
The Knowledge Engineering Review, Vol. 00:0, 1–32.c© 200X, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kingdom

A unifying framework for iterative approximate best–
response algorithms for distributed constraint optimisation
problems1

Archie C. Chapman1, Alex Rogers1, Nicholas R. Jennings1 and David S. Leslie2

1School of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
E-mail: {acc,acr,nrj}@ecs.soton.ac.uk
2Department of Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
E-mail: david.leslie@bristol.ac.uk

Abstract

Distributed constraint optimisation problems (DCOPs) areimportant in many areas of computer science
and optimisation. In a DCOP, each variable is controlled by one of many autonomous agents, who
together have the joint goal of maximising a global objective function. A wide variety of techniques
have been explored to solve such problems, and here we focus on one of the main families, namely
iterative approximate best–response algorithms used as local search algorithms for DCOPs. We define
these algorithms as those in which, at each iteration, agents communicate only the states of the variables
under their control to their neighbours on the constraint graph, and that reason about their next state
based on the messages received from their neighbours. Thesealgorithms include the distributed stochastic
algorithm and stochastic coordination algorithms, the maximum–gain messaging algorithms, the families
of fictitious play and adaptive play algorithms, and algorithms that use regret–based heuristics. This family
of algorithms is commonly employed in real world systems, asthey can be used in domains where
communication is difficult or costly, where it is appropriate to trade timeliness off against optimality,
or where hardware limitations render complete or more computationally intensive algorithms unusable.
However, until now, no overarching framework has existed for analysing this broad family of algorithms,
resulting in similar and overlapping work being published independently in several different literatures.
The main contribution of this paper, then, is the development of a unified analytical framework for
studying such algorithms. This framework is built on our insight that when formulated as noncooperative
games, DCOPs form a subset of the class of potential games. This result allows us to prove convergence
properties of iterative approximate best–response algorithms developed in the computer science literature
using game theoretic methods (which also shows that such algorithms can also be applied to the more
general problem of finding Nash equilibria in potential games), and, conversely, also allows us to show
that many game–theoretic algorithms can be used to solve DCOPs. By so doing, our framework can
assist system designers by making the pros and cons of, and the synergies between, the various iterative
approximate best–response DCOP algorithm components clear.

1 Introduction

In real world applications, large–scale systems are difficult to optimally configure, often because
communication restrictions, organisational structures and/or complicated topologies make it difficult,
costly or impossible to collect all the necessary information at a location where a solution can be

1This research was undertaken as part of the ALADDIN (Autonomous Learning Agents for Decentralised Data and
Information Systems) project and is jointly funded by a BAE Systems and EPSRC (Engineering and Physical Sciences
Research Council) strategic partnership (EP/C548051/1).

2 A . C. CHAPMAN, A . ROGERS ET AL.

computed. This, in turn, motivates the use of distributed methods of optimisation in order to find the
optimal configuration. In particular, in this paper, we concentrate on multi–agent systems — that is,
systems in which control is distributed across a set of autonomous agents — as an important approach to
distributed optimisation. Within this context, we focus specifically ondistributed constraint optimisation
problems(DCOPs), a broad family of problems that can be brought to bear on many domains, including:
disaster response scenarios (e.g. Kitano et al., 1999; Chapman et al., 2009), wide–area surveillance and
distributed sensor network management (e.g. Kho et al., 2009; Hayajneh and Abdallah, 2004; Heikkinen,
2006), industrial task allocation and scheduling problems(e.g. Zhang and Xing, 2002; Stranjak et al.,
2008), and the management of congested air, road, rail, and information networks (e.g. van Leeuwen
et al., 2002; Roughgarden, 2005).

In more detail, in a constraintsatisfactionproblem, the aim is to find a configuration of states of
variables such that they satisfy a set of constraints. A constraint optimisationproblem is then given by a
utility function that aggregates the payoffs for satisfying each of a set of ‘soft’ constraints (or, conversely,
a penalty for violating constraints) over the states of variables in the problem (Schiex et al., 1995). A
distributedconstraint optimisation problem arises when a number of independent agents each control the
state of (a subset of) the variables in the system, with the joint aim of maximising the global reward for
satisfying constraints. A natural way to model DCOPs, then,is as a multi–agent system.

As a consequence of the breadth of applications of DCOPs, many algorithms for solving them have
been developed using a number of approaches, which often differ according to the literatures they
were first proposed in (e.g. the computer science, game theory, machine learning or statistical physics
literatures). It is our intention, then, to provide a unifying framework for analysing a broad class of
DCOP algorithms. However, here we exclude from our analysiscentralised approaches in which all of
the information needed to solve the DCOP is directly accessible to, and/or in which all of the variables
in a system come under the control of, a single decision maker, as assumed within algorithms such as
the breakout algorithm (Morris, 1993) and arc consistency (Cooper et al., 2007), among others (see Apt,
2003, for more examples from the broader constraint programming literature). While such approaches are
certainly useful in a range of scenarios, we make this exclusion because we are particularly interested in
algorithms for multi–agent systems, in which the actors aredistributed and can only communicate with
their peers. The remaining algorithms are known as distributed algorithms, and, for our purposes, we
define three further sub–groupings:

• Distributed completealgorithms, by which we mean algorithms that always find a configuration
of variables that maximises the global objective function (as in finite domains one always exists).
This class includesADOPT (Asynchronous Distributed OPTimization, Modi et al. (2005)), DPOP

(Dynamic Programming OPtimisation, Petcu and Faltings (2005)) andAPO (Asynchronous Partial
Overlay, Mailler and Lesser (2006)). Due to the inherent computational complexity of DCOPs,
complete algorithms always run exponential in some aspect of their operation (i.e. the number or
size of messages exchanged, or the computation performed bythe agents). Furthermore, distributed
complete algorithms usually operate by passing complicated data structures, or run on a highly
structured ordering, such as a spanning tree, and often require additional processing of the original
constraint graph.

• Local iterative message–passingalgorithms, such as max–sum (Aji and McEliece, 2000) or dis-
tributed arc consistency (Cooper et al., 2007). In these algorithms, neighbouring agents exchange
messages comprising a data structure that contains the values of different local variable configura-
tions, and use these values to construct new messages to passon to other agents.

• Local iterative approximate best–responsealgorithms, such as the distributed stochastic algorithm
(Tel, 2000; Fitzpatrick and Meertens, 2003), the maximum–gain messaging algorithm (Yokoo and
Hirayama, 1996; Maheswaran et al., 2005), fictitious play (Brown, 1951; Robinson, 1951), adaptive
play (Young, 1993, 1998) and regret matching (Hart and Mas-Colell, 2000). In this class, agents
exchange messages containing only their state, or can observe the strategies of their neighbours. In

Iterative approximate best–response algorithms for DCOPs 3

Distributed Constraint Optimisation Algorithms

Local iterative algorithms Distributed complete algorithms
(e.g.DPOP, ADOPT, APO)

Message passing algorithms Approximate best response algorithms
(e.g. max–sum, arc consistency)

Local search algorithms Adaptive learning heuristics
(Computer science) (Game theory)

Figure 1: Taxonomy of the categories of algorithms considered in this paper, with the focus,local
iterative approximate best–response algorithms, in bold.

game theoretic parlance, this is known asstandard monitoring,2 and, as the name suggests, is a typical
informational assumption implicit in the literature on learning in games.

In this paper, we refer to the last two groups together as local iterative algorithms (see the taxonomy in
Figure 1), to differentiate them from their complete counterparts.3 We group them under this term because
both classes operate only at the local level, with messages exchanged between neighbouring agents at
each iteration of the algorithm, and without any overarching structure controlling the timing or ordering
of messages.

In many real distributed systems, we find that local iterative algorithms are often preferred over
distributed complete algorithms.4 This is because, in such domains,it is necessary and appropriate
to trade solution quality off against timeliness or communication overhead. For example, in real–time
target tracking it may be more important to produce a good solution quickly, rather than wait for the
optimal solution. This is the reasoning Krainin et al. (2007) invoke to motivate their use of the local
iterative algorithm to coordinate scan schedules in a real meteorological radar network. Similarly, in
remote and mobile sensor management, an algorithm that has alow communication overhead may be
preferred because of the large drain on a sensor’s battery charge caused by communication, as evidenced
by the choice of algorithm used in many problems in distributed sensor networks (e.g. Zhang et al., 2005;
Farinelli et al., 2008) and multi–robot cooperative data fusion problems (e.g. Matthews and Durrant-
Whyte, 2006; Stranders et al., 2009). Furthermore, in some real distributed systems, hardware limitations
may outright prohibit the use of distributed complete algorithms. For example, when usingDPOP the
capacity of the communication buffer of a typical sensor node is quickly exceeded as a problem grows

2Cf. partial monitoring, as in multi–armed Bandit problems.See Blum and Mansour (2007) for a discussion of the
issues surrounding these two monitoring models.
3Note that, when applied to DCOPs, many approaches to distributed optimisation usually can be placed into one of the
three categories defined above. For example, many negotiation models and local exchange markets are, in effect, local
approximate best–response algorithms. Consider a negotiation model in which at each time step one agent in each
neighbourhood announces a new configuration of the variables under its control to its neighbours, with the constraint
that each new configuration weakly improves the agent’s payoff (as is commonly employed). This type of negotiation
model is captured by our framework, as messages are local (only neighbours receive the agent’s update to its state) and
the process is iterative. We also point out that other approaches to the general problem of distributed optimisation that
can be applied to DCOPs, such as token–passing (e.g. Xu et al., 2005) or auction protocols (e.g. Gerkey and Mataric,
2002), do not fall into any of these three categories. However, we consider an exhaustive classification and analysis
of these distributed optimisation techniques outside the scope of this paper, because we are primarily concerned with
local approximate best–response algorithms in the specificcase of DCOPs.
4The complete algorithms are typically used in applicationswhere their optimality is the key concern and timeliness
is not a limiting factor, such as industrial scheduling and timetabling problems (Petcu and Faltings, 2005) or routing
protocols for fixed environmental sensor networks (Kho et al., 2009).

4 A . C. CHAPMAN, A . ROGERS ET AL.

in size, because the message size is exponential in the induced width of the communication tree (e.g.
Petcu and Faltings, 2005; Rogers et al., 2009). Similarly, the number of messages exchanged inADOPT

is exponential in the height of the communication tree, and in APO, the mediator agents are required
to perform computations which grow exponentially in the size of the portion of the problem they are
responsible for. Such exponential relationships are simply unacceptable in embedded devices that exhibit
constrained computation, bandwidth and memory resources.On the other hand, in these settings, it is clear
that local algorithms are more effective, because the quality of the solutions they produce are typically
satisfactory (even if they are not optimal), and they perform favourably in terms of the issues of scalability
mentioned above.

Now, the characteristics of complete DCOP algorithms are well understood, and the properties of the
entire framework of local message–passing algorithms havebeen extensively analysed, with guarantees
placed on their solutions under a range of assumptions, for example, for tree structured (Aji and McEliece,
2000) or single–looped constraint graphs (Weiss, 2000). Incontrast, no such unifying and categorising
framework has existed for local iterative algorithms untilnow. One reason for this is because, broadly
speaking, these algorithms originate from two different literatures; either they are learning or adaptive
processes taken from game theory or they are distributed versions of centralised procedures developed
for traditional constraint optimisation problems or heuristic search methods taken from computer science.
In more detail, (centralised) constraint optimisation problems evolved, in part, as a method for analysing
over–constrained constraint satisfaction problems. As such, traditional computer science approaches to
such problems include the breakout algorithm, arc consistency, dynamic programming and stochastic
optimisation techniques. Consequently, a traditional computer science approach to solving DCOPs, which
includes many local approximate best–response algorithms, starts by developing distributed versions
of these centralised algorithms. For example, distributedbreakout (Hirayama and Yokoo, 2005) and
maximum–gain messaging (Maheswaran et al., 2005) are two local approximate best–response algorithms
that descend from the breakout algorithm, and distributed versions of simulated annealing have been
developed for DCOPs (Fitzpatrick and Meertens, 2003; Arshad and Silaghi, 2003), which also fall
into the category of local approximate best–response algorithms. On the other hand, from a game–
theoretic perspective, in a DCOP, each autonomous agent’s aim is to maximise its own private utility
function through its independent choice of state. From thispoint of view, each agent’s optimal choice is
strategically dependent on the actions of its neighbouringagents (a perspective on DCOPs first adopted
by Maheswaran et al., 2004), and distributed algorithms forsolving such problems is the focus of the
literature of learning in games (e.g. Fudenberg and Levine,1998). However, what is common to both of
these literatures is that the techniques used are all local,iterative, approximate best–response algorithms,
in which agents exchange messages containing only their state, and which typically converge to local
optima (or Nash equilibria); and it is game theory that has the tools and terminology to analyse algorithms
that operate in such settings. In particular, we stress that, in giving up global optimality, we consider the
set of local optima, or equivalently, Nash equilibria, to bethe appropriate solution concept for this class
of algorithm. This is because this set represents the stableconfigurations of variables that can be reached
by exchanging messages that contain only an agent’s state (i.e. the information in the messages circulated
in all of the algorithms in this class defines the appropriatesolution concept).

Against this background, the main contribution of this paper is the first unifying analytical framework
for studying iterative approximate best–response algorithms that are used to solve both DCOPs and
potential games. Our framework is based on a problem formulation known as ahypergraphical game
(Papadimitriou and Roughgarden, 2008) and convergence results regarding the class ofpotential games
(Monderer and Shapley, 1996b). Specifically, we show that a hypergraphical game is a potential game if
every local interaction can be represented as a local potential game, and this is the case for all DCOPs.
We then use this framework to develop a novel parameterisation of iterative approximate best–response
DCOP algorithms. In order to populate this parameterisation, we decompose algorithms proposed in both
the game theory and computer science literatures in such a way so as to identify categories of substitutable
components. We then analyse how these components affect theconvergence properties of an algorithm
employing them, using convergence analysis techniques developed specifically for potential games. As

Iterative approximate best–response algorithms for DCOPs 5

such, our framework can be applied to potential games generally. However, due to the fact that we are
considering these algorithms as distributed optimisationtools, we restrict the larger part of our discussion
to the specific case of DCOP games.

