The Knowledge Engineering Revievol. 00:0, 1-32(C) 200X, Cambridge University Press
DOI: 10.1017/S000000000000000 Printed in the United Kargd

A unifying framework for iterative approximate best—
response algorithms for distributed constraint optimisation
problems?

Archie C. Chapmah Alex Rogers, Nicholas R. Jenningsand David S. Leslie

1School of Electronics and Computer Science, Universityoaft&ton, Highfield, Southampton, SO17 1BJ, UK.
E-mail: {acc,acr,nrj @ecs.soton.ac.uk

2Department of Mathematics, University of Bristol, Univgravalk, Bristol, BS8 1TW, UK.

E-mail: david.leslie@bristol.ac.uk

Abstract

Distributed constraint optimisation problems (DCOPs)iarportant in many areas of computer science
and optimisation. In a DCOP, each variable is controlled bg of many autonomous agents, who
together have the joint goal of maximising a global objextiMnction. A wide variety of techniques
have been explored to solve such problems, and here we fotosi® of the main families, namely
iterative approximate best-response algorithms usedcas$ $earch algorithms for DCOPs. We define
these algorithms as those in which, at each iteration, agemimunicate only the states of the variables
under their control to their neighbours on the constraimtphr and that reason about their next state
based on the messages received from their neighbours. @lgesihms include the distributed stochastic
algorithm and stochastic coordination algorithms, the imaxn—gain messaging algorithms, the families
of fictitious play and adaptive play algorithms, and aldoris that use regret—based heuristics. This family
of algorithms is commonly employed in real world systemstresy can be used in domains where
communication is difficult or costly, where it is appropedb trade timeliness off against optimality,
or where hardware limitations render complete or more cdatfmnally intensive algorithms unusable.
However, until now, no overarching framework has existadftalysing this broad family of algorithms,
resulting in similar and overlapping work being publishedeépendently in several different literatures.
The main contribution of this paper, then, is the developnuéra unified analytical framework for
studying such algorithms. This framework is built on ouiighs that when formulated as noncooperative
games, DCOPs form a subset of the class of potential gamesré&dult allows us to prove convergence
properties of iterative approximate best—response dlgos developed in the computer science literature
using game theoretic methods (which also shows that sudhitims can also be applied to the more
general problem of finding Nash equilibria in potential gaand, conversely, also allows us to show
that many game—theoretic algorithms can be used to solveH3CBy so doing, our framework can
assist system designers by making the pros and cons of, arsytiergies between, the various iterative
approximate best—response DCOP algorithm components clea

1 Introduction

In real world applications, large—scale systems are diffitn optimally configure, often because
communication restrictions, organisational structuned/@r complicated topologies make it difficult,
costly or impossible to collect all the necessary inforaratat a location where a solution can be

IThis research was undertaken as part of the ALADDIN (Autooosn_earning Agents for Decentralised Data and
Information Systems) project and is jointly funded by a BAE®ms and EPSRC (Engineering and Physical Sciences
Research Council) strategic partnership (EP/C548051/1).

2 A. C. CHAPMAN, A. ROGERS ET AL

computed. This, in turn, motivates the use of distributedhoés of optimisation in order to find the
optimal configuration. In particular, in this paper, we cenitate on multi—agent systems — that is,
systems in which control is distributed across a set of autaus agents — as an important approach to
distributed optimisation. Within this context, we focugsiically ondistributed constraint optimisation
problemgDCOPs), a broad family of problems that can be brought te beanany domains, including:
disaster response scenarios (e.g. Kitano et al., 1999;t4maet al., 2009), wide—area surveillance and
distributed sensor network management (e.g. Kho et al9;288yajneh and Abdallah, 2004; Heikkinen,
2006), industrial task allocation and scheduling probléeng. Zhang and Xing, 2002; Stranjak et al.,
2008), and the management of congested air, road, rail, rfodmation networks (e.g. van Leeuwen
etal., 2002; Roughgarden, 2005).

In more detail, in a constrairgatisfactionproblem, the aim is to find a configuration of states of
variables such that they satisfy a set of constraints. Atcaimsoptimisationproblem is then given by a
utility function that aggregates the payoffs for satisfygach of a set of ‘soft’ constraints (or, conversely,
a penalty for violating constraints) over the states ofalalgs in the problem (Schiex et al., 1995). A
distributedconstraint optimisation problem arises when a number afpretident agents each control the
state of (a subset of) the variables in the system, with thm gm of maximising the global reward for
satisfying constraints. A natural way to model DCOPs, tlieas a multi—agent system.

As a consequence of the breadth of applications of DCOPsy malgorithms for solving them have
been developed using a number of approaches, which oftéer di€cording to the literatures they
were first proposed in (e.g. the computer science, gameythe@chine learning or statistical physics
literatures). It is our intention, then, to provide a unifyiframework for analysing a broad class of
DCOP algorithms. However, here we exclude from our analysigralised approaches in which all of
the information needed to solve the DCOP is directly acbéss$o, and/or in which all of the variables
in a system come under the control of, a single decision malseassumed within algorithms such as
the breakout algorithm (Morris, 1993) and arc consistei@yoper et al., 2007), among others (see Apt,
2003, for more examples from the broader constraint progriagpliterature). While such approaches are
certainly useful in a range of scenarios, we make this eiausecause we are particularly interested in
algorithms for multi—agent systems, in which the actorsdist&ributed and can only communicate with
their peers. The remaining algorithms are known as diggibalgorithms, and, for our purposes, we
define three further sub—groupings:

e Distributed completalgorithms, by which we mean algorithms that always find afigonation
of variables that maximises the global objective functias in finite domains one always exists).
This class includesDOPT (Asynchronous Distributed OPTimization, Modi et al. (2D0®POP
(Dynamic Programming OPtimisation, Petcu and Falting®%PandAPO (Asynchronous Partial
Overlay, Mailler and Lesser (2006)). Due to the inherent potational complexity of DCOPs,
complete algorithms always run exponential in some asplettteir operation (i.e. the number or
size of messages exchanged, or the computation performgetagents). Furthermore, distributed
complete algorithms usually operate by passing complicdega structures, or run on a highly
structured ordering, such as a spanning tree, and oftetiresgpditional processing of the original
constraint graph.

e Local iterative message—passiatgorithms, such as max—sum (Aji and McEliece, 2000) or dis-
tributed arc consistency (Cooper et al., 2007). In theser#lgns, neighbouring agents exchange
messages comprising a data structure that contains thesvafuifferent local variable configura-
tions, and use these values to construct new messages torpssther agents.

e Local iterative approximate best—resporalgorithms, such as the distributed stochastic algorithm
(Tel, 2000; Fitzpatrick and Meertens, 2003), the maximuairgnessaging algorithm (Yokoo and
Hirayama, 1996; Maheswaran et al., 2005), fictitious plao{B, 1951; Robinson, 1951), adaptive
play (Young, 1993, 1998) and regret matching (Hart and MalC 2000). In this class, agents
exchange messages containing only their state, or canvebter strategies of their neighbours. In

Iterative approximate best—response algorithms for DCOPs 3

Distributed Constraint Optimisation Algorithms

Local iterative algorithms Distributed complete algomith
| (e.g.DPOP, ADOPT, APO)
I

Message passing algorithms Approximate best response algorithms
(e.g. max—sum, arc consistency) |
I I

Local search algorithms Adaptive learning heuristics
(Computer science) (Game theory)

Figure 1: Taxonomy of the categories of algorithms congiden this paper, with the focuigcal
iterative approximate best—response algorithindold.

game theoretic parlance, this is knowrsgandard monitoring and, as the name suggests, is a typical
informational assumption implicit in the literature onieeng in games.

In this paper, we refer to the last two groups together ad lterative algorithms (see the taxonomy in
Figure 1), to differentiate them from their complete coupéets® We group them under this term because
both classes operate only at the local level, with messagdsaaged between neighbouring agents at
each iteration of the algorithm, and without any overarghstructure controlling the timing or ordering
of messages.

In many real distributed systems, we find that local itemtalgorithms are often preferred over
distributed complete algorithndsThis is because, in such domairisjs necessary and appropriate
to trade solution quality off against timeliness or comneatipn overhead. For example, in real-time
target tracking it may be more important to produce a goodt®ol quickly, rather than wait for the
optimal solution. This is the reasoning Krainin et al. (2p0W%oke to motivate their use of the local
iterative algorithm to coordinate scan schedules in a regteorological radar network. Similarly, in
remote and mobile sensor management, an algorithm that le@s @@mmunication overhead may be
preferred because of the large drain on a sensor’s battargettaused by communication, as evidenced
by the choice of algorithm used in many problems in distebigensor networks (e.g. Zhang et al., 2005;
Farinelli et al., 2008) and multi-robot cooperative dataida problems (e.g. Matthews and Durrant-
Whyte, 2006; Stranders et al., 2009). Furthermore, in s@akdistributed systems, hardware limitations
may outright prohibit the use of distributed complete aidpons. For example, when usirigPOP the
capacity of the communication buffer of a typical sensorenmdquickly exceeded as a problem grows

2Cf. partial monitoring, as in multi-armed Bandit problerSge Blum and Mansour (2007) for a discussion of the
issues surrounding these two monitoring models.

3Note that, when applied to DCOPs, many approaches to digedtoptimisation usually can be placed into one of the
three categories defined above. For example, many negotiatbdels and local exchange markets are, in effect, local
approximate best-response algorithms. Consider a négatimodel in which at each time step one agent in each
neighbourhood announces a new configuration of the vagalmder its control to its neighbours, with the constraint
that each new configuration weakly improves the agent’sfbég®sis commonly employed). This type of negotiation
model is captured by our framework, as messages are lodglr{eighbours receive the agent’s update to its state) and
the process is iterative. We also point out that other agpresto the general problem of distributed optimisation tha
can be applied to DCOPs, such as token—passing (e.g. Xy 2085) or auction protocols (e.g. Gerkey and Mataric,
2002), do not fall into any of these three categories. Howeave consider an exhaustive classification and analysis
of these distributed optimisation techniques outside tiopa of this paper, because we are primarily concerned with
local approximate best-response algorithms in the spezifie of DCOPs.

