensor networks, we demonstrated that this formalism allows
an end-user to make effective use of sensor data even in the presence of network
outages and sensor failures (recovering missing data by making predictions based on
previous sensor readings and the current readings of sensors that are functioning),
and to automatically determine the sampling rate of each individual sensor in or-
der to ensure that the uncertainty in the environmental parameter being measured
stays within a pre-specified limit. Furthermore, we showed that our formalism that
efficiently re-uses previous computations by following an online update procedure
as new data sequentially arrives results a significant increase in computation speed
compared to the highly optimised LAPACK linear algebra package.

Our future work in this area consists of three areas. First, we would like to inves-
tigate the use of schemes more sophisticated than the maximum likelihood approach
for the movement of the locations of our set of hyperparameter samples. As the
posterior distributions of these hyperparameters become more sharply peaked, we
might aim to reduce the number of samples to further increase the computational
efficiency of our algorithm.

Second, we intend to investigate the use of correlations between different sensor
types (rather than between different sensors of the same type as presented here) to
perform regression and prediction within our weather sensor network. Our formal-
ism is in no way restricted to identical sensors, and it is expected that many sensors
will exhibit correlations in this setting. For example, both wind speed and wind
direction, and air temperature and air pressure are likely to exhibit correlations as
weather fronts move over the sensor network.

Finally, we would like to use the probabilistic model that the GP builds to au-
tomatically handle faulty and unreliable sensors within the network. Note that we
do not wish to simply detect these faulty sensors., but would like to simultaneously
perform both detection and prediction, despite the presence of these failures. Our
preliminary work is this area indicates that nonstationary covariance functions that
model such changes can be introduced to the formalism described here to achieve
this, and have already been shown to work effectively on real-world sensor data
derived from the sensor networks described in this paper [Garnett et al. 2009].
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A. APPENDIX

A.1 Cholesky Factor Update

Vii Vigs

and its
Vit V3,3]

We have a positive definite matrix, represented in block form as {

Ri1 Rig3

Cholesky factor, [ 0 Rss

]. Given a new positive definite matrix, which differs from

Vii Vipg Vi
the old only in the insertion of some new rows and columns, VF2 Voo Vo3|, we wish to
T 7
Viis Vas Vags

S11 Si12 Si3
efficiently determine its Cholesky factor, | 0 S22 S>3|. For A triangular, we define
0 0 Sss

x = A\ b as the solution to the equations A & = b as found by the use of backwards or
forwards substitution. The following rules are readily obtained
Si11=Ri1 (22)
Si2=Ri;\ Vi (23)
S1,3= PR3 (24)
S2,2 = chol(V22 — 55231,2) (25)
S23 = 825\ (Vaiz — 51251,3) (26)
Ss,3 = chol(R3 3Rs,3 — S3,352,3) . (27)

’

By setting the appropriate row and column dimensions (to zero if necessary), this allows
us to efficiently determine the Cholesky factor given the insertion of rows and columns in
any position.

A.2 Data Term Update

Y1
We have all terms defined in Section A.1, in addition to [Y2| and the product {gl} £
Y3 3
Rii Ris] 'Yy, D, S1,1 S12 Si3 'y
[ 6,1 R1,3] {Yl]. To efficiently determine |Do| £ | 0 S22 Sa2.3 Y2 |, we have
e ’ Dd 0 0 5373 Y5
Di=C (28)
Ds = Si3 (R33Cs — Sa3Ds). (30)
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A.3 Log-Gaussian Update
We have all terms defined in Sections A.1 and A.2, in addition to

B Vil 0] [Via Vis
o= (2] [o] v 422))
= —% trlog(\/ 27TR1,1) — %trlog(\/ 27’I’R3,3) — %CF Ci — %C;,F Cs.

We can then calculate the updated term
Y1 0 ‘/1,1 ‘/1,2 ‘/1,3
L=1logN| |Ya|; |0, |V Vapo Vs
Ys] [0] Vil Vais Vas
1 1 1
=3 trlog(v2mSi,1) — 3 trlog(v2mSa2) — 3 trlog(v2mSs,3)
_1
2
1 1 1
=K+ 3 trlog(v2mRs 3) — 3 trlog(v2mSa2) — 3 trlog(v2mSs,3)

1 1
DI D, — §D2T Dy — 5D;f Ds

1 1 1
+ ng,T Cs — iDzT Dy — §D‘:‘F Ds (31)

A.4  Cholesky Factor Downdate

Via Vi Vigs
We have a positive definite matrix, represented in block form as VITQ Voo Vaz| and its
VEs V2T3 Va3

S1,1 S12 Si3
Cholesky factor, 0 S22 S23|. Given a new positive definite matrix, which differs
0 0 Sss

from the old only in the deletion of some new rows and columns, [

to efficiently determine its Cholesky factor {Ré’l géﬂ The following rules are readily
obtained
Ri1=511 (32)
Riz =513 (33)
Rs3 = chol(S3 352,3 + S3.553.3) . (34)

Note that the special structure of equation (34) can be exploited for the efficient resolution
of the required Cholesky operation, as, for example, in the MATLAB function cholupdate
[The MathWorks 2007]. By setting the appropriate row and column dimensions (to zero
if necessary), this allows us to efficiently determine the Cholesky factor given the deletion
of rows and columns in any position.
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