In more detail, in this paper, we advance the state of the art in the following ways:

1. We derive a general result regarding hypergraphical potential games, which states that a hypergraph-
ical game is a potential game if each of the local games is a potential game.

2. Building upon a game–theoretic formulation of DCOPs (introduced by Maheswaran et al., 2004),
we show that, as a consequence of the above result, DCOP gamesform a subset of potential games.
This allows us to apply established methods for analysing algorithms from game theory to existing
algorithms produced by the computer science community, employing the Nash equilibrium condition
as the relevant solution concept.

3. We develop an overarching framework that encompasses many local approximate best–response
DCOP algorithms, in which we decompose the algorithms into three components: (i) astate
evaluation, in the form of a target function; (ii) adecision rule, mapping from target function to a
choice of state; and (iii) anadjustment schedule, controlling which agent updates its state when. This
framework allows us to elucidate, for the first time, the relationships between the various algorithms
in the form of a parameterisation of the local iterative DCOPalgorithm design space. At present,
various algorithms from the different disciplines use different terms for the same concepts, and are
largely developed without awareness of the many similarities between them.5

4. By constructing such a unified view, we are able to uncover synergies that arise as a result of
combining various approaches (e.g. using a particular target function and decision rule in order to
reduce the communication requirement of an algorithm), andidentify trade–offs in the behaviour
produced by different components (e.g. choosing between adjustment schedules to produce either a
slower, but anytime, algorithm, or one that converges quicker on average).

The analysis described above gives a multi–agent system designer the information needed to tailor
a DCOP algorithm to their particular requirements, whetherthey be high quality solutions, rapid
convergence, asynchronous execution or low communicationcosts. Moreover, such a unified approach
to analysing local approximate best–response DCOP algorithms is valuable in itself, because it makes the
pros and cons of the various algorithm configurations clear.Now, while this is our primary motivation, a
secondary motivation is that, by stating different approaches in terms of a common framework, we can
reconcile the differences in terminology that exist acrossthe various disciplines investigating DCOPs.
This, we believe, is a significant hindrance to progress in this field, and one which a unified approach can
start to remove. Furthermore, we believe that our frameworkprovides an important step towards greater
use of a common specification of other problems that are examined by both the computer science and
game theory communities, such as multi–agent resource and task allocation problems or the management
of congested networks.

The paper progresses as follows: We begin the next section bydescribing DCOPs. We then introduce
the notation of noncooperative games, state the Nash equilibrium solution concept for games, describe
hypergraphical games, and characterise the class of potential games and their associated properties. Then,
as a first step in developing our framework of the local approximate best–response DCOP algorithm
design space, we show that DCOPs are potential games. Using this result, in Section 3 we populate our
parameterisation of the algorithm design space with components of algorithms taken from the literatures
on local search for DCOPs and learning in games. In Section 4 we discuss the connections between,
and overlapping features of, game-theoretic algorithms and local approximate best–response algorithms
developed by computer scientists specifically for solving DCOPs. In more detail, by characterising

5One notable exception to this trend is Marden et al. (2009a),who illustrate the connections between potential games
andconsensus problems. In a consensus problem, a set of agents must reach consensusupon a given value (such as
a meeting point). These problems may be modelled as a DCOP containing binary and unary constraints. Each binary
constraint between two agents is satisfied when their variables are set to the same value, and violations are penalised
in proportion to their distance between their variables’ values. However, an agent’s strategy set may be limited by its
unary constraints such that it is not possible for it to simultaneously satisfy all its binary constraints.

6 A . C. CHAPMAN, A . ROGERS ET AL.

DCOPs as potential games, convergence to Nash equilibrium of the game-theoretic algorithms considered
here is guaranteed. Moreover, by drawing correspondences between the game-theoretic algorithms and
those developed specifically for DCOPs, these guarantees may be applied to the convergence of DCOP
algorithms. Finally, Section 5 summarises our findings and discusses directions for future work.

2 DCOPs as Potential Games

In this section we show that DCOPs, when viewed from a game theory perspective (as introduced by
Maheswaran et al., 2004), form a subset of the class of potential games, a useful class of games with
several properties desirable to the designer of a multi–agent system. Given this insight, we can bring
together the two sets of algorithms — taken from game–theoryand computer science — and analyse
them under a single framework, using results regarding the class of potential games. To this end, we begin
this section with an overview of DCOPs. We then introduce noncooperative games and the hypergraphical
game representation, in which a large game is reduced to a bipartite graph composed of agents connected
to smallerlocal games. In the specific context of DCOPs, these local games correspond to constraints.
We then focus on potential games, and in particular, we show that a necessary and sufficient condition
for a hypergraphical game to be a potential game is that each of its local games are potential games.
Now, the natural way to express constraints in a DCOP is asteam games, which are a specific type
of potential game. An important consequence of this is that DCOP games form a subset of potential
games. Thus, game theoretic techniques used to analyse algorithms in potential games can be used to
analyse DCOP algorithms. This insight is used in subsequentsections, where components of our algorithm
parameterisation are analysed using such techniques.

2.1 Constraint Optimisation Problems

A constraint optimisation problem is represented by a set ofvariablesV = {v1,v2, . . .}, each of which
may take one of a finite number of states or values,sj ∈ Sj , a set of constraintsC = {c1,c2, . . .}, and
a global utility function,ug, that specifies preferences over configurations of states ofvariables in the
system. A constraintc = 〈Vc,Rc〉 is defined over a set of variablesVc ⊂ V and a relation between those
variables,Rc, which is a subset of the Cartesian product of the domains of each variable involved in
the constraint,∏vj∈Vc Sj . A simple example is a binary constraint of the type typically invoked in graph
colouring problems, where the relation between the two variables involved,j andk, is given by the rule
that if v j = s thenvk 6= s. A function that specifies the reward for satisfying, or penalty for violating, a
constraint is writtenuck(sck), wheresck is the configuration of states of the variablesVck.

Using this, the global utility function aggregating the utilities from satisfying or violating constraints
takes the form:

ug(s) = uc1(sc1)⊕ . . .⊕uck(sck)⊕ . . .⊕ucl (scl),

where⊕ is a commutative and associative binary operator. Now, as weare trying to generate a preference
ordering over outcomes, we would like to ensure that an increase in the number of satisfied constraints
results in an increase in the global utility. That is, the aggregation operator should be strictly monotonic:
for any valuesa,b,c, if a < b thenc⊕a< c⊕b. Consequently, the choice of operator affects the range of
values that theui can take. For example, if⊕ is multiplication, the values ofui must be elements ofR+, or
if ⊕ is addition, the values ofui may be elements ofR. Either approach will generate a suitable ordering,
however, from here on we will take the common approach of using additive aggregation functions:

ug(s) = ∑
ck∈C

uck(s). (1)

Constraints may be ascribed different levels of importanceby simply weighting the rewards for satisfying
them, or by using a positive monotonic transform of constraint reward (Schiex et al., 1995). The objective
is then to find a global configuration of variable states,s∗, such that:

s∗ ∈ argmax
s∈ S

ug(s).

Iterative approximate best–response algorithms for DCOPs 7

It is also possible to include hard constraints in this formalisation of DCOPs. This is achieved by
augmenting the additive global utility function with a multiplicative element that captures the hard
constraints:

ug(s) = ∏
hck∈HC

uhck(s)

(

∑
sck∈SC

usck(s)

)

,

whereHC andSCare the set of hard and soft constraints, respectively, and where the payoff for satisfying
each hard constraint is 1, and 0 if the hard constraint is violated. The consequence is that if any of the hard
constraints are violated the global utility is 0, while if all of the hard constraints are satisfied the global
utility increases with the number of soft constraints satisfied. One downside to including hard constraints
in this manner is that the strict monotonicity ofug(s) is lost, meaning that a change in a variable’s state
may satisfy additional constraints, but not increase the global utility. If this is the case, it implies that the
global utility possesses many local, sub–optimal stable points that are only quasi–local maxima.

2.2 Distributed Constraint Optimisation Problems

A DCOP is produced when a set of autonomous agents each independently control the state of a subset
of the variables of a constraint optimisation problem, but share the goal of maximising the rewards for
satisfying constraints (i.e. they aim to jointly maximiseug(s)). For pedagogical value, and without loss of
generality, we consider the case where each agent controls only one variable. We notate the set of agents
involved in a constraint byNc, and the set of constraints in whichi is involved isCi . Each agent has a
private utility function, ui(s), which is dependent on both its own state and the state of all agents that
are linked to any constraintc ∈ Ci . We call these agentsi’s neighbours, notatedν(i), and notate those
neighbours involved in a specific constraintck asνck(i). The simplest and, arguably, most natural, choice
of utility function in DCOP is to set each agenti’s utility to the sum of the payoffs for constraints that it is
involved in:

ui(s) = ∑
ck∈Ci

uck(si ,sνck(i)). (2)

Now, each agent’s choice of strategy is guided by its desire to maximise its private utility, but this utility
is strategically dependent on the strategies of its neighbours. In order to analyse such a system, we use the
tools and terminology of noncooperative game theory.

2.3 Noncooperative Games

A noncooperative game,Γ = 〈N,{Si ,ui}i∈N〉, is comprised of a set of agentsN = 1, . . . ,n, and for each
agenti ∈ N, a set ofstrategies Si , with ×N

i=1Si = S, and autility function ui : S→ R. Note that, in
the context of DCOPs, we can usesi to represent the ‘state of a variable’ and ‘strategy of an agent’
interchangeably. A joint–strategy profiles∈ S is referred to as anoutcomeof the game, whereS is the set
of all possible outcomes, and each agent’s utility functionspecifies the payoff they receive for an outcome
by the condition that, if and only if the agent prefers outcome s to outcomes′, thenui(s) > ui(s′). That
is, each agent’s utility function ranks their preferences over outcomes. We will often use the notation
s= {si ,s−i}, wheres−i is the complimentary set ofsi .

In noncooperative games, it is assumed that an agent’s goal is to maximise its own payoff, conditional
on the choices of its opponents. Abest–response correspondence, βi(s−i), is the set of agenti’s optimal
strategies, given the strategy profile of its opponents,βi(s−i) = argmaxsi∈Si

{ui(si ,s−i)}. Stable points in
such a system are characterised by the set of Nash equilibria.

Definition 1 A joint–strategy profile, s∗, such that no individual agent has an incentive to change to a
different strategy, is aNash equilibrium:

ui(s
∗
i ,s

∗
−i)−ui(si ,s

∗
−i) ≥ 0 ∀ si , ∀ i. (3)

8 A . C. CHAPMAN, A . ROGERS ET AL.

In a Nash equilibrium, each agent plays a best response:s∗i ∈ βi(s∗−i) for all i ∈ N. As such, in a game
where agents independently choose which strategy to adopt,a Nash equilibrium is a stable point where
no individual agent has an incentive to change their strategy.

We can also define astrict Nash equilibrium, which is a necessary component of many proofs of
convergence in game theory, by replacing the inequality in Equation 3 with a strict inequality. The
implication of this substitution is that in a strict Nash equilibrium, no agent is indifferent between their
equilibrium strategy and another strategy, which is not thecase in a Nash equilibrium. This also leads us to
a definition of non–degenerate games. In general, a non–degenerate game is one for which in every mixed–
strategy Nash equilibrium, all agents mix over the same number of pure strategies. When considering
pure–strategy Nash equilibria, non–degeneracy means thatfor any pure–strategy equilibrium profile of its
opponents, an agent’s best–response correspondence contains only one strategy. Consequently, all pure–
strategy Nash equilibria in non–degenerate games are strict. Note that this condition does not exclude the
possibility of a game possessing multiple Nash equilibria.Rather, it ensures that at most one equilibrium
exists for each of an agent’s pure strategies.

2.4 Hypergraphical Games

In DCOPs, an agent’s utility is a function of the constraintsin which it is involved, and is only dependent
on its own and its neighbours’ states: i.e.ui(si ,sν(i)). Therefore, we can model a DCOP game using a
compact representation known as ahypergraphical game. In more detail, hypergraphical games are a
model used to represent noncooperative games that have strict independences between players’ utility
functions (Papadimitriou and Roughgarden, 2008). In this model, the independences in the agents’ utility
functions are used to decompose ann–player global game into local games, each involving fewer players.
This decomposition can be thought of as a bipartite graph, inwhich one set of nodes corresponds to
the set of players and the other represents the games played between them. Then, any agenti whose
strategy affects others players’ payoffs in a particular local game is connected to that local game node.
This representation is more compact than the standard normal form whenever the global game can be
factored into sufficiently many local games, and when the maximum number of neighbours an agent
has,k, can be boundedk << n, it is exponentially smaller than the standard form (Papadimitriou and
Roughgarden, 2008).

Formally, a hypergraphical game comprises a set of local games:Γ = {γ1,γ2, ...,γm}. Each local game
is a tupleγ = 〈Nγ,{Si ,u

γ
i }i∈Nγ〉, whereNγ ⊆ N is the set of agents playingγ anduγ

i : ∪i∈Nγ Si → R is the
payoff to i from its involvement inγ. For each player,Si is identical for each game, and playeri chooses
one strategy to play in all of the local games it is involved in(i.e. i plays the same strategy in each local
game). As in DCOPs, agenti’s neighbours, ν(i), are the agents with whom agenti shares a local game
node, with those neighbours involved in a specific local gameγ notatedνγ(i). Agents are usually involved
in more than one local game, with the set of local games in which i is involved denotedΓi . Agenti’s total
payoff for each strategy is given by the sum of payoffs from each local game it is involved in:

ui(si ,s−i) = ∑
γ∈Γi

uγ
i (si ,sνγ(i)).

In the context of DCOPs, each constraint is modelled by a local game, and agents are linked to the local
games corresponding to their constraints. Each agent’s utility then is given by the sum of the utilities from
constraints that it is involved in (as in Equation 2).