4The complete algorithms are typically used in applicatiwhere their optimality is the key concern and timeliness
is not a limiting factor, such as industrial scheduling antetabling problems (Petcu and Faltings, 2005) or routing
protocols for fixed environmental sensor networks (Kho t24109).

4 A. C. CHAPMAN, A. ROGERS ET AL

in size, because the message size is exponential in thedddmidth of the communication tree (e.g.
Petcu and Faltings, 2005; Rogers et al., 2009). Simildny,number of messages exchangedhOPT

is exponential in the height of the communication tree, andRO, the mediator agents are required
to perform computations which grow exponentially in theesdf the portion of the problem they are
responsible for. Such exponential relationships are simpacceptable in embedded devices that exhibit
constrained computation, bandwidth and memory resou@rethe other hand, in these settings, it is clear
that local algorithms are more effective, because the tyualithe solutions they produce are typically
satisfactory (even if they are not optimal), and they penféavourably in terms of the issues of scalability
mentioned above.

Now, the characteristics of complete DCOP algorithms aré uvelerstood, and the properties of the
entire framework of local message—passing algorithms baea extensively analysed, with guarantees
placed on their solutions under a range of assumptionsxtample, for tree structured (Aji and McEliece,
2000) or single—looped constraint graphs (Weiss, 2000¢ohtrast, no such unifying and categorising
framework has existed for local iterative algorithms untlw. One reason for this is because, broadly
speaking, these algorithms originate from two differetaritures; either they are learning or adaptive
processes taken from game theory or they are distributesiover of centralised procedures developed
for traditional constraint optimisation problems or hstid search methods taken from computer science.
In more detail, (centralised) constraint optimisationkjjems evolved, in part, as a method for analysing
over—constrained constraint satisfaction problems. A straditional computer science approaches to
such problems include the breakout algorithm, arc comsigtedynamic programming and stochastic
optimisation techniques. Consequently, a traditionalpet@r science approach to solving DCOPs, which
includes many local approximate best—response algorjtstasts by developing distributed versions
of these centralised algorithms. For example, distribuiezhkout (Hirayama and Yokoo, 2005) and
maximum-—gain messaging (Maheswaran et al., 2005) are wabdpproximate best-response algorithms
that descend from the breakout algorithm, and distribute@ions of simulated annealing have been
developed for DCOPs (Fitzpatrick and Meertens, 2003; Atsaad Silaghi, 2003), which also fall
into the category of local approximate best—response idhgos. On the other hand, from a game—
theoretic perspective, in a DCOP, each autonomous agent'ssao maximise its own private utility
function through its independent choice of state. From pbisit of view, each agent’s optimal choice is
strategically dependent on the actions of its neighbouaients (a perspective on DCOPs first adopted
by Maheswaran et al., 2004), and distributed algorithmssédving such problems is the focus of the
literature of learning in games (e.g. Fudenberg and Levif88). However, what is common to both of
these literatures is that the techniques used are all libeadtive, approximate best-response algorithms,
in which agents exchange messages containing only thed, stad which typically converge to local
optima (or Nash equilibria); and it is game theory that hagtiols and terminology to analyse algorithms
that operate in such settings. In particular, we stress ithgiving up global optimality, we consider the
set of local optima, or equivalently, Nash equilibria, tothe appropriate solution concept for this class
of algorithm. This is because this set represents the stabiigurations of variables that can be reached
by exchanging messages that contain only an agent’s sktéhg information in the messages circulated
in all of the algorithms in this class defines the appropatation concept).

Against this background, the main contribution of this papehe first unifying analytical framework
for studying iterative approximate best-response algwdt that are used to solve both DCOPs and
potential games. Our framework is based on a problem fotipunl&nown as ehypergraphical game
(Papadimitriou and Roughgarden, 2008) and convergeno#gesgarding the class @btential games
(Monderer and Shapley, 1996b). Specifically, we show thatpetgraphical game is a potential game if
every local interaction can be represented as a local patgrame, and this is the case for all DCOPs.
We then use this framework to develop a novel parametesisafi iterative approximate best—response
DCOP algorithms. In order to populate this parameterigati@ decompose algorithms proposed in both
the game theory and computer science literatures in sucly amas to identify categories of substitutable
components. We then analyse how these components affecotivergence properties of an algorithm
employing them, using convergence analysis techniqueslaiged specifically for potential games. As

Iterative approximate best—response algorithms for DCOPs 5

such, our framework can be applied to potential games giyparawever, due to the fact that we are
considering these algorithms as distributed optimisatofs, we restrict the larger part of our discussion
to the specific case of DCOP games.

In more detail, in this paper, we advance the state of thendhig following ways:

1. We derive a general result regarding hypergraphicahpieiegames, which states that a hypergraph-
ical game is a potential game if each of the local games isengiat game.

2. Building upon a game—theoretic formulation of DCOPsr@dticed by Maheswaran et al., 2004),
we show that, as a consequence of the above result, DCOP dammea subset of potential games.
This allows us to apply established methods for analysiggrdéhms from game theory to existing
algorithms produced by the computer science communityl@rimy the Nash equilibrium condition
as the relevant solution concept.

3. We develop an overarching framework that encompassey toaal approximate best-response
DCOP algorithms, in which we decompose the algorithms iiced components: (i) atate
evaluation in the form of a target function; (ii) decision rule¢ mapping from target function to a
choice of state; and (iii) aadjustment scheduleontrolling which agent updates its state when. This
framework allows us to elucidate, for the first time, the tielaships between the various algorithms
in the form of a parameterisation of the local iterative DC&§orithm design space. At present,
various algorithms from the different disciplines use @iént terms for the same concepts, and are
largely developed without awareness of the many simieitietween the.

4. By constructing such a unified view, we are able to uncoyeesyies that arise as a result of
combining various approaches (e.g. using a particulaetdtgction and decision rule in order to
reduce the communication requirement of an algorithm), idedtify trade—offs in the behaviour
produced by different components (e.g. choosing betweprsimdent schedules to produce either a
slower, but anytime, algorithm, or one that converges crick average).

The analysis described above gives a multi-agent systeignéesthe information needed to tailor
a DCOP algorithm to their particular requirements, whettiey be high quality solutions, rapid
convergence, asynchronous execution or low communicatists. Moreover, such a unified approach
to analysing local approximate best—response DCOP atguosits valuable in itself, because it makes the
pros and cons of the various algorithm configurations caw, while this is our primary motivation, a
secondary motivation is that, by stating different apphascin terms of a common framework, we can
reconcile the differences in terminology that exist acriesvarious disciplines investigating DCOPs.
This, we believe, is a significant hindrance to progressimftald, and one which a unified approach can
start to remove. Furthermore, we believe that our framewookides an important step towards greater
use of a common specification of other problems that are exaady both the computer science and
game theory communities, such as multi—agent resourceagk@liocation problems or the management
of congested networks.

The paper progresses as follows: We begin the next sectiaiefgribing DCOPs. We then introduce
the notation of noncooperative games, state the Nash lequiti solution concept for games, describe
hypergraphical games, and characterise the class of patgaies and their associated properties. Then,
as a first step in developing our framework of the local appnate best-response DCOP algorithm
design space, we show that DCOPs are potential games. Wssnigesult, in Section 3 we populate our
parameterisation of the algorithm design space with coraptaof algorithms taken from the literatures
on local search for DCOPs and learning in games. In Sectiore 4ligcuss the connections between,
and overlapping features of, game-theoretic algorithnislacal approximate best-response algorithms
developed by computer scientists specifically for solvinG@Ps. In more detail, by characterising

50One notable exception to this trend is Marden et al. (2009a,illustrate the connections between potential games
andconsensus problemB a consensus problem, a set of agents must reach consgsus given value (such as

a meeting point). These problems may be modelled as a DCQRieimg binary and unary constraints. Each binary
constraint between two agents is satisfied when their Vasadre set to the same value, and violations are penalised
in proportion to their distance between their variablestiga. However, an agent's strategy set may be limited by its
unary constraints such that it is not possible for it to stamgously satisfy all its binary constraints.

6 A. C. CHAPMAN, A. ROGERS ET AL

DCOPs as potential games, convergence to Nash equilibifitime game-theoretic algorithms considered
here is guaranteed. Moreover, by drawing correspondereteebn the game-theoretic algorithms and
those developed specifically for DCOPs, these guarantegdmmapplied to the convergence of DCOP
algorithms. Finally, Section 5 summarises our findings aedu$ses directions for future work.

2 DCOPs as Potential Games

In this section we show that DCOPs, when viewed from a gameryhgerspective (as introduced by
Maheswaran et al., 2004), form a subset of the class of pateygmes, a useful class of games with
several properties desirable to the designer of a multitagygstem. Given this insight, we can bring
together the two sets of algorithms — taken from game—thaod/computer science — and analyse
them under a single framework, using results regardingltdss of potential games. To this end, we begin
this section with an overview of DCOPs. We then introducecoaperative games and the hypergraphical
game representation, in which a large game is reduced toagtitgpgraph composed of agents connected
to smallerlocal gamesin the specific context of DCOPs, these local games corresfm constraints.
We then focus on potential games, and in particular, we sheiva necessary and sufficient condition
for a hypergraphical game to be a potential game is that ehih mcal games are potential games.
Now, the natural way to express constraints in a DCOP iteam gameswhich are a specific type
of potential game. An important consequence of this is th@OP games form a subset of potential
games. Thus, game theoretic techniques used to analysglaigoin potential games can be used to
analyse DCOP algorithms. This insight is used in subseagetibns, where components of our algorithm
parameterisation are analysed using such techniques.

2.1 Constraint Optimisation Problems

A constraint optimisation problem is represented by a setaofiblesV = {vi,vs,...}, each of which
may take one of a finite number of states or valigs; Sj, a set of constraint€ = {c,¢cp,...}, and
a global utility function,ug, that specifies preferences over configurations of statemribles in the
system. A constraint = (V¢, R;) is defined over a set of variabl®s C V and a relation between those
variables,R;, which is a subset of the Cartesian product of the domainsac ariable involved in
the constraint[y,cy, Sj. A simple example is a binary constraint of the type typicaivoked in graph
colouring problems, where the relation between the twoaldes involved] andk, is given by the rule
that if vj = sthenv # s. A function that specifies the reward for satisfying, or ggntor violating, a
constraint is writtenue, (S,), wheresg, is the configuration of states of the variablgs

Using this, the global utility function aggregating thelitigs from satisfying or violating constraints
takes the form:

Ug(S) - u01(501>@---@uCk(SCk>@---@uC| (&:I)a

whered is a commutative and associative binary operator. Now, sarerérying to generate a preference
ordering over outcomes, we would like to ensure that an assén the number of satisfied constraints
results in an increase in the global utility. That is, theragation operator should be strictly monotonic:
for any values, b, ¢, if a < bthenc® a < c®b. Consequently, the choice of operator affects the range of
values that the; can take. For example, df is multiplication, the values af; must be elements @&, or

if @ is addition, the values afi may be elements &. Either approach will generate a suitable ordering,
however, from here on we will take the common approach ofguadditive aggregation functions:

Ug(9) = Y Ug(s). &
ceC
Constraints may be ascribed different levels of importdncgimply weighting the rewards for satisfying
them, or by using a positive monotonic transform of constraward (Schiex et al., 1995). The objective
is then to find a global configuration of variable stagéssuch that:

s' € argmax ug(s).
seS

Iterative approximate best—response algorithms for DCOPs 7

It is also possible to include hard constraints in this fdisagion of DCOPs. This is achieved by
augmenting the additive global utility function with a miplicative element that captures the hard

constraints:
Ug(S) = |_L Uhq(3)< ZS Usm(s)) ;
hogeHC sqeSC

whereHC andSCare the set of hard and soft constraints, respectively, dratenthe payoff for satisfying
each hard constraintis 1, and 0 if the hard constraint isteol. The consequence is that if any of the hard
constraints are violated the global utility is 0, while if af the hard constraints are satisfied the global
utility increases with the number of soft constraints $etis One downside to including hard constraints
in this manner is that the strict monotonicity @f(s) is lost, meaning that a change in a variable’s state
may satisfy additional constraints, but not increase tbbajlutility. If this is the case, it implies that the
global utility possesses many local, sub—optimal stabietpéhat are only quasi—local maxima.

2.2 Distributed Constraint Optimisation Problems

A DCORP is produced when a set of autonomous agents each imdieqity control the state of a subset
of the variables of a constraint optimisation problem, thdre the goal of maximising the rewards for
satisfying constraints (i.e. they aim to jointly maximiggs)). For pedagogical value, and without loss of
generality, we consider the case where each agent contrlyl®pe variable. We notate the set of agents
involved in a constraint by\., and the set of constraints in whiclis involved isC;. Each agent has a
private utility function ui(s), which is dependent on both its own state and the state ofyalita that
are linked to any constraimt€ C;. We call these agent% neighbours notatedv(i), and notate those
neighbours involved in a specific constraiptasv® (i). The simplest and, arguably, most natural, choice
of utility function in DCOP is to set each agatst utility to the sum of the payoffs for constraints that it is
involved in:

ui(s) = Zcuck(SaSka(i))-)

ck€Ci

Now, each agent’s choice of strategy is guided by its desiredximise its private utility, but this utility
is strategically dependent on the strategies of its neigigdn order to analyse such a system, we use the
tools and terminology of noncooperative game theory.

2.3 Noncooperative Games

A noncooperative gamé&, = (N, {S, u; }ien), is comprised of a set of agerts= 1,...,n, and for each
agenti € N, a set ofstrategies § with xi’\‘:13 = S, and autility function y : S— R. Note that, in
the context of DCOPs, we can useto represent the ‘state of a variable’ and ‘strategy of amtge
interchangeably. A joint—strategy proftec Sis referred to as aoutcomeof the game, wher8is the set
of all possible outcomes, and each agent's utility functipecifies the payoff they receive for an outcome
by the condition that, if and only if the agent prefers outemo outcomes’, thenu;(s) > ui(s'). That
is, each agent’s utility function ranks their preferencesramutcomes. We will often use the notation
s={s,s_i}, wheres_; is the complimentary set &f.

In noncooperative games, it is assumed that an agent'sgtmhiaximise its own payoff, conditional
on the choices of its opponents.best-response correspondenBgs._i), is the set of agernits optimal
strategies, given the strategy profile of its opponedtsi) = argmax . {ui(s,s-i)}. Stable points in
such a system are characterised by the set of Nash equilibria

Definition 1 A joint—strategy profile,’s such that no individual agent has an incentive to change to a
different strategy, is &lash equilibrium:

ui(s,s) —ui(s,st;) >0 Vs, Vi ©)

8 A. C. CHAPMAN, A. ROGERS ET AL

In a Nash equilibrium, each agent plays a best respaisefi(s";) for all i € N. As such, in a game
where agents independently choose which strategy to addyash equilibrium is a stable point where
no individual agent has an incentive to change their styateg

We can also define atrict Nash equilibrium, which is a necessary component of manpfprof
convergence in game theory, by replacing the inequality gudfon 3 with a strict inequality. The
implication of this substitution is that in a strict Nash difmium, no agent is indifferent between their
equilibrium strategy and another strategy, which is nottee in a Nash equilibrium. This also leads us to
a definition of non—degenerate games. In general, a nonrdegie game is one for which in every mixed—
strategy Nash equilibrium, all agents mix over the same rernob pure strategies. When considering
pure—strategy Nash equilibria, non—degeneracy meanfotteaty pure—strategy equilibrium profile of its
opponents, an agent’'s best—response correspondencaeanily one strategy. Consequently, all pure—
strategy Nash equilibria in non—degenerate games aré $tdte that this condition does not exclude the
possibility of a game possessing multiple Nash equilibRiather, it ensures that at most one equilibrium
exists for each of an agent’s pure strategies.

2.4 Hypergraphical Games

In DCOPs, an agent’s utility is a function of the constrainta/hich it is involved, and is only dependent
on its own and its neighbours’ states: itg(s,S,j))- Therefore, we can model a DCOP game using a
compact representation known asgpergraphical gameln more detail, hypergraphical games are a
model used to represent noncooperative games that hageisttependences between players’ utility
functions (Papadimitriou and Roughgarden, 2008). In trosleh the independences in the agents’ utility
functions are used to decomposeraiplayer global game into local games, each involving feviayers.
This decomposition can be thought of as a bipartite graplyhiith one set of nodes corresponds to
the set of players and the other represents the games playeddn them. Then, any agamivhose
strategy affects others players’ payoffs in a particulaal@yame is connected to that local game node.
This representation is more compact than the standard mdonma whenever the global game can be
factored into sufficiently many local games, and when theimarm number of neighbours an agent
has,k, can be boundell << n, it is exponentially smaller than the standard form (Pamédiou and
Roughgarden, 2008).

Formally, a hypergraphical game comprises a set of locakgdm= {y1,Y2, ..., Ym}. Each local game
is a tupley = (NY,{S, U }ieny), WwhereNY C N is the set of agents playingandy! : UicnwyS — R is the
payoff toi from its involvement iny. For each playel§ is identical for each game, and playathooses
one strategy to play in all of the local games it is involvediia. i plays the same strategy in each local
game). As in DCOPs, ageii$ neighboursv(i), are the agents with whom agerghares a local game
node, with those neighbours involved in a specific local ggmatatedv¥(i). Agents are usually involved
in more than one local game, with the set of local games inihiinvolved denotedl;. Agenti’s total
payoff for each strategy is given by the sum of payoffs frowhdacal game it is involved in:

Ui(s,s.i) = Z ul (s, Sv(i))-
yeli

In the context of DCOPs, each constraint is modelled by d lpmane, and agents are linked to the local
games corresponding to their constraints. Each agenity tien is given by the sum of the utilities from
constraints that it is involved in (as in Equation 2).

More generally, the hypergraphical game model generatimemodel offactor graphs(Kschischang
et al., 2001). Factor graphs can be used to represent DCORgelhas graphical probability models
such as Bayesian networks and Markov random fields. In betfeittor graph and hypergraphical game
models, each variable node comes under the control of ant,ageah, typically, the global utility to
be optimised is the sum or product of each agent’s ufilihe difference between the models lies in
what the hyperedges represent. In factor graphs, a hyper@actor node) represents a single valued

6Generally, any optimisation problem that forms@nmutative semi—ringan be expressed as a bipartite factor graph
— see Aji and McEliece (2000) for details.

Iterative approximate best—response algorithms for DCOPs 9

function, which is its contribution to the utility of the agis it contains. In contrast, each hyperedge in a
hypergraphical game represents an arbitrary noncoopergaime, in which agents’ payoffs may differ.
In other words, a factor graph is a special case of a hypengrajgame in which each local game gives
an identical payoff to all the agents involvé@hat is, local games in a DCOP asam gameswhich are

a subclass of potential games.

2.5 Potential Games

The class of potential games is characterised as those gdmaesdmit a function specifying the
participant’s joint preference over outcomes (Monderar 8hapley, 1996b). This function is known as
a potential function and, generally, it is a real-valuedciion on the joint—strategy space (the Cartesian
product of all agents’ strategy spaces), defined such tleathlange in a unilaterally deviating players
utility is matched by the change in the potential functiorp@ential function has a natural interpretation
as representing opportunities for improvement to a plagéeating from any given strategy profile. As the
potential function incorporates the strategic possibgibf all players simultaneously, the local optima of
the potential function are Nash equilibria of the game; thahe potential function is maximised by self-
interested agents in a system. Importantly, we will show tira global utility function acts as a potential
for a DCOP game. We now formalise some of the key concepteteta potential games.