More generally, the hypergraphical game model generalisesthe model offactor graphs(Kschischang
et al., 2001). Factor graphs can be used to represent DCOPs, as well as graphical probability models
such as Bayesian networks and Markov random fields. In both the factor graph and hypergraphical game
models, each variable node comes under the control of an agent, and, typically, the global utility to
be optimised is the sum or product of each agent’s utility.6 The difference between the models lies in
what the hyperedges represent. In factor graphs, a hyperedge (factor node) represents a single valued

6Generally, any optimisation problem that forms acommutative semi–ringcan be expressed as a bipartite factor graph
— see Aji and McEliece (2000) for details.

Iterative approximate best–response algorithms for DCOPs 9

function, which is its contribution to the utility of the agents it contains. In contrast, each hyperedge in a
hypergraphical game represents an arbitrary noncooperative game, in which agents’ payoffs may differ.
In other words, a factor graph is a special case of a hypergraphical game in which each local game gives
an identical payoff to all the agents involved:7 That is, local games in a DCOP areteam games, which are
a subclass of potential games.

2.5 Potential Games

The class of potential games is characterised as those gamesthat admit a function specifying the
participant’s joint preference over outcomes (Monderer and Shapley, 1996b). This function is known as
a potential function and, generally, it is a real-valued function on the joint–strategy space (the Cartesian
product of all agents’ strategy spaces), defined such that the change in a unilaterally deviating players
utility is matched by the change in the potential function. Apotential function has a natural interpretation
as representing opportunities for improvement to a player defecting from any given strategy profile. As the
potential function incorporates the strategic possibilities of all players simultaneously, the local optima of
the potential function are Nash equilibria of the game; thatis, the potential function is maximised by self-
interested agents in a system. Importantly, we will show that the global utility function acts as a potential
for a DCOP game. We now formalise some of the key concepts related to potential games.

Definition 2 (Potential Games) A function P: S→ R is a potential for a game if:

P(si ,s−i)−P(s′i,s−i) = ui(si ,s−i)−ui(s
′
i ,s−i) ∀ si , s′i ∈ Si ∀ i ∈ N.

A game is called apotential game if it admits a potential.

Intuitively, a potential is a function of action profiles such that the difference induced by a unilateral
deviation equals the change in the deviator’s payoff.

The usefulness of potential games lies in the fact that the existence of a potential function for a
game implies a strict joint preference ordering over game outcomes. This, in turn, ensures that the game
possesses a number of particularly desirable properties, which we will use to analyse the behaviour of
various algorithms in the coming sections.

Theorem 3 (Monderer and Shapley (1996b)) Every finite potential game possesses at least one pure
strategy equilibrium.

Proof Let P be a potential for a gameΓ. Then the equilibrium set ofΓ corresponds to the set of local
maxima ofP. That is,s is an equilibrium point forΓ if and only if for everyi ∈ N,

P(s) ≥ P(s′i ,s−i) ∀ s′i ∈ Si .

Consequently, ifP admits a maximal value inS(which is true by definition for a finiteS), thenP possesses
a pure–strategy Nash equilibrium. 2

Now, pure–strategy Nash equilibria are particularly desirable in decentralised agent-based systems, as
they imply a stable, unique outcome. Additionally, strict Nash equilibria must be pure by definition. Mixed
strategy equilibria, on the other hand, imply a stationary,probabilistically variable equilibrium strategy
profile. Also note that it is likely that more than one Nash equilibrium exists, and that some of those Nash
equilibria will be sub–optimal.

Building on this, astepin a gameΓ is a change in one player’s strategy. Animprovement stepin Γ
is a change in one player’s strategy such that its utility is improved. Apath in Γ is a sequence of steps,
φ = (s0,s1, . . . ,st . . .), in which exactly one player changes their strategy at each stept. A path has aninitial
point, s0, and if it is of finite lengthT, a terminal point sT . A pathφ is an improvement pathin Γ if for

7Indeed, this result holds for any problem that can be represented as a factor graph and in which the variable domains
are finite.

10 A . C. CHAPMAN, A . ROGERS ET AL.

all t, ui(st−1) < ui(st) for the deviating playeri at stept. A gameΓ is said to have thefinite improvement
propertyif every improvement path is finite.

Theorem 4 (Monderer and Shapley (1996b)) Every improvement path in an ordinal potential game
is finite.

Proof For every improvement pathφ = (s0,s1,s2, . . .) we have, by Equation 2:

P(s0) < P(s1) < P(s2) < .. .

Then, as S is a finite set, the sequenceφ must be finite. 2

The finite improvement property ensures that the behaviour of agents who play ‘better-responses’ in
each period of the repeated game converges to a Nash equilibrium in finite time. Taken together, these
properties ensure that a number of simple adaptive processes converge to a pure–strategy Nash equilibrium
in the game (as discussed further for specific algorithms in Section 4).

Using the definitions above, we can construct a mapping between potential and hypergraphical games.
To begin with, we note that Young (1998) shows that if every pairwise utility dependency corresponds
to a bimatrix potential game between two agents, then the entire game is a potential game. Building on
this, we generalise Young’s result to hypergraphical potential games comprising severaln–player games,
a result upon which the rest of the paper hinges.

Theorem 5 A hypergraphical gameΓ is a potential game if every local gameγ is a potential game.

Proof Sufficiency is shown by constructing a potential function for the hypergraphical gameΓ. Each
local gameγ has a potentialPγ(s), so a potential for the entire game,P, can be constructed by aggregating
the potentials of the local games:

P(s) = ∑
γ∈Γ

Pγ(s).

Now, given a strategy profiles, a change in a deviating playeri’s payoff is captured by changes in the
values of potential functions,Pγ(s), of the local gamesi is involved in,Γi , so the following statements
hold:

ui(si ,sν(i))−ui(s
′
i ,sν(i)) = ∑

γ∈Γi

uγ
i (si ,sνγ(i))− ∑

γ∈Γi

uγ
i (s

′
i ,sνγ(i))

= ∑
γ∈Γ

Pγ(si ,s−i)− ∑
γ∈Γ

Pγ(s′i ,s−i)

= P(si ,s−i)−P(s′i,s−i), (4)

where the second line flows from the first because the potential function between independent agents is a
constant value, and the third line flows from the second by definition. 2

Therefore, if every local game has a potential, the global hypergraphical game also has a potential. In
Section 2.6 we will use a specific instance of Theorem 5 to showthat DCOP games are potential games.
This result uses the fact thatteam gamesare a subclass of potential games. Formally, a team game is a
game in which all agents share a common payoff function, and this common payoff function is a potential
for the game: That is,uγ

i (s
γ) = Pγ(sγ), ∀ i ∈ N.

2.6 DCOPs as Graphical Potential Games

In Equation 2, we defined agents’ utilities such that all agents involved in a constraint receive the same
reward from that constraint; in other words, each constraint game is a team game. Consequently, we can
make the following remark, which is a corollary of Theorem 5.

Iterative approximate best–response algorithms for DCOPs 11

Corollary 6 Every DCOP game in which the agents’ private utilities are the sum of their constraint
utilities is a potential game.

As per Theorem 5, a potential for such a DCOP game can be constructed by aggregating the local (team)
games’ potential functions. Of course, this is exactly the global utility functionug, specified in Equation 1.
Now, for completeness, observe that, because a change ini’s strategy only affects the neighbours ofi, ν(i),
the following statements hold:

ui(si ,sν(i))−ui(s
′
i ,sν(i)) = ∑

ck∈Ci

uck(si ,sν(i))− ∑
ck∈Ci

uck(s
′
i ,sν(i))

= ∑
ck∈C

uck(si ,s−i)− ∑
ck∈C

uck(s
′
i ,s−i)

= ug(si ,s−i)−ug(s
′
i ,s−i). (5)

Thus, any change in state that increases an agent’s private utility also increases the global utility of the
system.8

Now, when the scenario requires employing a local approximate best–response algorithm, the solution
to a DCOP game is produced by the independent actions of the agents in the system. These solutions
are located at stable points in the game; that is, for this class of algorithms, the Nash equilibria of the
DCOP game characterise the set of solutions to the constraint optimisation problem. We have shown
that DCOP games are potential games, so we are assured that atleast one pure–strategy Nash equilibrium
exists. Furthermore, the globally optimal strategy profilecorresponds to a pure–strategy Nash equilibrium,
because it is a maximum of the potential. We emphasise that inmost DCOPs many Nash equilibria exist,
and furthermore, many of those will be sub–optimal. This is particularly the case when hard constraints
are incorporated, because, as noted earlier, the global utility function is likely to have many local quasi–
maxima wherever a hard constraint is violated.

Recently, however, quality guarantees on worst–case Nash equilibria andk–optima for DCOP games
have been derived for certain classes of DCOP games (Pearce and Tambe, 2007; Bowring et al., 2008). In
more detail,k–optima are a generalisation of Nash equilibria, applicable only to DCOPs, that are stable in
the face of deviations of all teams of sizek and less. The payoff to a team,χ is defined as:

uχ(sχ,s−χ) = ∑
ck∈Cχ

uck(sχ,s−χ),

whereCχ = ∪i∈χ Ci ; that is, the team utility is the sum of all constraint utilities any member ofχ is
involved in, counting each constraint only once. Nash equilibria arek–optima withk = 1, and every
(k+ 1)–optimum is also ak–optimum, so everyk–optima is a Nash equilibrium.9 The key result is that
the worst–casek–optimal solution improves as the value ofk increases (that is, as the maximum size of
the deviating coalitions considered increases). Given this, the worst–casek–optimum results can be used
to guarantee lower bounds on the solutions produced by some DCOP algorithms. However, bounds only
exist fork greater than or equal to the constraint arity of the problem,so bounds do not exist for Nash
equilibria in problems involving anything other than unaryconstraints.

We now present an example DCOP — a graph colouring game. We give this example because it is
often used as a canonical example in this domain, and it showsthat complicated payoff structures may be
constructed by combining simple constraint games.

8Tumer and Wolpert (2004) provide another method for showingthat DCOP games are potential games. Generally,
any global utility function whose variables are controlledby independent agents can be instantiated as a potential
game by setting each agent’s utility function equal to its marginal effect on the global utility (as in the alignment
criterion above). Then, by definition, any change in an agent’s utility is matched by an equivalent change in the global
utility. In a DCOP, one way to achieve this is to set each agent’s utility to the sum of the payoffs for constraints that it
is involved in, as in Equation 2.
9Although Nash equilibria correspond to 1–optima, note thatstrong equilibria(Aumann, 1959) do not correspond
to n–optima. A strong equilibrium is robust to deviations from all coalitions ofn players and less, where a coalition
deviates if at least one member’s individual payoff improves and none decrease. In a DCOP game, an–optimum
always exists, while a strong equilibrium may not. However,if a strong equilibrium does exist, it isn–optimal.

12 A . C. CHAPMAN, A . ROGERS ET AL.

Example 1 In graph colouring, neighbouring nodes share constraints,which are satisfied if the nodes
are in differing states. Consider the following graph colouring problem, where each node can be either
black or white, that is, Si = {B, W}, and the associated2×2 constraint game:

A B

sC

sA B W

B (0, 0) (1, 1)
W (1, 1) (0, 0)

C
sC

sB B W

B (0, 0) (1, 1)
W (1, 1) (0, 0)

Now, in this example, agents A and B each effectively play thegame above with agent C, while agent
C plays the composite game below, constructed by combining the constraint games it is playing with each
neighbour. In the tables below, A and B are column players andC is the row player. The top table contains
the payoffs (uA, uB, uC), and a potential for the game is given in the lower table:

sC

sA, sB B, B B, W W, B W, W

B (0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 2)
W (1, 1, 2) (1, 0, 1) (0, 1, 1) (0, 0, 0)

sC

sA, sB B, B B, W W, B W, W

B 0 1 1 2
W 2 1 1 0

In the above we have described the utility functions that define a DCOP game, the associated solution
concepts, and some important properties of DCOP games that flow from their classification as potential
games. However, what is not specified in the above formulation are the processes by which agents adjust
their states in order to arrive at a solution. These are the algorithms used to solve the game, and are the
topic of the next section. Before continuing, however, we make one general comment regarding both
the interpretation of the repeated game and the strategy adaptation process. We interpret the agents as
being involved in several rounds of negotiation about the joint state of their variables before playing the
DCOP game once. Alternatively, we could justify this perspective by assuming that the agents suffer
from extreme myopia, so that they do not look beyond the immediate rewards for taking an action, as is
standard in much of the literature on learning in repeated games. Either way, the only Nash equilibria that
are supported are the Nash equilibria of the one-shot DCOP game; that is, the Folk Theorem for repeated
games does not come into consideration.

3 A Framework for Local Approximate Best Response DCOP Algorithms

In this section we describe the basic components of the main DCOP algorithms present in the literature,
including those developed for solving potential games, those developed for DCOPs generally, and those
designed to solve specific problems that may be represented by a DCOP. By doing this, we open a way
to investigate synergies that arise by combining seeminglydisparate approaches to solving DCOPs using
local approximate best–response techniques. This is pursued further in the next section, where we analyse
how differences in the algorithms affect their behaviour and the solutions they produce, and propose
novel algorithms incorporating the best features of each. However, first of all, an explication of the basic
framework we use to analyse all the algorithms and the designspace is provided.

As noted above, in all the DCOP algorithms we discuss, agentsact myopically, in that they only
consider the immediate effects of their actions (or state changes, see the discussion above). Given an
appropriate trigger, the individual agents follow the samebasic two–stage routine, comprisingstate
evaluation, which produces some measure of the desirability of each state, followed by adecisionon

Iterative approximate best–response algorithms for DCOPs 13

which action to take, based on the preceding state evaluations. The system–wide process that triggers an
agent’s processes is given by anadjustment schedule, that controls which agent adjusts its state at each
point in time. In more detail:

State Evaluation: Each algorithm has a target function that it uses to evaluateits prospective states.
The target functions are typically functions of payoffs, and sometimes take parameters that are
set exogenously to the system or updated online. Additionally, some algorithms may make use of
information about the past actions of agents to compute the value of the target function.