Definition 2 (Potential Games) A function P: S— R is apotential for a game if:
P(S,&J*P(S’ﬁ,&d:U|(S,&|)7U|(SI1,S,|) VS,#ES VieN.
A game is called aotential gameif it admits a potential.

Intuitively, a potential is a function of action profiles suthat the difference induced by a unilateral
deviation equals the change in the deviator’s payoff.

The usefulness of potential games lies in the fact that thstemce of a potential function for a
game implies a strict joint preference ordering over ganteaues. This, in turn, ensures that the game
possesses a number of particularly desirable propertieishwve will use to analyse the behaviour of
various algorithms in the coming sections.

Theorem 3 (Monderer and Shapley (1996b)) Every finite potential game possesses at least one pure
strategy equilibrium.

Proof LetP be a potential for a game. Then the equilibrium set df corresponds to the set of local
maxima ofP. That is,sis an equilibrium point fof if and only if for everyi € N,

P(s) > P(5,s-i) VS§€S.

Consequently, iP admits a maximal value i8 (which is true by definition for a finit&), thenP possesses
a pure—strategy Nash equilibrium. |

Now, pure—strategy Nash equilibria are particularly dddi in decentralised agent-based systems, as
they imply a stable, unique outcome. Additionally, strietd equilibria must be pure by definition. Mixed
strategy equilibria, on the other hand, imply a stationprgpabilistically variable equilibrium strategy
profile. Also note that it is likely that more than one Nashiblodum exists, and that some of those Nash
equilibria will be sub—optimal.

Building on this, astepin a gamel” is a change in one player’s strategy. Anprovement stepn I
is a change in one player’s strategy such that its utilityriprioved. Apathin I is a sequence of steps,
o= (L,sh,...,¢...), inwhich exactly one player changes their strategy at et sA path has ainitial
point, 2, and if it is of finite lengthT, aterminal point §. A path@is animprovement patin I if for

"Indeed, this result holds for any problem that can be reptedes a factor graph and in which the variable domains
are finite.

10 A. C. CHAPMAN, A. ROGERS ET AL

allt, uj(s—1) < ui(¢) for the deviating player at stept. A gamerl is said to have thénite improvement
propertyif every improvement path is finite.

Theorem 4 (Monderer and Shapley (1996b)) Every improvement path in an ordinal potential game
is finite.

Proof For every improvement pathp= (°,s!,<%,...) we have, by Equation 2:
P() < P(sh) < P(&) < ...

Then, as S is a finite set, the sequeg@eaust be finite. o

The finite improvement property ensures that the behavibagents who play ‘better-responses’ in
each period of the repeated game converges to a Nash emuilibr finite time. Taken together, these
properties ensure that a number of simple adaptive prosesseerge to a pure—strategy Nash equilibrium
in the game (as discussed further for specific algorithmstién 4).

Using the definitions above, we can construct a mapping ketwetential and hypergraphical games.
To begin with, we note that Young (1998) shows that if everiywiae utility dependency corresponds
to a bimatrix potential game between two agents, then thieeegdime is a potential game. Building on
this, we generalise Young's result to hypergraphical piiégames comprising sevenatplayer games,

a result upon which the rest of the paper hinges.

Theorem5 A hypergraphical game is a potential game if every local gamés a potential game.

Proof Sufficiency is shown by constructing a potential function tfee hypergraphical game Each
local gamey has a potentiaP¥(s), so a potential for the entire gant®,can be constructed by aggregating
the potentials of the local games:

P(s) =S PY(s).
(s) yg (s)

Now, given a strategy profilg, a change in a deviating playgs payoff is captured by changes in the
values of potential function®Y(s), of the local gamesis involved in,lj, so the following statements
hold:

ui(s,Si) — Ui(s, Siy) = ZU?/(SszV(i))* ZUY@,S\;VU))
Yeli

¥

P ACEDEP LS

= P(S7&i)_P(#aS*i)a (4)

where the second line flows from the first because the potéatietion between independent agents is a
constant value, and the third line flows from the second byndiefin. a

Therefore, if every local game has a potential, the globpkngraphical game also has a potential. In
Section 2.6 we will use a specific instance of Theorem 5 to shetvDCOP games are potential games.
This result uses the fact thegam gamesare a subclass of potential games. Formally, a team game is a
game in which all agents share a common payoff function, aisccbmmon payoff function is a potential
for the game: That ig)!(s') = PY(¢), Vi € N.

2.6 DCOPs as Graphical Potential Games

In Equation 2, we defined agents’ utilities such that all agémvolved in a constraint receive the same
reward from that constraint; in other words, each constigame is a team game. Consequently, we can
make the following remark, which is a corollary of Theorem 5.

Iterative approximate best—response algorithms for DCOPs 11

Corollary6 Every DCOP game in which the agents’ private utilities are gum of their constraint
utilities is a potential game.

As per Theorem 5, a potential for such a DCOP game can be ootetrby aggregating the local (team)
games’ potential functions. Of course, this is exactly thobdal utility functionug, specified in Equation 1.
Now, for completeness, observe that, because a chaimgetrategy only affects the neighbours pi(i),
the following statements hold:

(s 80) ~UES0) = F Ual8S0) - 3 als)
= Y Ug(ssi)— Y Ug(s,s)

ceC ceC
= Ug(s,S-i) — Ug(s,S-i)- ®)
Thus, any change in state that increases an agent’s pritititie aiso increases the global utility of the

systerP

Now, when the scenario requires employing a local approtdérhast—response algorithm, the solution
to a DCOP game is produced by the independent actions of gt the system. These solutions
are located at stable points in the game; that is, for thissatd algorithms, the Nash equilibria of the
DCOP game characterise the set of solutions to the constyptimisation problem. We have shown
that DCOP games are potential games, so we are assured dedtaine pure—strategy Nash equilibrium
exists. Furthermore, the globally optimal strategy prafderesponds to a pure—strategy Nash equilibrium,
because it is a maximum of the potential. We emphasise thmbst DCOPs many Nash equilibria exist,
and furthermore, many of those will be sub—optimal. Thisasgtipularly the case when hard constraints
are incorporated, because, as noted earlier, the gloltiy} finction is likely to have many local quasi—
maxima wherever a hard constraint is violated.

Recently, however, quality guarantees on worst—case Naslhitgia andk—optima for DCOP games
have been derived for certain classes of DCOP games (Paatd@mbe, 2007; Bowring et al., 2008). In
more detailk—optima are a generalisation of Nash equilibria, applieainly to DCOPSs, that are stable in
the face of deviations of all teams of sizand less. The payoff to a teamis defined as:

Uy (S, Sx) = U, (Sx>S-x),
X (Sx»S—x Ckgcxck%(X

whereCy = Uiy Gj; that is, the team utility is the sum of all constraint il any member of is
involved in, counting each constraint only once. Nash éopél are k—optima withk = 1, and every
(k+ 1)—optimum is also &—optimum, so everk-optima is a Nash equilibriuthThe key result is that
the worst—cask—optimal solution improves as the valueloincreases (that is, as the maximum size of
the deviating coalitions considered increases). Gives) the worst—caske-optimum results can be used
to guarantee lower bounds on the solutions produced by sdb@Halgorithms. However, bounds only
exist fork greater than or equal to the constraint arity of the problsmhounds do not exist for Nash
equilibria in problems involving anything other than unapnstraints.

We now present an example DCOP — a graph colouring game. Veetlgiiy example because it is
often used as a canonical example in this domain, and it si@tsomplicated payoff structures may be
constructed by combining simple constraint games.

8Tumer and Wolpert (2004) provide another method for showlita DCOP games are potential games. Generally,
any global utility function whose variables are controllegd independent agents can be instantiated as a potential
game by setting each agent’s utility function equal to itggimal effect on the global utility (as in the alignment
criterion above). Then, by definition, any change in an dgetitity is matched by an equivalent change in the global
utility. In a DCOP, one way to achieve this is to set each dgeitity to the sum of the payoffs for constraints that it

is involved in, as in Equation 2.

9Although Nash equilibria correspond to 1-optima, note gtring equilibria(Aumann, 1959) do not correspond

to n—optima. A strong equilibrium is robust to deviations frothcaalitions ofn players and less, where a coalition
deviates if at least one member’s individual payoff impasd none decrease. In a DCOP gamas-@ptimum
always exists, while a strong equilibrium may not. Howeifea,strong equilibrium does exist, it is-optimal.

12 A. C. CHAPMAN, A. ROGERS ET AL

Example 1 In graph colouring, neighbouring nodes share constraimtisich are satisfied if the nodes
are in differing states. Consider the following graph cafog problem, where each node can be either
black or white, that is, S= {B, W}, and the associate®x 2 constraint game:

A B

o A B w KC\ o - B w
B (. 0) @D B 0, 0))
W 1,1 (0, 0) N W 1,1) 0, 0)

Now, in this example, agents A and B each effectively plagainee above with agent C, while agent
C plays the composite game below, constructed by combininganstraint games it is playing with each
neighbour. In the tables below, A and B are column players@isithe row player. The top table contains
the payoffs (W, Ug, Uc), and a potential for the game is given in the lower table:

o M8 | BB B, W W, B W, W
B 0,00 (©OLD) (@01 (LL2
W (1,1,2) (1,0,1) (0,1,1) (0,0,0)
o SA B B,B B, W W, B W, W
B 0 1 1 2
W 2 1 1 0

In the above we have described the utility functions thatngedi DCOP game, the associated solution
concepts, and some important properties of DCOP games thafrtbm their classification as potential
games. However, what is not specified in the above formulatie the processes by which agents adjust
their states in order to arrive at a solution. These are therihms used to solve the game, and are the
topic of the next section. Before continuing, however, wekenane general comment regarding both
the interpretation of the repeated game and the strategytat@an process. We interpret the agents as
being involved in several rounds of negotiation about thet jstate of their variables before playing the
DCOP game once. Alternatively, we could justify this pecdpe by assuming that the agents suffer
from extreme myopia, so that they do not look beyond the imatedewards for taking an action, as is
standard in much of the literature on learning in repeatedega Either way, the only Nash equilibria that
are supported are the Nash equilibria of the one-shot DC@tepthat is, the Folk Theorem for repeated
games does not come into consideration.