Decision Rule: The decision rule refers to the procedure by which an agent uses its evaluation of states
to decide upon an action to take. Typically an algorithm prescribes that an agent selects either the
state that maximises or minimises the target function (depending on the target function in question),
or selects a state probabilistically, in proportion to the value of the target function for that state.

Adjustment Schedule: In many algorithms (particularly those addressed in the game theory literature),
the scheduling mechanism is often left unspecified, or is implicitly random. However, some
algorithms are identified by their use of specific adjustmentschedules that allow for preferential
adjustment or parallel execution. Furthermore, in some cases the adjustment schedule is embedded
in the decision stage of the algorithm.

Note that communication does not figure explicitly in this framework. Information is communicated
between agents for two purposes: (i) to calculate the value of their target function, or (ii) to run the
adjustment schedule. Given this, the communication requirements of each algorithm depend on the
needs of these two stages. For example, algorithms that use random adjustment protocols only transfer
information between agents to calculate the value of their target function (usually just their neighbours’
states), whereas in algorithms that use preferential adjustment schedules (such as the maximum–gain
messaging algorithm), additional information may be required to run the adjustment schedule.

Given this background, this section examines the forms thateach of the three algorithm stages can
take. In doing so, we make clear, for the first time, the many connections between the various algorithms.
During this section we will be referring to many algorithms from the literature on DCOP algorithms and
learning in games, the most important being:

• Best response and smooth best response (Fudenberg and Levine, 1998);
• Better–reply dynamics (Mezzetti and Friedman, 2001);
• Distributed stochastic algorithm (Tel, 2000; Fitzpatrickand Meertens, 2003);
• Maximum–gain messaging algorithm (Yokoo and Hirayama, 1996; Maheswaran et al., 2005);
• Adaptive play (Young, 1993) and spatial adaptive play (Young, 1998, Chapter 6);
• Distributed simulated annealing (Arshad and Silaghi, 2003);
• Fictitious play (Brown, 1951; Robinson, 1951) and smooth fictitious play (Fudenberg and Kreps,

1993; Fudenberg and Levine, 1998);
• Joint strategy fictitious play (Marden et al., 2009b);
• Regret matching (Hart and Mas-Colell, 2000) and variants ofregret monitoring (Arslan et al., 2007);
• Stochastic coordination–2 algorithm and maximum–gain messaging–2 algorithm (Maheswaran et al.,

2005);

We now discuss the various target functions that are used in DCOP algorithms, and then examine different
decision rules and adjustment schedules used in DCOP algorithms.

3.1 State Evaluations

The way in which a local iterative approximate best–response algorithm searches the solution space is, in
the largest part, guided by the target function used by agents to evaluate their choice of state. The most
straightforward approach is to directly use the payoffs given by the utility functions to evaluate states.
Some shortcomings of this approach, such as slow convergence, poor search and sub–optimal solutions,

14 A . C. CHAPMAN, A . ROGERS ET AL.

are addressed by more sophisticated specifications of the algorithm’s target function. These include using
measures of expected payoff, average regret, and aggregated utilities. The next subsection addresses using
immediate payoffs as a target function, while subsequent ones examine the more sophisticated target
functions.

3.1.1 Immediate Payoff and Change in Payoff
As noted above, the simplest target function that a DCOP algorithm can use to evaluate its strategy is to
directly use its private utility function,ui(si ,s−i), producing typical ‘hill-climbing’ or ‘greedy’ behaviour.
This leads the system to a Nash equilibrium, which corresponds to a local potential–maximising point.
The best–response dynamics is the most well known example ofsuch an approach.

Furthermore, many algorithms, including the distributed stochastic algorithm, the distributed breakout
algorithm and the maximum–gain messaging algorithms, use the amount to be gained by changing strategy
as a target function. This is a simple perturbation of the utility function achieved by finding the difference
between the current state’s value and the value of all other possible states. For many decision rules, using
either the gain or the raw utility function as an input will produce the same result. However, when it is
useful to differentiate between those states that improve payoff and those that do not, or when the decision
rule used can only take non–negative values as inputs, gain in payoff is the appropriate target function.

Agents using this target function to update their evaluation of states only need to observe the current
state of their neighbours to run the algorithm, and do not need to communicate any further information.
However, the use of such a target function can often result inslow convergence.

3.1.2 Expected Payoff Over Historical Frequencies
In order to speed up convergence, an algorithm can use the expected payoff for each state over historical
frequencies of state profiles as a target function. These canbe constructed in at least two different ways,
either by maintaining an infinite memory of past actions, as in the fictitious play algorithms, or a finite
memory, as in variants of adaptive play.

First, we consider the infinite memory case, and the fictitious play target function in particular. Let
agentj ’s historical frequencyof playings′j , be defined as:

qt
s′j

=
1
t

t−1

∑
τ=0

I{s′j = sτ
j},

whereI{s′j = sτ
j} is an indicator function equal to one ifs′j is the strategy played byj at timeτ, and zero

otherwise. This may be stated recursively as:

qt
s′j

=
1
t

[

I{s′j = st−1
j }+(t−1)qt−1

s′j

]

.

Now,qt
s′j

may be interpreted asi’s belief that its opponent,j, will play strategys′j at timet. Agenti’s belief

over each of its opponents’ actions as a vector of historicalfrequencies of play for eachj 6= i is:

qt
j =











qt
s1

j

...
qt

s
|Sj |
j











,

and i’s belief over all of its opponents’ actions is the set of vectorsqt
−i = {qt

j} j∈N\i . Following this,i’s
expected payoff for playings′i , givenqt

−i, is then:

FPt
i (s

′
i ,q

t
−i) = ∑

s−i∈S−i

[

ui(s
′
i ,s−i) ∏

sj∈s−i

qt
sj

]

(6)

where, in general,S−i =∪ j 6=i∈NSj . However, note that in any hypergraphical game, such as a DCOP game,
q−i andS−i may be replaced withqν(i) andSν(i), respectively.

Iterative approximate best–response algorithms for DCOPs 15

The classical fictitious play and smooth fictitious play algorithms use this measure of expected payoff
as a target function. Variations of fictitious play that use other methods to update the agent’s belief state
have been suggested, many of which are contained in the broadfamily of generalised weakenedfictitious
play processes (Leslie and Collins, 2006). For example, in situations where an agent can only observe
its payoff and has no knowledge of its neighbours’ actions, the expected payoff may be calculated as
the average received payoff to each action. This is known ascautiousor utility-basedfictitious play
(Fudenberg and Levine, 1995), and, as noted by Arslan et al. (2007), is effectively a payoff-based
reinforcement learning algorithm. Additionally, Crawford (1995) suggests aweightedfictitious play
process for highly variable environments, in which the contribution of past observations to an agent’s
belief are exponentially discounted.

A similar infinite memory process, calledjoint–strategy fictitious play(JSFP), was introduced by
Marden et al. (2009b). In this process, each agent keeps track of the frequency with which its opponents
play eachjoint strategys−i , rather than their individual strategy frequencies. In this case, leti’s belief
over its opponents’ joint–strategy profiles,qt

i (s−i), be given by the fraction of times it observes each joint
profile. Each agent’s expected payoff given this belief is then:

JSFPt
i (s

′
i ,q

t
−i) = ∑

s−i∈S−i

qt
i(s−i)ui(s

′
i ,s−i).

This can be expressed more simply as:

JSFPt
i (s

′
i ,q

t
−i) =

1
t

t

∑
τ=1

ui(s
′
i ,s

τ
−i),

wheresτ
−i is the strategy profile of the agent’s opponents at timeτ. Furthermore, this target function can

be specified recursively, which only requires agents to maintain a measure of the expected payoff for each
state, rather than the full action history:

JSFPt
i (s

′
i ,q

t
−i) =

1
t

[

ui(s
′
i ,s

t
−i)+ (t−1)JSFPt−1

i (s′i ,q
t−1
−i)

]

, (7)

whereui(si ,st
−i) is the fictitious payoff toi for each element ofSi given its opponents’ profile att.

Marden et al. (2009b) show that the classical fictitious playand the joint–strategy fictitious play target
functions coincide in all two–player games. As an example ofthe usefulness of the hypergraphical game
representation, we now show that the classical fictitious play and the joint–strategy fictitious play target
functions are identical in all binary hypergraphical games(i.e. every local game is a two–player game).
To begin with, in any hypergraphical game, Equation 6 can be expressed in terms of the sum of utilities
from local games:

FPt
i (s

′
i ,q

t
−i) = ∑

γ∈Γi

∑
s−i∈S−i

[

uγ
i (s

′
i ,s−i) ∏

sj∈s−i

qt
sj

]

.

Now, in a binary hypergraphical game, the product term is redundant because an agent has only one
opponent in each local game, so usingqt

s′j
= 1

t ∑t−1
τ=0 I{s′j = sτ

j}, we can rewrite the above as:

FPt
i (s

′
i ,q

t
−i) = ∑

γ∈Γi

∑
sjγ∈Sjγ

uγ
i (s

′
i ,sjγ)

1
t

t−1

∑
τ=0

I{sjγ = sτ
jγ},

wherejγ is i’s opponent inγ. The expression above can be simplified because the combination of summing
over allSjγ and the indicator function can be replaced by taking the average of the payoffs actually received
in each local game over time. This gives:

FPt
i(s

′
i ,q

t
−i) =

1
t

t−1

∑
τ=0

∑
γ∈Γi

uγ
i (s

′
i ,s

τ
jγ),

16 A . C. CHAPMAN, A . ROGERS ET AL.

which, like the joint–strategy fictitious play target function, admits a recursive specification:

FPt
i (s

′
i ,q

t
−i) =

1
t

[

∑
γ∈Γi

uγ
i (s

′
i ,s

t
jγ)+ (t−1)FPt−1

i (s′i ,q
t−1
−i)

]

=
1
t

[

ui(si ,s
t
−i)+ (t−1)FPt−1

i (s′i ,q
t−1
−i)

]

.

This form of classical fictitious play for binary hypergraphical games is identical to the definition of the
joint–strategy fictitious play target function stated in Equation 7.

We now consider a class of processes that evaluate the expected payoff for each state over historical
frequencies of state profiles computed from samples taken from a finite memory, called adaptive play
(Young, 1993). In adaptive play, agents maintain a finite history over their opponents’ actions, and
construct an estimate of their mixed strategies by samplingfrom this history. Each individual only has
a finite memory, of lengthm, and recalls the previousm actions taken by opponents. On each play of the
game, each individual takes a sample of sizek ≤ m from this memory, and computes an estimate of its
opponents’ actions from this sample. That is,i’s belief over j ’s actions,q(sj)

i,t , is given by the proportion
of times thatj has played strategysj in the sample of sizek. Then, as in fictitious play,i’s expected payoff
for playings′i , givenqi,t

−i, is given by:

APt
i (s

′
i ,q

i,t
−i) = ∑

s−i∈S−i

[

ui(s
′
i ,s−i) ∏

sj∈s−i

qi,t
sj

]

. (8)

All of the adaptive play variants use this type of state evaluation, with various constraints on the relative
values ofm andk. In particular, spatial adaptive play was described in Young (1998) as a variation of
adaptive play in which both the memorym and the sample sizek are 1, and in which only a single agent
updates its strategy each time step.

The fictitious play, joint–strategy fictitious play and adaptive play target functions have the same
communication requirements as algorithms that use the immediate payoff for an action as a target function,
because at each point in time each agent only needs to know thevalues ofs−i in order to update its
evaluation of each of its states.

3.1.3 Average Regret for Past Actions
Another approach that can be used to speed up convergence is to measure the average ‘regret’ for not
taking an action, where the regret measure for a particular strategy at a particular time is the difference
between the payoff that would have been received for playingthat strategy at timeτ and the strategy that
was actually chosen atτ. The average of these differences over the history of repeated play is the average
regret for not adopting that particular strategy consistently over the entire history of play:

ARt
i =

1
t

t

∑
τ=1

[

ui(s
′
i ,s

τ
−i)−ui(s

τ
i ,s

τ
−i)
]

This target function is also known asexternal regret. Like the measure of expected payoff based on joint
strategies discussed above, the average regret target function can be specified recursively, only requiring
the agents to maintain a measure of average regret for each state:

ARt
i =

1
t

[

ui(s
′
i ,s

t
−i)−ui(s

t)+ (t−1)ARt−1
i

]

. (9)

Hart and Mas-Colell (2000) use this target function to construct their regret matching algorithm, and use
it to characterise an entire class of adaptive strategies (Hart and Mas-Colell, 2001). It is also used as the
target function for a distributed simulated annealing method for finding the Nash equilibria of games (La
Mura and Pearson, 2002). Like fictitious play, many variantsof the method of updating regrets have been
suggested. For example, a variation of average regret for situations where an agent can only observe its
own payoff is known asinternal regret(Blum and Mansour, 2007). This method calculates regret as the

Iterative approximate best–response algorithms for DCOPs 17

difference between the average payoff for choosing each state in the past and the received payoff for the
state selected at a particular time. In this way it is analogous to cautious fictitious play.

Another example, proposed by Arslan et al. (2007), is a regret–based target function in which past
regrets are weighted by a constant value. In other words, past regrets are exponentially discounted, or the
agents have ‘fading memory’:

WRt
i = ρ

[

ui(si ,s
t
−i)−ui(s

t)
]

+(1−ρ)WRt−1
i , (10)

where(1−ρ) is the discount factor, 0< ρ ≤ 1.
Again, this target function uses the same observations as algorithms that use the immediate payoff,

fictitious play, joint–strategy fictitious play and adaptive play target functions payoff for an action as a
target function, because at each time–step, an agent only needs to know the values ofs−i in order to
update its regret for each of its states.

3.1.4 Aggregated Immediate Payoffs
One inconvenient aspect of the above target function specifications is that they are prone to converging to
suboptimal equilibria (in the absence of some ergodic process such as a random perturbation to payoffs, as
will be discussed in Section 3.2). A number of algorithms avoid this problem by using aggregated payoffs
to evaluate states. However, these algorithms have significantly increased communication requirements,
as agents pass information regarding the value of each state, rather than just indicating their current state.

The maximum–gain messaging–2 algorithm and stochastic coordination–2 algorithm both use a
pairwise aggregate of local utility functions to evaluate the joint state of any two agents,i and j:

ui j = ∑
ck∈Ci

uck(si ,sj ,s−{i, j})+ ∑
ck∈Cj

uck(si ,sj ,s−{i, j})− ∑
ck∈Ci∩Cj

uck(si ,sj ,s−{i, j}), (11)

where the final term adjusts for the double counting of any constraints shared by the agents. This target
function allows the agents to evaluate synchronised state changes, and can be used to avoid the worst
Nash equilibria in the system by converging only to 2–optima. As mentioned in Section 2.2, Pearce
and Tambe (2007) show that the worst–case 2–optimum solution to a DCOP game is greater than that
for a Nash equilibrium, or 1–optimum. Thus, this result implies that an algorithm that uses a pairwise
aggregated target function has a higher lower bound solution than any algorithm that only converges to a
Nash equilibrium.

Furthermore, Maheswaran et al. (2005) propose two familiesof k–coordinated algorithms —the
maximum–gain messaging–k and stochastic coordination–k algorithms — that use locally aggregated
utilities for coalitions ofk agents, which each converge to an element of their respective set ofk–optima.
However, although the number of messages communicated at each step to calculate the aggregated utilities
increase linearly with the number of neighbours each agent has, the size of each message increases
exponentially with the size of the coalitions. These factors make constructing algorithms that aggregate
the utilities of large coalitions of agents infeasible.

3.2 Decision Rules

A decision rule is the procedure that an agent uses to map the output of its target function to its choice of
strategy. The decision rule used by most DCOP algorithms is either theargmaxor argmin functions, or
probabilistic choice functions. The choice between these two serves an important purpose, as it determines
whether the algorithm follows a hill-climbing trajectory or is stochastic. In the former case, the algorithm
produced may converge quickly — or may even be anytime — but itmay not be able to escape from the
basin of attraction of a local maximum.

On the other hand, adding ergodicity allows the algorithm toescape from the basin of attraction
of a sub-optimal Nash equilibrium (or local maximum of the potential function), but at the cost of
sometimes degrading the solution quality. Proportionallyprobabilistic decision rules map payoffs through
a probabilistic choice function to a mixed strategy (Fudenberg and Levine, 1998). As such, states with a

18 A . C. CHAPMAN, A . ROGERS ET AL.

higher–valued target function are chosen with greater probability, but states with lower payoffs than the
current state are sometimes chosen. This allows the agents in the system to escape local optima. However,
it also means that the algorithm is no longer an anytime optimisation algorithm. Two such probabilistic
choice functions are thelinear andmultinomial logitchoice models. Thesimulated annealingdecision
rules add ergodicity by probabilistically moving to a lowerutility state in proportion to its distance from
the current state’s utility, while always moving to states with higher utility. Finally, theε–greedy decision
rule, commonly used in machine learning, selects a state with the highest valuation with probability(1−ε)
and chooses uniformly from the remaining states with probability ε. We now consider these rules in more
detail.

3.2.1 Argmax and Argmin Decision Rules
The argmaxfunction (or, equivalently, theargmin function) returns the state with the highest (lowest)
valued target function. Two variations of this decision rule are present in the literature, which differ in how
they handle multiple situations where multiple states correspond to the highest value of the target function.
These two variants of theargmax function are discussed in the context of the distributed stochastic
algorithm in Zhang et al. (2005), where the algorithms are namedDSA–A andDSA–B, respectively. In
the first, which we callargmax–A, if the agent’s state att − 1 is one of the states that maximises the
target function, then it is the state selected att. Otherwise, a new state is randomly chosen with equal
probability from the set of target function maximising states. That is, the agent only changes its state if
it improves the value of its target function. In the second variant, argmax–B, an agent randomly selects
a new state from the set of target function maximising states, without regard for the state att −1. Note
that in non–degenerate games, every best response is unique, so the two variants of the argmax function
behave identically.

A benefit is that using theargmaxfunction in conjunction with an immediate reward target function and
a suitable adjustment schedule (such as in the maximum–gainmessaging algorithm) is that the resulting
algorithm can be ‘anytime’, in that each new solution produced is an improvement on the last. However,
one potential drawback of this technique is its dependence on initial conditions, even when the algorithm
is not anytime. It is possible that the initial random configuration of states places the system outside the
basin of attraction of an optimal Nash equilibrium, meaningthat an algorithm using theargmaxdecision
rule can never reach an optimal point. To avoid this scenario, a probabilistic decision rule may be used
instead.

3.2.2 Linear Probabilistic Decision Rules
The linear probabilistic decision rule produces a mixed strategy with probabilities in direct proportion to
the target value of each state:

Prsi =
ui(si ,st

−i)

∑si∈Si
ui(si ,st

−i)
.

This model is only appropriate when the target function supplies a non-negative input. Although this
appears to be quite a substantial limitation, the linear probabilistic choice rule is useful in certain
circumstances. For example, the regret matching algorithmuses the linear probabilistic choice function
with negative regrets set equal to zero, so that they are chosen with zero probability (Hart and Mas-Colell,
2000). Another example is the better–reply dynamic, in which an agent randomly chooses a new state
from those which (weakly) improve its payoff (Mezzetti and Friedman, 2001).

3.2.3 Multinomial Logit Decision Rules
One probabilistic decision rule that can accept negative input is the multinomial logit decision rule
(Anderson et al., 1992), known in statistical mechanics as the Boltzmann distribution:

Prsi (η) =
eη−1ui(si ,st

−i)

∑si∈Si
eη−1ui(si ,st

−i)
. (12)

Iterative approximate best–response algorithms for DCOPs 19

Here states are chosen in proportion to their reward, but their relative probability is controlled byη,
a temperature parameter. Ifη = 0 then theargmaxfunction results, whileη = ∞ produces a uniform
distribution across strategies, which results in the stateof the system following a random walk. Depending
on the specifics of the problem at hand, the temperature can bekept constant or may be decreased over
time. If an appropriate cooling schedule is followed, the later case is referred to as a ‘greedy in the limit
with infinite exploration’ decision rule in the online reinforcement learning literature (Singh et al., 2000).
The multinomial logit choice function is used in typical specifications of smooth best response, spatial
adaptive play (Young, 1998, Chapter 6) and smooth fictitiousplay (Fudenberg and Levine, 1998; Hofbauer
and Sandholm, 2002).

3.2.4 Simulated Annealing Decision Rules
The simulated annealing decision rule is a probabilistic decision rule that works by randomly selecting a
new candidate state,k, and accepting or rejecting it based on a comparison to the current state (Metropolis
et al., 1953; Kirkpatrick et al., 1983). All improvements inthe target function are accepted, while states
that lower the value of the target function are only acceptedin proportion to their distance from the current
state’s value. For example, the case where the target function is given by the agent’s private utility function
gives the following decision rule:

Prsi (η) =

{

1 if ui(k,s−i) ≥ ui(si ,s−i)

eη−1(ui(k,s−i)−ui(si ,s−i)) otherwise,
(13)

whereui(k,s−i) andui(si ,s−i) are the candidate and the current state’s payoffs, respectively. As with the
multinomial logit choice model (Equation 12),η is a temperature parameter. Ifη = 0 then only states
that improve the target function are accepted, whileη = ∞ means that all candidate states are accepted,
and consequently, as with the multinomial logit function, the state of the system follows a random walk.
The temperature may be kept constant, resulting in an analogue of the Metropolis algorithm (Metropolis
et al., 1953), or may be decreased over time as in a standard simulated annealing optimisation algorithm
(Kirkpatrick et al., 1983). Distributed simulated annealing has been proposed as a global optimisation
technique for DCOPs (Arshad and Silaghi, 2003), and a simulated annealing algorithm based on average
regret has been suggested as a computational technique for solving the Nash equilibria of general games
(La Mura and Pearson, 2002).

3.2.5 Theε–Greedy Decision Rule
One particularly common decision rule used in online reinforcement learning is known asε–greedy. Under
this rule, an agent selects a state with maximal expected reward with probability(1− ε), and a random
other action with probabilityε, i.e.:

Prsi (ε) =

{

1− ε if si = argmax
k∈ Si

[ui(k,s−i)]

ε otherwise,
(14)

Like the multinomial logit decision rule, the exploration parameter,ε, can be kept constant or may be
decreased over time. Under specific conditions on the rate ofdecrease, the later case is another example
of a ‘greedy in the limit with infinite exploration’ decisionrule (Singh et al., 2000). This decision rule is
used in many variations of adaptive play (e.g. Young, 1993).

3.3 Adjustment Schedules

An adjustment schedule is the mechanism that controls whichagents adjust their state at each point in
time. The simplest schedule is the ‘flood’ schedule, where all agents adjust their strategies at the same
time. Beyond this, adjustment schedules can be divided intotwo groups: random or deterministic. The
former are typically run by each agent independently, and can produce sequential or parallel actions
by agents. The latter often require agents to communicate information between themselves in order to

20 A . C. CHAPMAN, A . ROGERS ET AL.

coordinate which agent adjusts its strategy at a given pointin time, with priority usually given to agents
that can achieve greater gains or are involved in more conflicts. Other times the ordering is decided upon
in a preprocessing stage of the algorithm.

3.3.1 Flood Schedule
Under the flood schedule, all agents adjust their strategiesat the same time. This schedule is in essence the
Jacobi iteration method (Press et al., 1992). It is frequently used in applications of local greedy algorithms
(e.g. Matthews and Durrant-Whyte, 2006)), and in implementations of fictitious play (e,g, Leslie and
Collins, 2006)) and some variants of adaptive play (e.g. Young, 1993).

A problem commonly observed with algorithms using the flood schedule, particularly greedy algo-
rithms, is the presence of ‘thrashing’ or cycling behaviour(Zhang et al., 2005). Thrashing occurs when, as
all agents adjust their states at the same time, they inadvertently move their joint state to a globally inferior
outcome. Furthermore, it is possible that a set of agents canbecome stuck in a cycle of adjustments that
prevents them from converging to a stable, Nash equilibriumoutcome. In theory, the potential for these
types of behaviours to occur means that convergence cannot be guaranteed, while in practice they are
detrimental to the performance of any algorithm using the flood schedule.

3.3.2 Parallel Random Schedules and Inertia
Parallel random adjustment schedules are simply variations of the flood schedule, in which each agent
has some probabilityp of actually changing its state at any time step. In the computer science literature
on DCOPs,p is known as the ‘degree of parallel executions’ (Zhang et al., 2005), whereas in the game
theory literature it is commonly referred to as choice ‘inertia’ (e.g. Mezzetti and Friedman, 2001; Marden
et al., 2009b).

Now, this type of adjustment schedule does not ensure that thrashing is entirely eliminated. However
by selecting an appropriate value ofp, thrashing and cycling behaviour can be minimised, producing
an efficient algorithm with parallel execution without increasing the communicational requirements.
Furthermore, inertia is essential to the convergence proofs of various processes, such as the better–
reply dynamics and joint–strategy fictitious play. This is the adjustment schedule used by the distributed
stochastic algorithm, regret matching, and joint–strategy fictitious play with inertia.

3.3.3 Sequential Random Schedules
The group of adjustment schedules that we callsequential random schedulesinvolve randomly giving one
agent at a time the opportunity to adjust its strategy, with agents selected by some probabilistic process.
The motivation for using this adjustment schedule is grounded in the convergence proofs for many of the
adaptive procedures taken from the game theory literature.In particular, the finite improvement property
of potential games directly implies that agents that play a sequence of ‘better responses’ converge to a
Nash equilibrium in a finite number of steps. This property isused to prove the convergence of spatial
adaptive play and a version of Fictitious Play with sequential updating (Berger, 2007).

Now, sequential procedures do not allow for the parallel execution of algorithms in independent
subgraphs, where thrashing is not a concern, or for the execution of algorithms whose convergence can
be guaranteed without asynchronous moves. However, they doensure that agents do not cycle or thrash,
which is a risk with using the flood or parallel random adjustment schedules.

In practice, there are a number of ways to implement this typeof schedule. A particularly straightfor-
ward approach which ensures that all agents have an opportunity to adjust their state is given by dividing
time into segments, with each agent randomly selecting a point from a uniform distribution over the
segment at which to adjust its strategy. Agents then adjust their states sequentially and in a random order,
which satisfies the assumptions of the theoretical convergence results. However, such a schedule may
depend on an external or synchronised clock. This type of schedule is essentially a form of Gauss-Seidel
iteration, in which the order of updating is shuffled each cycle (Press et al., 1992). We refer to this schedule
as a shuffled sequential schedule. Another simple approach would be to give each agent a mechanism that
triggers action according to a probabilistic function of time, such as an exponential distribution, which

Iterative approximate best–response algorithms for DCOPs 21

can be run on an internal clock. In this process the probability of any two agents adjusting their state at
the same time is zero. This could be called a sequential random exponential schedule. A final suggestion
is to use token passing to maintain sequential updates.

3.3.4 Maximum–Gain Priority Adjustment Schedule

The maximum–gain messaging algorithm takes its name from the type of adjustment schedule it uses
(Maheswaran et al., 2005; Yokoo and Hirayama, 1996). This preferential adjustment protocol involves
agents exchanging messages regarding the maximum gain theycan achieve. If an agent can achieve
the greatest gain out of all its neighbours, then it implements that change, otherwise it maintains its
current state. The maximum–gain messaging adjustment schedule avoids thrashing or cycling, as no two
neighbouring agents will ever move at the same time.

3.3.5 Constraint Priority Adjustment Schedule

A second preferential adjustment schedule, the constraintpriority adjustment schedule, works by
allocating each agent a priority measure based on the numberof violated constraints it is involved with.
This is the type of adjustment schedule used by theAPO algorithm.