3 A Framework for Local Approximate Best Response DCOP Algoithms

In this section we describe the basic components of the m@@M®algorithms present in the literature,
including those developed for solving potential gamesse¢hdeveloped for DCOPs generally, and those
designed to solve specific problems that may be represegtaddCOP. By doing this, we open a way
to investigate synergies that arise by combining seemidiglyarate approaches to solving DCOPs using
local approximate best-response techniques. This is edifsuther in the next section, where we analyse
how differences in the algorithms affect their behavioud &ime solutions they produce, and propose
novel algorithms incorporating the best features of eadweéver, first of all, an explication of the basic
framework we use to analyse all the algorithms and the desigoe is provided.

As noted above, in all the DCOP algorithms we discuss, agaettsnyopically, in that they only
consider the immediate effects of their actions (or statngks, see the discussion above). Given an
appropriate trigger, the individual agents follow the sabasic two—stage routine, comprisistate
evaluation which produces some measure of the desirability of eadb, d@llowed by adecisionon

Iterative approximate best—response algorithms for DCOPs 13

which action to take, based on the preceding state evahsafide system—wide process that triggers an
agent’s processes is given by adjustment schedul¢hat controls which agent adjusts its state at each
pointin time. In more detail:

State Evaluation: Each algorithm has a target function that it uses to evalitatprospective states.
The target functions are typically functions of payoffsdaometimes take parameters that are
set exogenously to the system or updated online. Additipredme algorithms may make use of
information about the past actions of agents to computedhes\of the target function.

Decision Rule: The decision rule refers to the procedure by which an agess iis evaluation of states
to decide upon an action to take. Typically an algorithm gribes that an agent selects either the
state that maximises or minimises the target function (ddipg on the target function in question),
or selects a state probabilistically, in proportion to th&re of the target function for that state.

Adjustment Schedule: In many algorithms (particularly those addressed in theegdraory literature),
the scheduling mechanism is often left unspecified, or islicitly random. However, some
algorithms are identified by their use of specific adjustnestedules that allow for preferential
adjustment or parallel execution. Furthermore, in somes#te adjustment schedule is embedded
in the decision stage of the algorithm.

Note that communication does not figure explicitly in thiarfrework. Information is communicated
between agents for two purposes: (i) to calculate the vafuleir target function, or (ii) to run the
adjustment schedule. Given this, the communication requénts of each algorithm depend on the
needs of these two stages. For example, algorithms thatansi®m adjustment protocols only transfer
information between agents to calculate the value of tlaeget function (usually just their neighbours’
states), whereas in algorithms that use preferential adgrg schedules (such as the maximum—gain
messaging algorithm), additional information may be reggito run the adjustment schedule.

Given this background, this section examines the formsehah of the three algorithm stages can
take. In doing so, we make clear, for the first time, the mamneations between the various algorithms.
During this section we will be referring to many algorithmerh the literature on DCOP algorithms and
learning in games, the most important being:

Best response and smooth best response (Fudenberg and [E398);

Better—reply dynamics (Mezzetti and Friedman, 2001);

Distributed stochastic algorithm (Tel, 2000; Fitzpatrarkd Meertens, 2003);

Maximum-—gain messaging algorithm (Yokoo and Hirayamag] 88aheswaran et al., 2005);
Adaptive play (Young, 1993) and spatial adaptive play (Ypur998, Chapter 6);

Distributed simulated annealing (Arshad and Silaghi, 2003

Fictitious play (Brown, 1951; Robinson, 1951) and smoottitfieis play (Fudenberg and Kreps,
1993; Fudenberg and Levine, 1998);

Joint strategy fictitious play (Marden et al., 2009b);

e Regret matching (Hart and Mas-Colell, 2000) and variantegfet monitoring (Arslan et al., 2007);
e Stochastic coordination—2 algorithm and maximum-gairsagisg—2 algorithm (Maheswaran et al.,
2005);

We now discuss the various target functions that are use€@®algorithms, and then examine different
decision rules and adjustment schedules used in DCOP g

3.1 State Evaluations

The way in which a local iterative approximate best—respa@igorithm searches the solution space is, in
the largest part, guided by the target function used by agergvaluate their choice of state. The most
straightforward approach is to directly use the payoffegiby the utility functions to evaluate states.

Some shortcomings of this approach, such as slow conveggpoor search and sub—optimal solutions,

14 A. C. CHAPMAN, A. ROGERS ET AL

are addressed by more sophisticated specifications ofgbeitaim’s target function. These include using
measures of expected payoff, average regret, and agodegdditées. The next subsection addresses using
immediate payoffs as a target function, while subsequeat @xamine the more sophisticated target
functions.

3.1.1 Immediate Payoff and Change in Payoff

As noted above, the simplest target function that a DCOPrititgo can use to evaluate its strategy is to
directly use its private utility functioryi(s,s_i), producing typical ‘hill-climbing’ or ‘greedy’ behaviour
This leads the system to a Nash equilibrium, which corredpaa a local potential-maximising point.
The best—response dynamics is the most well known examgleobfan approach.

Furthermore, many algorithms, including the distributetkastic algorithm, the distributed breakout
algorithm and the maximum—gain messaging algorithms hesarnount to be gained by changing strategy
as a target function. This is a simple perturbation of thigyfunction achieved by finding the difference
between the current state’s value and the value of all othssiple states. For many decision rules, using
either the gain or the raw utility function as an input willogiuce the same result. However, when it is
useful to differentiate between those states that imprayefiand those that do not, or when the decision
rule used can only take non—negative values as inputs, ggiayioff is the appropriate target function.

Agents using this target function to update their evaluatibstates only need to observe the current
state of their neighbours to run the algorithm, and do notineeeommunicate any further information.
However, the use of such a target function can often resglbin convergence.

3.1.2 Expected Payoff Over Historical Frequencies
In order to speed up convergence, an algorithm can use threedpayoff for each state over historical
frequencies of state profiles as a target function. Theséeamnstructed in at least two different ways,
either by maintaining an infinite memory of past actions,rathe fictitious play algorithms, or a finite
memory, as in variants of adaptive play.

First, we consider the infinite memory case, and the fict#tiplay target function in particular. Let
agentj’s historical frequencyf playings'j, be defined as:

. 1t,l
— — gt
d =1 3105 =5)

wherel {s’j = s}} is an indicator function equal to onesff is the strategy played byat timet, and zero
otherwise. This may be stated recursively as:

1
= |18 =5+ - Y.

Now, qgj may be interpreted a's belief that its opponeni, will play strategy§,j at timet. Agenti’s belief
over each of its opponents’ actions as a vector of histofieguencies of play for each+# i is:

t
g1

]

gj =

3

t
qs
Si

andi’s belief over all of its opponents’ actions is the set of wvest ; = {qtj}jeN\i. Following this,i’s
expected payoff for playing, givend' ;, is then:

FPi(S,d") = zs lui(s'qv&i) I vqtsj] ©6)

where, in generab_ = UjjenSj. However, note that in any hypergraphical game, such as afDgamne,
g-i andS_; may be replaced with,;) andS,), respectively.

Iterative approximate best—response algorithms for DCOPs 15

The classical fictitious play and smooth fictitious play aitjons use this measure of expected payoff
as a target function. Variations of fictitious play that usieeo methods to update the agent’s belief state
have been suggested, many of which are contained in the faodly of generalised weakendittitious
play processes (Leslie and Collins, 2006). For exampleitirations where an agent can only observe
its payoff and has no knowledge of its neighbours’ actiohs, éxpected payoff may be calculated as
the average received payoff to each action. This is knownaaiousor utility-basedfictitious play
(Fudenberg and Levine, 1995), and, as noted by Arslan et2@D7), is effectively a payoff-based
reinforcement learning algorithm. Additionally, Crawfio(1995) suggests weightedfictitious play
process for highly variable environments, in which the dbntion of past observations to an agent's
belief are exponentially discounted.

A similar infinite memory process, callgdint—strategy fictitious playJSFP), was introduced by
Marden et al. (2009b). In this process, each agent keegsafdabe frequency with which its opponents
play eachjoint strategys_j, rather than their individual strategy frequencies. Irs tbése, let's belief
over its opponents’ joint—strategy profileg(s_;), be given by the fraction of times it observes each joint
profile. Each agent’s expected payoff given this belief enth

JSFR(S,q") = zs af (s—i)ui (s, 5-).
S_j€ES
This can be expressed more simply as:

t
ISFR(S.) = ¢ 3 uld <)

wheres' ; is the strategy profile of the agent’s opponents at timeurthermore, this target function can
be specified recursively, which only requires agents to taairm measure of the expected payoff for each
state, rather than the full action history:

ISFR(Y, o) = ¢ [(,30) + (t— DISFR (5, a1 ™

whereui(s, s ;) is the fictitious payoff ta for each element o given its opponents’ profile at

Marden et al. (2009b) show that the classical fictitious plagt the joint—strategy fictitious play target
functions coincide in all two—player games. As an exampliefusefulness of the hypergraphical game
representation, we now show that the classical fictitioay pihd the joint—strategy fictitious play target
functions are identical in all binary hypergraphical garfies every local game is a two—player game).
To begin with, in any hypergraphical game, Equation 6 candpeessed in terms of the sum of utilities

from local games:
PR) = [uw,si) qg.] .
VGZi C igii Sj IE_lsfi :

Now, in a binary hypergraphical game, the product term isingdnt because an agent has only one
; 1 ct-1 _ ; .
opponentin each local game, so usq@]g_ Yol {s’j = s}}, we can rewrite the above as:

pr(q, qtl) - VGZi Sjvgsjy uy(s,hsjV) %‘trz(lll {Sjy - SEV}?

wherejY isi’s opponentiry. The expression above can be simplified because the condnimdsumming
over allSyy and the indicator function can be replaced by taking thesme=of the payoffs actually received
in each local game over time. This gives:

FRi(.dt) = ?120% u(s).55).