4 Local Approximate Best Response Algorithm Parametrisation

In this section we discuss how the different components of a DCOP algorithm, as identified in Section 3,
affect the quality and timeliness of the solutions it produces. As an overview, Table 1 presents the
parameterisation of the main local approximate best–response DCOP algorithms highlighted in Sec-
tion 3: two versions of the distributed stochastic algorithm (DSA–A and DSA–B), the maximum–gain
messaging algorithm (MGM), the better–reply dynamic with inertia (BR–I), spatial adaptive play (SAP),
distributed simulated annealing (DSAN), fictitious play (FP) and smooth fictitious play (smFP), joint–
strategy fictitious play with inertia (JSFP–I), adaptive play (AP), regret matching (RM), weighted regret
monitoring with inertia (WRM–I), the stochastic coordination–2 algorithm (SCA–2), and the maximum–
gain messaging–2 algorithm (MGM–2). In this table, the relationships between the algorithms are clearly
shown, in terms of the components used to construct each of them.

Before beginning the detailed discussion, we define some of the terms we use in the analysis. In
particular, we say an algorithmconverges in finite timeif there exists a valueT after which the joint
state of the agents is guaranteed to be a Nash equilibrium. Analgorithmalmost surely convergesif the
probability of the agents’ joint state being a Nash equilibrium converges to 1 as the number of time steps
tends to infinity. An algorithmconverges in distributionif the distribution over joint states converges to
some specified distribution as time tends to infinity. Typically, the specified distribution is the Boltzmann
distribution over the joint state with temperatureη that maximises the global utility. Note that almost–
sure convergence and convergence in distribution do not prevent the algorithm from moving arbitrarily
far from a specified outcome, but only that these moves occur with decreasing probability (Grimmett and
Stirzaker, 2001). An algorithm is calledanytimeif at each time step the solution it produces is at least
as good as the one produced at the previous time step. Finally, a joint strategy is calledabsorbingif it
is always played after the first time it is played, as is standard in the stochastic processes literature (see
Grimmett and Stirzaker, 2001, for example).

We now move on to discuss in detail how the algorithms are related and where they differ, and
furthermore, how this affects their behaviour and the solutions they produce. In the process, we will
sketch several convergence proof techniques, and will extend some existing convergence proofs to cover
algorithms with similar structures. First, we analyse those algorithms that use immediate reward or change
in payoff as a target function. This allows us to demonstrateclearly how different decision rules and
adjustment schedules affect the convergence properties ofthe algorithms. We then discuss algorithms that
use recursive averaging measures, such as expected reward or regret, as target functions.

22 A . C. CHAPMAN, A . ROGERS ET AL.

Target Function Memory Decision Rule Adjustment Schedule

DSA–A ui(si ,s−i) — argmax–A Parallel random (p)

DSA–B ui(si ,s−i) — argmax–B Parallel random (p)

MGM ui(si ,s−i) — argmax–B Preferential: Maximum
gain

BR–I ui(si ,s−i) — argmax–B Flood

SAP ui(si ,s−i) — Logistic (η) Sequential random

DSAN ui(si ,s−i) — Sim. annealing (η) Parallel random (p)

FP ∑
s−i∈S−i

[

ui(s
′
i ,s−i) ∏

sj∈s−i

qt
sj

]

Opponents’ freq. of
play

argmax–B Flood

smFP ∑
s−i∈S−i

[

ui(s
′
i ,s−i) ∏

sj∈s−i

qt
sj

]

Opponents’ freq. of
play

Logistic (η) Flood

JSFP–I 1
t

[

ui(si ,st
−i)

+ (t −1)JSFPt−1
i

]

Average expected
utility

argmax–A Parallel random (p)

RM 1
t

[

ui(si ,st
−i)−ui(st)

+ (t −1)ARt−1
i

]

Average regrets Linear prob+ Parallel random (p)

WRM–I
ρ
[

ui (si ,st
−i)−ui(st)

]

+ (1−ρ)WRt−1
i

Discounted average
regrets

Linear prob+ or
logistic+ (η)

Parallel random (p)

SCA–2
ui(si ,s−i)+uj (sj ,s− j)

− ∑
ck∈Ci∩Cj

uck(si ,sj ,s−{i, j}) — argmax–A Parallel random (p)

MGM–2
ui(si ,s−i)+uj (sj ,s− j)

− ∑
ck∈Ci∩Cj

uck(si ,sj ,s−{i, j}) — argmax–B Preferential: Maximum
gain

Table 1 Parameterisation of the main local approximate best–response DCOP algorithms.

4.1 Immediate Reward and Gain–Based Algorithms

In this section we discuss those algorithms that use immediate payoff, change in payoff, or aggregated
measures of either to evaluate states. In so doing, we will demonstrate three techniques of proving
the convergence of a DCOP algorithm, which exploit the existence of a potential function in three
different ways. Importantly, these techniques can be extended to similar algorithms that comprise common
components. As such, we discuss the algorithms in groups based on their convergence proofs, beginning
with MGM which has the anytime property and converges to Nash equilibrium. Second, we considerDSA

andBR–I, which rely on almost–sure convergence to Nash equilibrium. Third, we discussSAP andDSAN,
which, by virtue of the particular probabilistic decision rules they employ, can be shown to converge in
distribution to the global maximum of the potential function. Finally, we discuss the convergence of the
MGM–k andSCA–k to k–optima, and relate their convergence to that ofMGM andDSA, respectively

4.1.1 Anytime Convergence of MGM

We begin withMGM. In ordinal potential games,MGM converges to a Nash equilibrium and is an anytime
algorithm (Maheswaran et al., 2005). This is because agentsact in isolation (i.e. none of their neighbours
change strategy at the same time), so their actions only everimprove their utility, which implies an
improvement in global utility (by Equation 5). Furthermore, by the same reasoning, the finite improvement
property ensures that this algorithm converges to a Nash equilibrium in finite time.10

10Maheswaran et al. (2005) show thatMGM is anytime and converges to an element in the set of Nash equilibrium in
DCOP games directly, without using a potential game characterisation of the problem.

Iterative approximate best–response algorithms for DCOPs 23

4.1.2 Almost–Sure Convergence of DSA and BRI
Although similar in construction toMGM, neitherDSA nor BR–I are anytime, as it is possible that agents
who change state at the same time find themselves in a worse global state than they began in. However,
using almost–sure convergence, we can show the following:DSA–A (DSA usingargmax–A) almost surely
converges to a Nash equilibrium, andDSA–B andBR–I almost surely converge to a strict Nash equilibrium.
Although similar results have been published (e.g. Young, 1998; Mezzetti and Friedman, 2001), for
pedagogical value, we present a proof of the convergence ofDSA–B to a strict Nash equilibrium, which
we use as a template for sketching other convergence proofs.We will refer back to the steps presented in
this proof when discussing the convergence of other algorithms in future sections.

Proposition 7 If a strict Nash equilibrium exists, thenDSA–B almost surely converges to a strict Nash
equilibrium in repeated potential games.

Proof A strict Nash equilibrium is an absorbing strategy profile underDSA–B’s dynamics; that is, once
in a strict Nash equilibrium, no agent will change their strategy. Now, for any non–Nash equilibrium
outcome, there exists aminimal improvement path, terminating at a Nash equilibrium. Denote the length
of the longest minimal improvement path from any outcome to aNash equilibriumLΓ. The rest of this
proof involves showing that ast → ∞, the probability that the complete longest minimal improvement
path has been traversed goes to 1.

In a game consisting ofN agents usingDSA–B to adapt their state, for any probability of updatingp∈

(0,1), the probability that only one agent changes state at a particular time step is given by:p(1− p)N−1.
Consider the probability that at some time step, the agent selected to change its state is able to improve its
utility (i.e. is part of an improvement path). This probability is at leastp(1− p)N−1/N, which is its value
when at that time step, the improvement step is unique. Thus,at any time,t, the probability of traversing
the longest minimal improvement path of lengthLΓ, is at least:

q =







0 t < LΓ,
[

p(1−p)N−1

N

]L

Γ
t ≥ LΓ.

Note that whenevert ≥ LΓ, q is greater than zero, becausep∈ (0,1) andN andLΓ are finite. Following
this, in a sequence oft steps, the probability of traversing the longest minimal improvement path and
converging to a Nash equilibrium at timet, pconv(t), simply follows a geometric distribution, with positive
probabilities beginning at time stepLΓ:

pconv(t) = q(1−q)t

Consequently, we can express the cumulative probability ofconvergingbyt, Pconv(t) — the sum ofpconv(t)
— as:

Pconv(t) =
t

∑
τ=1

pconv(τ) =
q(1− (1−q)t+1)

1− (1−q)

= 1− (1−q)t+1

Then, ast → ∞, (1−q)t+1 → 0, so the probability that a complete longest minimal improvement path is
traversed goes to 1 as the number of rounds tends towards infinity. 2

The convergence proof forDSA–A follows the same argument, except that all Nash equilibria are
absorbing. ForBR–I, the proof is identical. This is because the only differencebetweenDSA–B andBR–I

is that the former selects the best response while the latterselects a better–response, and these cases are
treated in the same way with respect to the finite improvementproperty: That is, the finite improvement
property ensures that all improvement paths are finite, whether they be best–response or better–response
paths.

24 A . C. CHAPMAN, A . ROGERS ET AL.

We have now described two methods of proving the convergenceof a DCOP algorithm. The first shows
that an algorithm is anytime, and that it improves until it reaches a Nash equilibrium. The second technique
begins by characterising the absorbing states of an algorithm. Then, by the finite improvement property,
at any time in the future there is some non–negative probability of the algorithm entering the absorbing
state. Therefore, the algorithm almost surely converges.

The algorithms discussed so far have produced individual best or better responses. However, one
common drawback of these approaches is that if these algorithms converge to sub-optimal equilibria,
they can not escape. One technique used to get around this problem is to use stochasticity in the decision
rule. A second is to aggregate agents’ utilities and allow coordinated, joint changes in state. These two
techniques are discussed in the following two sections.

4.1.3 Convergence of SAP and DSAN to the Global Optimum
Both SAP andDSAN use a stochastic decision rule to escape from local maxima. Specifically, by using
the logistic or simulated annealing decision rules, they can move between basins of attraction of local
maxima.

In potential games,SAP is known to converge to a distribution that maximises the function:

∑
s∈S

ug(s)Pr(s)−η ∑
s∈S

Pr(s) logPr(s)

which is given by the Boltzmann distribution with temperature parameterη (Young, 1998, Chapter 6).
By settingη low, this algorithm approximates the optimal joint state, and at any point in time has a high
probability of having the optimal configuration.

Furthermore, regarding bothSAP andDSAN, when the temperature parameter of these decision rules
are decreased over time according to an appropriate annealing schedule (i.e.,η ∝ 1/logt), they are known to
converge to the Nash equilibrium that maximises the potential function (Kirkpatrick et al., 1983; Young,
1998; Benaı̈m et al., 2005, 2006). That is, they converge to the global optimum.

4.1.4 Convergence of MGM–k and SCA–k to k–optima
A second technique used to escape local maxima is to use a target function that aggregates local utilities
to evaluate joint strategy changes by teams of agents. This is the approach used byMGM–2 andSCA–2,
which both check for all joint changes in state by pairs of agents (as in Equation 11), and the families of
MGM–k andSCA–k algorithms generally.

Similar to MGM, underMGM–2, only isolated pairs of agents act at a given step, so any change only
improves the global utility, and the algorithm only terminates when it reaches a 2–optimum, rather than a
Nash equilibrium (Maheswaran et al., 2005). The almost–sure convergence ofSCA–2 is proven using the
same method asDSA, except that the absorbing states are the set of 2–optima. However, note that bounds
on worst–case 2–optima only exist for DCOPs containing unary and binary constraints, so the benefits of
usingMGM–2 in DCOPs with constraint arity greater than 2 are unclear.Nonetheless, these proofs can
easily be extended to convergence tok–optima for the corresponding algorithms.

4.2 Algorithms Using Averaging Target Functions

In this section, we discuss averaging algorithms that use variations of the expected payoff over historical
frequencies of actions and average regret target functions. We begin with the fictitious play family of
algorithms, before considering regret–based algorithms.

4.2.1 Fictitious Play Algorithms
The term ‘fictitious play’ is often used to denote a family of adaptive processes that use the expected
payoff over historical frequencies of actions as a target function (Fudenberg and Levine, 1998). Now, all
versions of fictitious play that use historical frequenciesas a target function and theargmaxdecision rule
(regardless of the adjustment schedule used) have the property that if play converges to a pure strategy

Iterative approximate best–response algorithms for DCOPs 25

profile, it must be a Nash equilibrium, because if it were not,some agent would eventually change their
strategy.

The standard fictitious play algorithm, described in Table 1as FP, uses the expected payoff over
historical frequencies as a target function (Equation 6) and the argmax–B decision rule, and agents
follow the flood schedule and adjust their state simultaneously. A proof of the convergence ofFP to
Nash equilibrium in weighted and exact potential games is given by Monderer and Shapley (1996a).
Specifically, in repeated potential games, this algorithmconverges in beliefs; that is, each agents’ estimate
of its opponents’ strategies, which are used to calculate each of its own strategies’ expected payoffs,
converge as time progresses. This process induces some stability in an agent’s choice of strategy because
an agent’s current strategy is based on its opponents’ average past strategies, which means that an agent’s
belief moves through its belief space with decreasing step size. Consequently thrashing and cycling
behaviour is reduced, compared to, say,DSA or the best–response dynamics.

The same target function and adjustment schedule are used insmFP as in FP, but, typically, the
multinomial logit decision rule substitutes for theargmax rule. However, unlikeSAP or DSAN, this
substitution does not imply that the algorithm converges tothe global maximum of the potential function.
Rather,smFP converges to a Nash equilibrium, in much the same way asFP (Hofbauer and Sandholm,
2002). Nonetheless, in practice, using the logit decision rule does, on average, produce better quality
solutions than theargmaxrule. Leslie and Collins (2006) show how to analysesmFP when the temperature
parameter reduces over time andsmFP approximatesFPin the limit.

The dynamics of all versions of joint–strategy fictitious play (JSFP) are quite different to that ofFP.
Specifically, strict Nash equilibria are absorbing for any algorithm that uses theJSFP target function
(Equation 7) andargmax–A as a decision rule. This is because if agents have beliefs that induce them to
play a strict Nash equilibrium, these beliefs are reinforced each time the strict Nash equilibrium is played.

To date, convergence to Nash equilibrium has not been shown for a version ofJSFP that operates on
the flood schedule. However, regarding the version that operates on the parallel random schedule,JSFP

with inertia (JSFP–I), its proof of convergence to strict Nash equilibria is based on a similar argument to
that for the convergence ofDSA (Marden et al., 2009b). Given that strict Nash equilibria are absorbing,
all that needs to be shown is that at any given time step,JSFP–I has some positive probability of visiting a
strict Nash equilibrium. Now, underJSFP–I any unilateral change in strategy climbs the potential. Then,
as with DSA, when inertia is added to the agents’ choice of action (i.e. by using the parallel random
adjustment schedule), the probability that a sequence of unilateral moves numbering at least the length of
the longest improvement path occurs is strictly positive. Therefore, over time, the probability of entering
the absorbing state approaches one. As withFP, because agents’ current strategies are based on average
past joint strategies, theJSFP–I process produces relative stability in an agent’s choice ofstrategy, and as
a consequence thrashing and cycling behaviour is reduced. Additionally, becauseJSFP–I uses the parallel
random schedule, the number of messages required each time step to run the algorithm is less thanFP.

4.2.2 Adaptive Play Algorithms
TheAP variants we consider here are all of those in which an agent takes a sample of sizek from a finite
memory of the previousm plays of the game to evaluate their expected rewards for state (Equation 8)
and chooses a state using theε–greedy choice rule, and all of the agents operate using the flood schedule
(note that this excludesSAP). A subset of these algorithms can be shown to converge to a strict Nash
equilibrium, using results from perturbed Markov processes (Young, 1993, 1998). The key elements of
the proof are as follows.

First, call the particular joint memory maintained by the agents att, thememory configuration. Note
that if ε = 0, then the memory configurations containing only strict Nash equilibria are absorbing for any
k≤ m. That is, with no random play, if all agents’ memories contain only a single strict Nash equilibrium,
that equilibrium will be played from there on. Second, usinga resistance treeargument (Young, 1993),
it can be shown that from any memory configuration, for any1/|ν(i)|ε > 0 (whereν(i) arei’s neighbours),
the probability of moving along an improvement path towardsa strict Nash equilibrium is greater than
that for a movement away. As such, over time the probability of traversing an entire (finite) improvement

26 A . C. CHAPMAN, A . ROGERS ET AL.

path goes to 1. This result holds provided that the sample sizek≤ m/LΓ+2, whereLΓ is the longest minimal
improvement path from any joint–action profile to a strict Nash equilibrium. Building on this, asε → 0,
the probability of the memory configuration consisting entirely of one strict Nash equilibrium also goes
to 1. Then, in the limit, this strict Nash equilibrium is absorbing.

4.2.3 Regret Matching and Weighted Regret Monitoring Algorithms
Like the variations of fictitious play, algorithms that use the average regret for past actions to evaluate
states also come in many different forms. Here we limit our attention to the regret matching (RM) and
weighted regret monitoring with inertia (WRM–I) algorithms, which show contrasting behaviour as a result
of a small difference in the target function they employ.

RM uses the average regret for past actions (Equation 9) in conjunction with a linear probabilistic
decision rule (which assigns zero probability to strategies with negative regret values) to decide on a
strategy, with agents adjusting by the parallel random schedule. RM converges to the set of correlated
equilibria (a generalisation of Nash equilibria) in all finite games (Hart and Mas-Colell, 2000), however,
it does not necessarily converge to Nash equilibria. Nonetheless, it is easy to see that by using this
target function, an agent’s worst performing strategies are ruled out earliest, and although the use of a
linear probabilistic decision rule does cause some thrashing, the presence of negative regrets lessens these
effects.

On the other hand,WRM–I does converge to a pure–strategy Nash equilibrium in potential games
(Arslan et al., 2007). This algorithm uses a target functionthat discounts past regrets by a constant weight
(Equation 10) and the parallel random schedule, and may be specified with any probabilistic decision
rule that only selects a strategy from those with non–negative average regret (e.g. linear+ or logit+).
In the case of the linear+ decision rule,WRM–I differs from RM only in the target function used. The
proof of its convergence is similar toDSA andJSFP, and proceeds as follows. First, note that the target
function used inWRM–I discounts past regrets (Equation 10). As a consequence, if agiven strict Nash
equilibrium is played consecutively a sufficient number of times, it will be the only strategy for which any
agent has a positive regret. Additionally, the converse also holds: if each agent has only one strategy with
non–negative regret, the corresponding joint strategy must be a Nash equilibrium. Second, the decision
rules used inWRM–I only select from those strategies with non–negative regret. Therefore, if the joint
regret–state is ever at a point where only one joint strategyhas a positive regret for every agent, the
algorithm will continue to select that joint strategy. Let us call this region in the agents’ joint regret–space
an equilibrium’sjoint regret sink. Third, the final step in the proof is to show that there is somestrictly
positive probability that the agents’ joint regret enters an equilibrium’s joint regret sink. This is achieved
via the finite improvement property and the use of inertia, inan argument similar to that used in the
proof of convergence ofDSA. Note that if past regrets are not discounted, then convergence to a Nash
equilibrium cannot be guaranteed, and the algorithm may noteven converge to a stationary point (as is the
case inRM).

5 Conclusions

In this paper, we focused on local approximate best–response algorithms for DCOPs, for optimisation in
domains where communication is difficult, costly or impossible, and in which optimality can be traded
off against timeliness or computational and communicational burden. Specifically, our key contribution is
a framework for analysing local approximate best–responsealgorithms for DCOPs — that is, algorithms
that operate by having agents exchange messages that contain only their strategy. Our framework captures
many algorithms developed in both the computer science and game theory literatures. Moreover, we argue
that the appropriate solution concept for the class of localapproximate best–response algorithms is the
Nash equilibrium condition. Given this, our framework is built on the insight that when formulated as
noncooperative games, DCOPs form a subset of the class of potential games. In turn, this allowed us to
apply game theoretic methods to analyse the convergence properties of local approximate best–response
algorithms developed in the computer science literature.

Iterative approximate best–response algorithms for DCOPs 27

In general, our framework is based on a three stage decomposition that is common to all local
approximate best–response DCOP algorithms. Given an appropriate trigger, an individual agent enters
a state evaluation stage, which produces some measure of thedesirability of each state. This is followed
by a decision on which action to take, based on the preceding state evaluations. Then, the system–wide
process that controls which agent adjusts its state at each point is given by an adjustment schedule. We
populate our framework with algorithm components, corresponding to the three stages above, that are
used in existing algorithms, and which can be used to construct novel algorithms.

Our framework can assist system designers by making the prosand cons of the various DCOP
algorithm configurations clear. To illustrate this, we constructed three novel hybrid algorithms from
the components identified in our parameterisation. We evaluated these hybrids alongside eight existing
algorithms taken from both the computer science and game theory literatures. Our experimental results
show that an algorithm’s behaviour is accurately predictedby identifying its constituent components. For
example, algorithms that use fictitious play–like target functions and anargmaxdecision rule converge to a
Nash equilibrium, but by varying the adjustment schedule, adesigner may trade off between convergence
time and communication use. Thus, a system designer may use our framework to tailor a DCOP algorithm
to suit their mix of requirements, whether they be high quality solutions (but, for example, in the presence
of bandwidth restrictions), rapid convergence (such as in real–time settings), or low communication costs
(e.g. in the presence of resource constraints such as battery life). Furthermore, we expect most of our
experimental results to generalise to other problems that fall within the class of hypergraphical potential
games.

Generally in field of DCOPs, the main problems requiring attention involve extending the basic, static
model with known payoffs and lossless communication to encompass the real–world aspects of typical
DCOP application domains. In more detail, the most salient of these aspects can be broken into the
following groupings:

Online learning of unknown rewards: Online learning of reward functions poses a difficult problem in
DCOPs, particularly if coordinated search of the joint–action space is not possible. It is important
to consider the differences in approaches to the problem that are needed if the goal is to maximise
the long–term reward (as is often addressed in Markov decision processes) or to find a ‘good
enough’ solution quickly (as in optimal stopping problems). This problem can be further extended
by considering the case were rewards are not just unknown, but observations of them are noisy, or
even stochastic.

Dynamic problems: DCOPs have proven to be very useful for describing static problems, but their
usefulness for dynamic and stochastic problems is not clear. There is, however, scope for exporting
techniques for DCOPs to decentralised Markov decision processes and partially–observable Markov
decision processes in order to identify tractable classes of those problems and to, subsequently,
develop algorithms based on DCOP solution techniques. Furthermore, if decentralised optimisation
mechanisms that produce timely solutions are desirable in many static scenarios, then there is an
even greater demand for principled decentralised approximation heuristics for real–time sequential
decision–making in dynamic scenarios, and we believe the approaches developed here represent a
first step in developing such techniques.

Communication: The model of communication adopted in this paper is a natural, although naive
one. Communication in real–world applications of DCOPs is lossy, noisy, delayed and otherwise
asynchronous, and has not been systematically addressed. Similarly, we assume communication
takes place over a network defined by the constraint graph. How relaxing this assumption, to
consider cases where agents do not have a direct communication link with all of the agents their
utility depends on, affects the efficacy of existing approaches is unknown.

28 A . C. CHAPMAN, A . ROGERS ET AL.

Appendix A.

The following pseudocode describes several of the algorithms discussed in this paper. The pseudocode
states the computations carried out by an individual agent,and unless otherwise stated, the algorithms
(including their various adjustment schedules) are implemented by each agent running the stated
procedure at every time step. In all that follows, we drop thesub–scripti because the pseudocode refers
to an agent’s internal processes. We denote an agent’s strategy s∈ S and its target function’s value for
strategyk asstateValue(k)or stateRegret(k), as appropriate. An agent’s neighbours are indexedj ∈ ν,
with their joint–strategy profile notatedsν. Finally, an agent’s immediate payoff for an strategyk, given
its neighbours’ joint–strategy profile is writtenu(k,sν). The algorithms listed here are the maximum-
gain messaging algorithm (MGM), the distributed stochastic algorithm using theargmax–B decision rule
(DSA–B), better–response with inertia (BR–I), spatial adaptive play (SAP), fictitious play (FP), smooth
fictitious play (smFP), joint–strategy fictitious play with inertia (JSFP–I) and weighted regret monitoring
with inertia (WRM–I).

M AXIMUM –GAIN M ESSAGING(MGM)

currentReward =u(s= currentState,sν) 1
for k = 1:K 2

stateGain(k) =u(s=k,sν)− currentReward 3
end for 4
bestGainState = argmax

k
[stateGain] 5

bestGainValue = stateGain(bestStateGain) 6
sendBestGainMessage[allNeighbours, bestGainValue] 7
neighbourGainValues = getNeighbourGainValues[allNeighbours] 8
if bestGainValue> max[neighbourGain]then 9

newState = bestGainState 10
sendStateMessage[allNeighbours, newState] 11

end if 12

DISTRIBUTED STOCHASTIC ALGORITHM (DSA–B)

currentValue =u(s= currentState,sν) 1
for k = 1:K 2

stateRegret(k) =u(s=k,sν)− currentValue 3
end for 4
candidateState = argmax

k
[stateRegret] 5

if rand[0,1]≤ p 6
newState = candidateState 7

end if 8
if newState6= currentState 9

sendStateMessage[allNeighbours, newState] 10
end if 11

BETTER –RESPONSE WITH I NERTIA (BR–I)

currentValue =u(s= currentState,sν) 1
for k = 1:K 2

stateRegret(k) = max[u(s=k,sν)− currentValue,0] 3
end for 4
normFactor =∑K

k=1 stateRegret 5
randomNumber = rand(0,1) 6
for k = 1:K 7

mixedStrategyCDF(k) = 1
normFactor∑

k
l=1 stateRegret(l) 8

if randomNumber≤ mixedStrategyCDF(k)then 12
candidateState = k 9

break for loop 10
end if 11

end for 12
if rand[0,1]≤ p 13

newState = candidateState 14
end if 15
if newState6= currentState 16

sendStateMessage[allNeighbours, newState] 17
end if 18

Iterative approximate best–response algorithms for DCOPs 29

In SAP the agents adjust their state in a random sequence. In practice, there are a number of ways to
implement this type of schedule, however, the simplest is torandomly select an agent to run the stated
procedure. Note this usually means some agents may be given more than one opportunity to adjust their
state in a particular time step, while other agents may have none.

SPATIAL ADAPTIVE PLAY (SAP)

currentValue =u(s= currentState,sν) 1
for k = 1:K 2

stateRegret(k) =u(s=k,sν)− currentValue 3
end for 4
for k = 1:K 5

statePropensity(k) = exp[η−1stateRegret(k)] 6
end for 7
normFactor =∑K

k=1 statePropensity(k) 8
randomNumber = rand(0,1) 9
for k = 1:K 10

mixedStrategyCDF(k) = 1
normFactor∑

k
l=1 statePropensity(l) 11

if randomNumber≤ mixedStrategyCDF(k)then 12
newState = k 13

break for loop 14
end if 15

end for 16
if newState6= currentState 17

sendStateMessage[allNeighbours, newState] 18
end if 19

In FP andsmFP, |ν| is the number of neighbours an agent has,q j is a vector of the frequencies with
which neighbourj has played each strategyk j in the past,I{k j = st

j} is an indicator vector with an element

equal to one for the statek j played byj at timet and zero everywhere else, andH = ∏|nu|
j=1 |Sj | is the size

of the agent’s neighours’ joint–strategy space.