16 A. C. CHAPMAN, A. ROGERS ET AL

which, like the joint—strategy fictitious play target fuiwet, admits a recursive specification:

1

Pdat) -~ §|3 e e
yeli

= Tlu(s)+ (- PP A
This form of classical fictitious play for binary hypergragdl games is identical to the definition of the
joint—strategy fictitious play target function stated inu&tjon 7.

We now consider a class of processes that evaluate the expeayoff for each state over historical
frequencies of state profiles computed from samples tal@n & finite memory, called adaptive play
(Young, 1993). In adaptive play, agents maintain a finiteonjsover their opponents’ actions, and
construct an estimate of their mixed strategies by samitiom this history. Each individual only has
a finite memory, of lengtim, and recalls the previoums actions taken by opponents. On each play of the
game, each individual takes a sample of dizé m from this memory, and computes an estimate of its
opponents’ actions from this sample. That'spelief overj’s actions,q(sj)i’t, is given by the proportion
of times thatj has played strategy in the sample of sizk. Then, as in fictitious play;s expected payoff
for playings, giveani, is given by:

€S

AP}(SJiaqiiti) = zs | [Ui(s'q,&i) |_| q'sjt] . 8)

All of the adaptive play variants use this type of state extdun, with various constraints on the relative
values ofm andk. In particular, spatial adaptive play was described in p(t998) as a variation of
adaptive play in which both the memomnyand the sample sideare 1, and in which only a single agent
updates its strategy each time step.

The fictitious play, joint—strategy fictitious play and atie@ play target functions have the same
communication requirements as algorithms that use the tfrateepayoff for an action as a target function,
because at each point in time each agent only needs to knowathes ofs_; in order to update its
evaluation of each of its states.

3.1.3 Average Regret for Past Actions

Another approach that can be used to speed up convergerzenigasure the average ‘regret’ for not
taking an action, where the regret measure for a partictdaregy at a particular time is the difference
between the payoff that would have been received for plafingstrategy at time and the strategy that
was actually chosen at The average of these differences over the history of repgaay is the average
regret for not adopting that particular strategy constbever the entire history of play:

AR = ;1 ; ui(s,s5) —ui(sf,st)]

This target function is also known asternal regretLike the measure of expected payoff based on joint
strategies discussed above, the average regret targéibfunan be specified recursively, only requiring
the agents to maintain a measure of average regret for eateh st

AR = L (g8) u(e) + (- DAR). ©

Hart and Mas-Colell (2000) use this target function to cardttheir regret matching algorithm, and use
it to characterise an entire class of adaptive strategiast @hd Mas-Colell, 2001). It is also used as the
target function for a distributed simulated annealing radtfor finding the Nash equilibria of games (La
Mura and Pearson, 2002). Like fictitious play, many variafithe method of updating regrets have been
suggested. For example, a variation of average regrettfeati&ins where an agent can only observe its
own payoff is known adnternal regret(Blum and Mansour, 2007). This method calculates regretas t

Iterative approximate best—response algorithms for DCOPs 17

difference between the average payoff for choosing eaté stahe past and the received payoff for the
state selected at a particular time. In this way it is analisgo cautious fictitious play.

Another example, proposed by Arslan et al. (2007), is a tebesed target function in which past
regrets are weighted by a constant value. In other wordsypgets are exponentially discounted, or the
agents have ‘fading memory”:

WF{ =p [Ui (Sastfi) — Ui (St)] + (1 - p)WFTsila (10)

where(1— p) is the discount factor, & p < 1.

Again, this target function uses the same observationsgasidims that use the immediate payoff,
fictitious play, joint—strategy fictitious play and adagtiplay target functions payoff for an action as a
target function, because at each time—step, an agent orlysrte know the values & ; in order to
update its regret for each of its states.

3.1.4 Aggregated Immediate Payoffs
One inconvenient aspect of the above target function spatidins is that they are prone to converging to
suboptimal equilibria (in the absence of some ergodic m®sach as a random perturbation to payoffs, as
will be discussed in Section 3.2). A number of algorithmsidbis problem by using aggregated payoffs
to evaluate states. However, these algorithms have significincreased communication requirements,
as agents pass information regarding the value of each sittter than just indicating their current state.
The maximum-—gain messaging—2 algorithm and stochasticdowiion—2 algorithm both use a
pairwise aggregate of local utility functions to evaludte joint state of any two agenisand j:

Uij = Zcuck(&sjas—{i,j})‘f‘ ;Uck(37sja3—{i,j})_ g Ug, (S,S),S4i.j}); (11)
k<G ceCj ckeGinCj

)

where the final term adjusts for the double counting of anystraints shared by the agents. This target
function allows the agents to evaluate synchronised staeges, and can be used to avoid the worst
Nash equilibria in the system by converging only to 2—optiha mentioned in Section 2.2, Pearce

and Tambe (2007) show that the worst—case 2—optimum spltdi@ DCOP game is greater than that

for a Nash equilibrium, or 1-optimum. Thus, this result iraplthat an algorithm that uses a pairwise

aggregated target function has a higher lower bound solthian any algorithm that only converges to a

Nash equilibrium.

Furthermore, Maheswaran et al. (2005) propose two famdifek—coordinated algorithms —the
maximum-—gain messaginig-and stochastic coordinatiok-algorithms — that use locally aggregated
utilities for coalitions ofk agents, which each converge to an element of their respesgivofk—optima.
However, although the number of messages communicatedtastsp to calculate the aggregated utilities
increase linearly with the number of neighbours each agast the size of each message increases
exponentially with the size of the coalitions. These fagtmake constructing algorithms that aggregate
the utilities of large coalitions of agents infeasible.

3.2 Decision Rules

A decision rule is the procedure that an agent uses to maputpetof its target function to its choice of
strategy. The decision rule used by most DCOP algorithmghgretheargmaxor argminfunctions, or
probabilistic choice functions. The choice between theseserves an important purpose, as it determines
whether the algorithm follows a hill-climbing trajectoryig stochastic. In the former case, the algorithm
produced may converge quickly — or may even be anytime — buaif not be able to escape from the
basin of attraction of a local maximum.

On the other hand, adding ergodicity allows the algorithmessape from the basin of attraction
of a sub-optimal Nash equilibrium (or local maximum of theteydial function), but at the cost of
sometimes degrading the solution quality. Proportior@albbabilistic decision rules map payoffs through
a probabilistic choice function to a mixed strategy (Fudsgkand Levine, 1998). As such, states with a

18 A. C. CHAPMAN, A. ROGERS ET AL

higher—valued target function are chosen with greateradity, but states with lower payoffs than the
current state are sometimes chosen. This allows the agethis §ystem to escape local optima. However,
it also means that the algorithm is no longer an anytime dpétion algorithm. Two such probabilistic
choice functions are thinear and multinomial logitchoice models. Theimulated annealingecision
rules add ergodicity by probabilistically moving to a loweility state in proportion to its distance from
the current state’s utility, while always moving to statagwhigher utility. Finally, thee—greedy decision
rule, commonly used in machine learning, selects a statethéthighest valuation with probabilitf — €)

and chooses uniformly from the remaining states with praibate. We now consider these rules in more
detail.

3.2.1 Argmax and Argmin Decision Rules
The argmaxfunction (or, equivalently, thargmin function) returns the state with the highest (lowest)
valued target function. Two variations of this decisiorerate present in the literature, which differ in how
they handle multiple situations where multiple statesespond to the highest value of the target function.
These two variants of thargmaxfunction are discussed in the context of the distributedtsstic
algorithm in Zhang et al. (2005), where the algorithms anme@DSA-A and DSA-B, respectively. In
the first, which we callrgmax—A if the agent’s state dt— 1 is one of the states that maximises the
target function, then it is the state selected.aDtherwise, a new state is randomly chosen with equal
probability from the set of target function maximising swtThat is, the agent only changes its state if
it improves the value of its target function. In the secondard, argmax—B an agent randomly selects
a new state from the set of target function maximising statébout regard for the state &t 1. Note
that in non—degenerate games, every best response is psigthe two variants of the argmax function
behave identically.

A benefit is that using thergmaxfunction in conjunction with an immediate reward targetdtion and
a suitable adjustment schedule (such as in the maximumsggssaging algorithm) is that the resulting
algorithm can be ‘anytime’, in that each new solution pragtiis an improvement on the last. However,
one potential drawback of this technique is its dependendritial conditions, even when the algorithm
is not anytime. It is possible that the initial random confagion of states places the system outside the
basin of attraction of an optimal Nash equilibrium, meartimat an algorithm using thergmaxdecision
rule can never reach an optimal point. To avoid this scenarjarobabilistic decision rule may be used
instead.

3.2.2 Linear Probabilistic Decision Rules

The linear probabilistic decision rule produces a mixedtstyy with probabilities in direct proportion to
the target value of each state:

B Ui (Sast—i)

 Yses Ui(s,85)’

This model is only appropriate when the target function $§eppa non-negative input. Although this
appears to be quite a substantial limitation, the lineatbabdistic choice rule is useful in certain
circumstances. For example, the regret matching algoritb@s the linear probabilistic choice function
with negative regrets set equal to zero, so that they areechaith zero probability (Hart and Mas-Colell,
2000). Another example is the better-reply dynamic, in Wkda agent randomly chooses a new state
from those which (weakly) improve its payoff (Mezzetti antdeliman, 2001).

Prg

3.2.3 Multinomial Logit Decision Rules
One probabilistic decision rule that can accept negatipaitins the multinomial logit decision rule
(Anderson et al., 1992), known in statistical mechanicha®oltzmann distribution:

e tui(sg)

Socs € MO 42

Prs(n) =

Iterative approximate best—response algorithms for DCOPs 19

Here states are chosen in proportion to their reward, but thkative probability is controlled by,

a temperature parameter.rif= 0 then theargmaxfunction results, whiley = « produces a uniform
distribution across strategies, which results in the siftiee system following a random walk. Depending
on the specifics of the problem at hand, the temperature ckefieconstant or may be decreased over
time. If an appropriate cooling schedule is followed, theldaase is referred to as a ‘greedy in the limit
with infinite exploration’ decision rule in the online reartement learning literature (Singh et al., 2000).
The multinomial logit choice function is used in typical sffieations of smooth best response, spatial
adaptive play (Young, 1998, Chapter 6) and smooth fictitidag (Fudenberg and Levine, 1998; Hofbauer
and Sandholm, 2002).

3.2.4 Simulated Annealing Decision Rules

The simulated annealing decision rule is a probabilistimigien rule that works by randomly selecting a
new candidate statk, and accepting or rejecting it based on a comparison to tirertistate (Metropolis

et al., 1953; Kirkpatrick et al., 1983). All improvementsthre target function are accepted, while states
that lower the value of the target function are only acceptguoportion to their distance from the current
state’s value. For example, the case where the target &umistgiven by the agent’s private utility function
gives the following decision rule:

B! if ui(k,si) > ui(s,s-i)
Prs(n){ N H(ui(ks i) —Ui(s,5-1)) otherwise, -

whereu;(k,s_i) andui(s,s_i) are the candidate and the current state’s payoffs, resp8ctAs with the
multinomial logit choice model (Equation 12),is a temperature parameter.rjff= 0 then only states
that improve the target function are accepted, while o means that all candidate states are accepted,
and consequently, as with the multinomial logit functidre state of the system follows a random walk.
The temperature may be kept constant, resulting in an analofthe Metropolis algorithm (Metropolis

et al., 1953), or may be decreased over time as in a standaulbsed annealing optimisation algorithm
(Kirkpatrick et al., 1983). Distributed simulated annaglihas been proposed as a global optimisation
technique for DCOPs (Arshad and Silaghi, 2003), and a sirdilannealing algorithm based on average
regret has been suggested as a computational techniquavfimrgsthe Nash equilibria of general games
(La Mura and Pearson, 2002).

3.2.5 The—Greedy Decision Rule

One particularly common decision rule used in online raicément learning is known asgreedy. Under

this rule, an agent selects a state with maximal expectedrtewith probability(1— €), and a random

other action with probabilitg, i.e.:

Pre (6) = { 1-¢ if 5= .a&gergax[u.(k, s.i)] 14
€ otherwise,

Like the multinomial logit decision rule, the exploratioarameterg, can be kept constant or may be
decreased over time. Under specific conditions on the rateafease, the later case is another example
of a ‘greedy in the limit with infinite exploration’ decisiamle (Singh et al., 2000). This decision rule is
used in many variations of adaptive play (e.g. Young, 1993).

3.3 Adjustment Schedules

An adjustment schedule is the mechanism that controls wéieimts adjust their state at each point in
time. The simplest schedule is the ‘flood’ schedule, whelraggnts adjust their strategies at the same
time. Beyond this, adjustment schedules can be dividedtimbogroups: random or deterministic. The
former are typically run by each agent independently, and mr@duce sequential or parallel actions
by agents. The latter often require agents to communicébenmation between themselves in order to

20 A. C. CHAPMAN, A. ROGERS ET AL

coordinate which agent adjusts its strategy at a given poitine, with priority usually given to agents
that can achieve greater gains or are involved in more ctsflidther times the ordering is decided upon
in a preprocessing stage of the algorithm.

3.3.1 Flood Schedule

Under the flood schedule, all agents adjust their strategith& same time. This schedule is in essence the
Jacobiiteration method (Press et al., 1992). It is fredyesied in applications of local greedy algorithms
(e.g. Matthews and Durrant-Whyte, 2006)), and in impleragons of fictitious play (e,g, Leslie and
Collins, 2006)) and some variants of adaptive play (e.g.Ng1993).

A problem commonly observed with algorithms using the flooldeslule, particularly greedy algo-
rithms, is the presence of ‘thrashing’ or cycling behavi@lrang et al., 2005). Thrashing occurs when, as
all agents adjust their states at the same time, they inthtBrmove their joint state to a globally inferior
outcome. Furthermore, it is possible that a set of agentbeaome stuck in a cycle of adjustments that
prevents them from converging to a stable, Nash equilibidutcome. In theory, the potential for these
types of behaviours to occur means that convergence caengtidranteed, while in practice they are
detrimental to the performance of any algorithm using thedlechedule.

3.3.2 Parallel Random Schedules and Inertia

Parallel random adjustment schedules are simply varistidrihe flood schedule, in which each agent
has some probabilitp of actually changing its state at any time step. In the coempsttience literature
on DCOPsp is known as the ‘degree of parallel executions’ (Zhang et28l05), whereas in the game
theory literature it is commonly referred to as choice ‘ti@e.g. Mezzetti and Friedman, 2001; Marden
et al., 2009b).

Now, this type of adjustment schedule does not ensure tredhing is entirely eliminated. However
by selecting an appropriate value pf thrashing and cycling behaviour can be minimised, pratyci
an efficient algorithm with parallel execution without ieesing the communicational requirements.
Furthermore, inertia is essential to the convergence probfvarious processes, such as the better—
reply dynamics and joint—strategy fictitious play. Thishe tadjustment schedule used by the distributed
stochastic algorithm, regret matching, and joint—strafegitious play with inertia.

3.3.3 Sequential Random Schedules

The group of adjustment schedules that we satjuential random scheduliesolve randomly giving one
agent at a time the opportunity to adjust its strategy, witbras selected by some probabilistic process.
The motivation for using this adjustment schedule is grauahid the convergence proofs for many of the
adaptive procedures taken from the game theory literabungarticular, the finite improvement property
of potential games directly implies that agents that plagguence of ‘better responses’ converge to a
Nash equilibrium in a finite number of steps. This propertysed to prove the convergence of spatial
adaptive play and a version of Fictitious Play with sequenipdating (Berger, 2007).

Now, sequential procedures do not allow for the parallelcatien of algorithms in independent
subgraphs, where thrashing is not a concern, or for the &r@cof algorithms whose convergence can
be guaranteed without asynchronous moves. However, thepsiare that agents do not cycle or thrash,
which is a risk with using the flood or parallel random adjustinschedules.

In practice, there are a number of ways to implement this tffgehedule. A particularly straightfor-
ward approach which ensures that all agents have an opjigrtoiadjust their state is given by dividing
time into segments, with each agent randomly selecting atfmm a uniform distribution over the
segment at which to adjust its strategy. Agents then adjest states sequentially and in a random order,
which satisfies the assumptions of the theoretical converyeesults. However, such a schedule may
depend on an external or synchronised clock. This type afdudle is essentially a form of Gauss-Seidel
iteration, in which the order of updating is shuffled eacheyPress et al., 1992). We refer to this schedule
as a shuffled sequential schedule. Another simple approagtie to give each agent a mechanism that
triggers action according to a probabilistic function afid, such as an exponential distribution, which

Iterative approximate best—response algorithms for DCOPs 21

can be run on an internal clock. In this process the proligluifiany two agents adjusting their state at
the same time is zero. This could be called a sequential mrdponential schedule. A final suggestion
is to use token passing to maintain sequential updates.

3.3.4 Maximum-Gain Priority Adjustment Schedule

The maximum—gain messaging algorithm takes its name franytpe of adjustment schedule it uses
(Maheswaran et al., 2005; Yokoo and Hirayama, 1996). Thééepential adjustment protocol involves
agents exchanging messages regarding the maximum gaircéimegichieve. If an agent can achieve
the greatest gain out of all its neighbours, then it impletsdéhat change, otherwise it maintains its
current state. The maximum—gain messaging adjustmendigtshavoids thrashing or cycling, as no two
neighbouring agents will ever move at the same time.

3.3.5 Constraint Priority Adjustment Schedule

A second preferential adjustment schedule, the constgaiotrity adjustment schedule, works by
allocating each agent a priority measure based on the nuaflvéslated constraints it is involved with.
This is the type of adjustment schedule used byAhe algorithm.

4 Local Approximate Best Response Algorithm Parametrisatin

In this section we discuss how the different components o€®B algorithm, as identified in Section 3,
affect the quality and timeliness of the solutions it proglkicAs an overview, Table 1 presents the
parameterisation of the main local approximate best—resp®COP algorithms highlighted in Sec-
tion 3: two versions of the distributed stochastic algaritfDSA-A and DSA-B), the maximum-—gain
messaging algorithmMGM), the better—reply dynamic with inerti@R-1), spatial adaptive playSAP),
distributed simulated annealin@$AN), fictitious play EP) and smooth fictitious playstnFP), joint—
strategy fictitious play with inertiad6FP-I), adaptive play AP), regret matchingRM), weighted regret
monitoring with inertia (WRM-I), the stochastic coordination—2 algorithB0A-2), and the maximum—
gain messaging-2 algorithmiiGM—2). In this table, the relationships between the algoritlane clearly
shown, in terms of the components used to construct eaclewnt.th

Before beginning the detailed discussion, we define soméeftdrms we use in the analysis. In
particular, we say an algorithironverges in finite timé there exists a valud after which the joint
state of the agents is guaranteed to be a Nash equilibriunalgarithmalmost surely convergetthe
probability of the agents’ joint state being a Nash equiilibr converges to 1 as the number of time steps
tends to infinity. An algorithntonverges in distributioif the distribution over joint states converges to
some specified distribution as time tends to infinity. Typhcaéhe specified distribution is the Boltzmann
distribution over the joint state with temperaturg¢hat maximises the global utility. Note that almost—
sure convergence and convergence in distribution do neeptehe algorithm from moving arbitrarily
far from a specified outcome, but only that these moves ocithrdecreasing probability (Grimmett and
Stirzaker, 2001). An algorithm is calleghytimeif at each time step the solution it produces is at least
as good as the one produced at the previous time step. Fiagbynt strategy is calledbsorbingif it
is always played after the first time it is played, as is stamhdlathe stochastic processes literature (see
Grimmett and Stirzaker, 2001, for example).