FICTITIOUS PLAY (FP)

for j = 1:|ν| 1
qt

j = 1
t [I{kj = st

j}+(t −1)qt−1
j] 2

end for 3
t = t +1 4
for k = 1:K 5

for h = 1:H 6
E[u(s= k,sh

ν)] = u(s,sh
ν)∏sh

j ∈sh
ν

qt
j 7

end for 8
stateValue(k) =∑H

h=1E[u(s= k,sh
ν)] 9

end for 10
newState = argmax

k
[stateValue] 11

if newState6= currentState 12
sendStateMessage[allNeighbours, newState] 13

end if 14

30 A . C. CHAPMAN, A . ROGERS ET AL.

SMOOTH FICTITIOUS PLAY (SMFP)

for j = 1:|ν| 1
qt

j = 1
t [I{kj = st}+(t −1)qt−1

j] 2
end for 3
t = t +1 4
for k = 1:K 5

for h = 1:H 6
E[u(s= k,sh

ν)] = u(s,sh
ν)∏sh

j ∈sh
ν

qt
j 7

end for 8
stateValue(k) =∑H

h=1E[u(s= k,sh
ν)] 9

end for 10
for k = 1:K 11

statePropensity(k) = exp[η−1stateValue(k)] 12
end for 13
normFactor =∑K

k=1 statePropensity(k) 14
randomNumber = rand(0,1) 15
for k = 1:K 16

mixedStrategyCDF(k) = 1
normFactor∑

k
l=1 statePropensity(l) 17

if randomNumber≤ mixedStrategyCDF(k)then 18
newState = k 19

break for loop 20
end if 21

end for 22
if newState6= currentState 23

sendStateMessage[allNeighbours, newState] 24
end if 25

JOINT STRATEGY FICTITIOUS PLAY WITH I NERTIA (JSFP–I)

for k = 1:K 1
stateValue(k) =1

t [u(s=k,sν)+(t −1)stateValue(k)] 2
end for 3
t = t +1 4
candidateState = argmax

k
[stateValue] 5

if rand[0,1]≤ p 6
newState = candidateState 7

end if 8
if newState6= currentState 9

sendStateMessage[allNeighbours, newState] 10
end if 11

WEIGHTED REGRET M ATCHING WITH I NERTIA (WRM–I)

currentValue =u(s= currentState,sν) 1
for k = 1:K 2

avgDiff(k) = ρu(s=k,sν− currentValue+(1−ρ)avgDiff(k)) 3
stateRegret(k) = max[avgDiff(k),0] 4

end for 5
normFactor =∑K

k=1 stateRegret 5
randomNumber = rand(0,1) 6
for k = 1:K 7

mixedStrategyCDF(k) = 1
normFactor∑

k
l=1 stateRegret(l) 8

if randomNumber≤ mixedStrategyCDF(k)then 12
candidateState = k 9

break for loop 10
end if 11

end for 12
if rand[0,1]≤ p 13

newState = candidateState 14
end if 15
if newState6= currentState 16

sendStateMessage[allNeighbours, newState] 17
end if 18

Iterative approximate best–response algorithms for DCOPs 31

References

S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Transactions on Information Theory,
46:325–343, 2000.

S. P. Anderson, A. de Palma, and J. Thisse.Discrete Choice Theory of Product Differentiation. MIT
Press, Cambridge, MA, USA, 1992.

K. R. Apt. Principles of Constraint Programming. Cambridge University Press, Cambridge, UK, 2003.

M. Arshad and M. C. Silaghi. Distributed simulated annealing and comparison to DSA. InProceedings
of the 4th International Workshop on Distributed Constraint Reasoning (DCR–03), Acapulco, Mexico,
2003.

G. Arslan, J. R. Marden, and J. S. Shamma. Autonomous vehicle-target assignment: A game theoretical
formulation.ASME Journal of Dynamic Systems, Measurement and Control, 129:584–596, 2007.

R. J. Aumann. Acceptable points in general cooperative n-person games. In A. W. Tucker and R. D.
Luce, editors,Contributions to the Theory of Games IV, pages 287–324. Princeton University Press,
Princeton, NJ, USA, 1959.

M. Benaı̈m, J. Hofbauer, and S. Sorin. Stochastic approximation and differential inclusions.SIAM Journal
of Control and Optimisation, 44(1):328–348, 2005.

M. Benaı̈m, J. Hofbauer, and S. Sorin. Stochastic approximations and differential inclusions, part II:
Applications.Mathematics of Operations Research, 31(4):673–695, 2006.

U. Berger. Brown’s original fictitious play.Journal of Economic Theory, 135(1):572–578, 2007.

A. Blum and Y. Mansour. From external to internal regret.Journal of Machine Learning Research, 8:
1307–1324, June 2007.

E. Bowring, J. Pearce, C. Portway, M. Jain, and M. Tambe. Onk–optimal distributed constraint
optimization algorithms: New bounds and algorithms. InProceedings of the 7th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS–08), pages 607–614, Estoril,
Portugal, 2008.

G. W. Brown. Iterative solution of games by fictitious play. In T. C. Koopmans, editor,Activity Analysis
of Production and Allocation, pages 374–376. Wiley, New York, NY, USA, 1951.

A. Chapman, R. A. Micillo, R. Kota, and N. Jennings. Decentralised dynamic task allocation: A practical
game–theoretic approach. InThe 8th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS–09), pages 915–922, 2009.

M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc consistency. InProceedings of the 20th Internation
Joint Conference on Artificial Intelligence (IJCAI–07), pages 68–73, 2007.

V. P. Crawford. Adaptive dynamics in coordination games.Econometrica, 63:103–143, 1995.

A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination of low-power
embedded devices using the max–sum algorithm. InProceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS–08), pages 639–646, 2008.

S. Fitzpatrick and L. Meertens. Distributed coordination through anarchic optimization. In V. Lesser,
C. L. Ortiz Jr., and M. Tambe, editors,Distributed Sensor Networks: A Multiagent Perspective, pages
257–295. Kluwer Academic Publishers, 2003.

D. Fudenberg and D. Kreps. Learning mixed equilibria.Games and Economic Behavior, 5:320–367,
1993.

32 A . C. CHAPMAN, A . ROGERS ET AL.

D. Fudenberg and D. K. Levine. Consistency and cautious fictitious play.Journal of Economic Dynamics
and Control, 19:1065–1089, 1995.

D. Fudenberg and D. K. Levine.The Theory of Learning in Games. MIT Press, Cambridge, MA, USA,
1998.

B. P. Gerkey and M. J. Mataric. Sold!: Auction methods for multirobot coordination.IEEE Transactions
on Robotics and Automation, 18(5):758–768, Oct 2002.

G. Grimmett and D. Stirzaker.Probability and Random Processes. Oxford University Press, third edition,
2001.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.Econometrica,
68:1127–1150, 2000.

S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilibrium. In G. Debreu,
W. Neuefeind, and W. Trockel, editors,Economic Essays: A Festschrift for Werner Hildenbrand, pages
181–200. Springer, New York, NY, USA, 2001.

M. Hayajneh and C. T. Abdallah. Distributed joint rate and power control game–theoretic algorithms for
wireless data.IEEE Communications Letters, 8:511–513, 2004.

T. Heikkinen. A potential game approach to distributed power control and scheduling.Computer
Networks, 50:2295–2311, 2006.

K. Hirayama and M. Yokoo. The distributed breakout algorithms.Artificial Intelligence, 161(1-2):89–115,
2005.

J. Hofbauer and W. H. Sandholm. On the global convergence of stochastic fictitious play.Econometrica,
70:2265–2294, 2002.

J. Kho, A. Rogers, and N. Jennings. Decentralised control ofadaptive sampling in wireless sensor
networks.ACM Transactions on Sensor Networks, 5(3), 2009.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimisationby simulated annealing.Science, 220:
671–680, 1983.

H. Kitano, S. Todokoro, I. Noda, H. Matsubara, T. Takahashi,A. Shinjou, and S. Shimada. Robocup
rescue: Search and rescue in large-scale disaster as a domain for autonomous agents research. In
Proceedings of the IEEE International Conference on System, Man, and Cybernetics (SMC–99),
volume 6, pages 739–743, Tokyo, Japan, 1999.

M. Krainin, B. An, and V. Lesser. An application of automatednegotiation to distributed task allocation.
In Proceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT–07), pages 138–145, Fremont, CA, USA, November 2007. IEEE Computer Society Press.

F. R. Kschischang, B. J. Frey, and H. Loeliger. Factor graphsand the sum-product algorithm.IEEE
Transactions on Information Theory, 47:498–519, 2001.

P. La Mura and M. R. Pearson. Simulated annealing of game equilibria: A simple adaptive procedure
leading to Nash equilibrium. InInternational Workshop on The Logic and Strategy of Distributed
Agents, Trento, Italy, 2002.

D. S. Leslie and E. J. Collins. Generalised weakened fictitious play.Games and Economic Behavior, 56:
285–298, 2006.

R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed algorithms for DCOP: A graphical-game-based
approach. InProceedings of the 17th International Conference on Parallel and Distributed Computing
Systems (PDCS–04), pages 432–439, San Francisco, CA, USA, 2004.

Iterative approximate best–response algorithms for DCOPs 33

R. T. Maheswaran, J. P. Pearce, and M. Tambe. A family of graphical-game-based algorithms for
distributed constraint optimization problems. InCoordination of Large-Scale Multiagent Systems,
pages 127–146. Springer-Verlag, Heidelberg, Germany, 2005.

R. Mailler and V. Lesser. Asynchronous partial overlay: A new algorithm for solving distributed constraint
satisfaction problems.Journal of Artificial Intelligence Research, 25:529–576, 2006.

J. R. Marden, G. Arslan, and J. S. Shamma. Connections between cooperative control and potential games
illustrated on the consensus problem.IEEE Transactions on Systems, Man and Cybernetics, Part B:
Cybernetics, in press, 2009a.

Jason R. Marden, Gürdal Arslan, and Jeff S. Shamma. Joint strategy fictitious play with inertia for
potential games.IEEE Transaction on Automatic Control, in press, 2009b.

G. M. Matthews and H. F. Durrant-Whyte. Scalable decentralised control for multi-platform recon-
naissance and information gathering tasks. InProceedings of the 9th International Conference on
Information Fusion (Fusion’06), 2006.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, andE. Teller. Equation of state calculations by
fast computing machines.Journal of Chemical Physics, 21:1087–1092, 1953.

C. Mezzetti and J. W. Friedman. Learning in games by random sampling. Journal of Economic Theory,
98(1):55–84, 2001.

P. Jay Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous distributed constraint
optimization with quality guarantees.Artificial Intelligence, 161(1-2):149–180, 2005.

D. Monderer and L. S. Shapley. Fictitious play property for games with identical interests.Journal of
Economic Theory, 68:258–265, 1996a.

D. Monderer and L. S. Shapley. Potential games.Games and Economic Behavior, 14:124–143, 1996b.

P. Morris. The breakout method for escaping from local minima. In Proceedings of the 11th National
Conference on Artificial Intelligence (AAAI ’93), pages 40–45, Washington, DC, USA, 1993.

C. H. Papadimitriou and T. Roughgarden. Computing correlated equilibria in multi–player games.J.
ACM, 55(3):14, 2008.

J. P. Pearce and M. Tambe. Quality guarantees onk-optimal solutions for distributed constraint opti-
misation problems. InProceedings of the 20th Internation Joint Conference on Artificial Intelligence
(IJCAI–07), pages 1446–1451, Hyderabad, India, 2007.

A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint optimization. In
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI–05), pages
266–271, Edinburgh, Scotland, Aug 2005.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes: The Art of Scientific
Computing. Cambridge University Press, 1992.

J. Robinson. An iterative method of solving a game.Annals of Mathematics, 54:296–301, 1951.

A. Rogers, D. D. Corkill, and N. R. Jennings. Agent technologies for sensor networks.IEEE Intelligent
Systems, 24(2):13–17, March 2009.

T. Roughgarden.Selfish Routing and the Price of Anarchy. MIT Press, 2005.

T. Schiex, H. Fargier, and G. Verfaillie. Valued constraintsatisfaction problems: Hard and easy problems.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI–95), pages
631–639, 1995.

34 A . C. CHAPMAN, A . ROGERS ET AL.

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesv́ari. Convergence results for single-step on–policy
reinforcement–learning algorithms.Machine Learning, 39:287–308, 2000.

R. Stranders, A. Farinelli, A. Rogers, and N. R. Jennings. Decentralised coordination of mobile sensors
using the max-sum algorithm. InProceedings of the 21st International Joint Conference on Artifical
Intelligence (IJCAI–09), 2009.

A. Stranjak, P. S. Dutta, M. Ebden, A. Rogers, and P. Vytelingum. A multi–agent simulation system for
prediction and scheduling of aero engine overhaul. InProceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS–08), May 2008.

G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, Cambridge, UK, 2000.

K. Tumer and D. H. Wolpert, editors.Collectives and the Design of Complex Systems. Springer, New
York, NY, USA, 2004.

P. van Leeuwen, H. Hesselink, and J. Rohling. Scheduling aircraft using constraint satisfaction. In
Electronic Notes in Theoretical Computer Science, pages 252–268. Elsevier, 2002.

Y. Weiss. Correctness of local probability propagation in graphical models with loops. Neural
Computation, 12(1):1–41, 2000.

Y. Xu, P. Scerri, B. Yu, S. Okamoto, M. Lewis, and K. Sycara. Anintegrated token–based algorithm for
scalable coordination. InProceedings of the 4th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS–05), pages 407–414, 2005.

M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving algorithm for solving distributed
constraint satisfaction and optimization problems. InProceedings of the 2nd International Conference
on Multiagent Systems (ICMAS ’96), pages 401–408, 1996.

H. P. Young.Individual Strategy and Social Structure: An EvolutionaryTheory of Institutions. Princeton
University Press, Princeton, NJ, USA, 1998.

H. Peyton Young. The evolution of conventions.Econometrica, 61:57–84, 1993.

W. Zhang and Z. Xing. Distributed breakout vs. distributed stochastic: A comparative evaluation on scan
scheduling. InProceedings of the AAMAS–02 workshop on Distributed Constraint Reasoning, pages
192–201, 2002.

W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed stochastic search and distributed breakout:
Properties, comparison and applications to constraint optimization problems in sensor networks.
Artificial Intelligence, 161:55–87, 2005.