We now move on to discuss in detail how the algorithms aretedland where they differ, and
furthermore, how this affects their behaviour and the sohst they produce. In the process, we will
sketch several convergence proof techniques, and wilheddeme existing convergence proofs to cover
algorithms with similar structures. First, we analyse thalgorithms that use immediate reward or change
in payoff as a target function. This allows us to demonstcdarly how different decision rules and
adjustment schedules affect the convergence properttas algorithms. We then discuss algorithms that
use recursive averaging measures, such as expected rawagtet, as target functions.

22

. CHAPMAN, A. ROGERS ET AL

Target Function

Memory

Decision Rule

Adjustment Schedule

DSA-A ui(si,s-i) — argmax-A Parallel randonpy
DSA-B ui(Si,S-i) — argmax—B Parallel randonp)
MGM ui(Si,S-i) — argmax—B Preferential: Maximum
gain
BR-I ui(si,s-i) — argmax—B Flood
SAP ui(Si,S-i) — Logistic (n) Sequential random
DSAN ui(Si,S-i) — Sim. annealingn) Parallel randomf)
FP 2& {ui (§,s-0) qu} Opponents’ freg. of argmax—B Flood
si€8 SjEs-i play
smFP Z& ui(s,s-i) |_| q‘sl} Opponents’ freq. of Logistic () Flood
S €8, Sj€s-i play
ui(s,s) }
JSFP-I 1 (v Average expected argmax—A Parallel rando
t { + (t—1)JSFP-1 Etimy P g Py
1 [uils,s)—ui(s) ,
RM i { (- l)AF{’l Average regrets Linear prob Parallel randompf)
WRM-| P [ui (S:‘L’ st*‘)vaui,(f)] Discounted average Linear prob or Parallel randompf)
+(1-p)WR regrets logistic™ (n)
Ui(S,8-i) +Uj(8,5-)
SCA-2 — g U, (S15Sj5S—{i.j}) — argmax—A Parallel randonpy
ceCinCj
Ui(S,8-1) +Uj(8,5-)
MGM-2 — U, (S15Sj»S—{i.j}) — argmax—B Preferential: Maximum
ceCGiNCj gain

Table 1 Parameterisation of the main local approximate best—respBCOP algorithms.

4.1 Immediate Reward and Gain—Based Algorithms

In this section we discuss those algorithms that use imnegiayoff, change in payoff, or aggregated
measures of either to evaluate states. In so doing, we witicthstrate three techniques of proving
the convergence of a DCOP algorithm, which exploit the exisé of a potential function in three
differentways. Importantly, these techniques can be ebdéio similar algorithms that comprise common
components. As such, we discuss the algorithms in groupibastheir convergence proofs, beginning
with MGM which has the anytime property and converges to Nash equitib Second, we consid®SA
andBR-I, which rely on almost—sure convergence to Nash equilibritimrd, we discusSAP andDSAN,
which, by virtue of the particular probabilistic decisiames they employ, can be shown to converge in
distribution to the global maximum of the potential functid-inally, we discuss the convergence of the
MGM—K andSCA—k to k—optima, and relate their convergence to thatiaiv andDSA, respectively

4.1.1 Anytime Convergence of MGM

We begin withMGM. In ordinal potential game®|GM converges to a Nash equilibrium and is an anytime
algorithm (Maheswaran et al., 2005). This is because agehta isolation (i.e. none of their neighbours
change strategy at the same time), so their actions only ieyanove their utility, which implies an
improvementin global utility (by Equation 5). Furthermplog the same reasoning, the finite improvement
property ensures that this algorithm converges to a Nastiledum in finite time 10

10Maheswaran et al. (2005) show thaGM is anytime and converges to an element in the set of Nashileusin in
DCOP games directly, without using a potential game charettion of the problem.

Iterative approximate best—response algorithms for DCOPs 23

4.1.2 Almost—Sure Convergence of DSA and BRI

Although similar in construction tMGM, neitherDSA nor BR—I are anytime, as it is possible that agents
who change state at the same time find themselves in a worsal glate than they began in. However,
using almost—sure convergence, we can show the folloviigg:-A (DSA usingargmax-A) almost surely
convergesto a Nash equilibrium, ab8A-B andBR-I almost surely converge to a strict Nash equilibrium.
Although similar results have been published (e.g. Your898]1 Mezzetti and Friedman, 2001), for
pedagogical value, we present a proof of the convergenbSA£B to a strict Nash equilibrium, which
we use as a template for sketching other convergence pivefaill refer back to the steps presented in
this proof when discussing the convergence of other algostin future sections.

Proposition 7 If a strict Nash equilibrium exists, thédSA-B almost surely converges to a strict Nash
equilibrium in repeated potential games.

Proof A strict Nash equilibrium is an absorbing strategy profileerbSA-B’s dynamics; that is, once
in a strict Nash equilibrium, no agent will change their &gy. Now, for any non—Nash equilibrium
outcome, there existsrainimal improvement pattierminating at a Nash equilibrium. Denote the length
of the longest minimal improvement path from any outcome Maah equilibriumL. The rest of this
proof involves showing that as— oo, the probability that the complete longest minimal impnoeat
path has been traversed goes to 1.

In a game consisting &l agents usin®@SA-B to adapt their state, for any probability of updating
(0,1), the probability that only one agent changes state at acpéatitime step is given byp(1 — p)N-1,
Consider the probability that at some time step, the agéetteel to change its state is able to improve its
utility (i.e. is part of an improvement path). This probatils at leastp(1 — p)N~1/N, which is its value
when at that time step, the improvement step is unique. iy timef, the probability of traversing
the longest minimal improvement path of lendith is at least:

0 t<lLr,
= ~ ZN-17L
g [7‘0(1 ,\FIJ) }F t>Lr.

Note that whenever> Lr, qis greater than zero, because (0,1) andN andLr are finite. Following
this, in a sequence dfsteps, the probability of traversing the longest minimabiovement path and
converging to a Nash equilibrium at timhepcony(t), simply follows a geometric distribution, with positive
probabilities beginning at time stép:

Peont) = q(1—q)"

Consequently, we can express the cumulative probabilitpo¥erging by, Peon(t) — the sum ofpeon(t)
—as:

t _ _ A\t+1
Pconv(t) = Zl pconv(T) = %

- 1-— (1_q)t+l

Then, ag — , (1—q)*! — 0, so the probability that a complete longest minimal imgroent path is
traversed goes to 1 as the number of rounds tends towardiyinfin O

The convergence proof fdSA-A follows the same argument, except that all Nash equilibréa a
absorbing. FoBR-I, the proof is identical. This is because the only differelnesveerDSA-B andBR-|
is that the former selects the best response while the kdtects a better—response, and these cases are
treated in the same way with respect to the finite improvempmyerty: That is, the finite improvement
property ensures that all improvement paths are finite, ndre¢hey be best-response or better-response
paths.

24 A. C. CHAPMAN, A. ROGERS ET AL

We have now described two methods of proving the convergairee®COP algorithm. The first shows
that an algorithm is anytime, and that it improves until #&ekes a Nash equilibrium. The second technique
begins by characterising the absorbing states of an adtgorithen, by the finite improvement property,
at any time in the future there is some non—negative proibabil the algorithm entering the absorbing
state. Therefore, the algorithm almost surely converges.

The algorithms discussed so far have produced individusi be better responses. However, one
common drawback of these approaches is that if these dlgwitonverge to sub-optimal equilibria,
they can not escape. One technique used to get around thiepre to use stochasticity in the decision
rule. A second is to aggregate agents’ utilities and alloardmated, joint changes in state. These two
techniques are discussed in the following two sections.

4.1.3 Convergence of SAP and DSAN to the Global Optimum
Both SAP andDSAN use a stochastic decision rule to escape from local maxipecifically, by using
the logistic or simulated annealing decision rules, thay mweve between basins of attraction of local
maxima.

In potential gamesSAP is known to converge to a distribution that maximises thecfiom:

Zsug(s)Pr(s) - zSPr(s) logPr(s)

which is given by the Boltzmann distribution with temperatparameten (Young, 1998, Chapter 6).
By settingn low, this algorithm approximates the optimal joint stateg @t any point in time has a high
probability of having the optimal configuration.

Furthermore, regarding bo8AP andDSAN, when the temperature parameter of these decision rules
are decreased over time according to an appropriate angealedule (i.en O 1iogt), they are known to
converge to the Nash equilibrium that maximises the paaeftnction (Kirkpatrick et al., 1983; Young,
1998; Benaim et al., 2005, 2006). That is, they convergedatobal optimum.

4.1.4 Convergence of MGM-and SCAk to k—optima

A second technique used to escape local maxima is to useet fangtion that aggregates local utilities
to evaluate joint strategy changes by teams of agents. $tiieiapproach used byGM—-2 andSCA-2,
which both check for all joint changes in state by pairs ofrag€as in Equation 11), and the families of
MGM—K andSCA—k algorithms generally.

Similar toMGM, underMGM-2, only isolated pairs of agents act at a given step, so aaygehonly
improves the global utility, and the algorithm only termieswhen it reaches a 2—optimum, rather than a
Nash equilibrium (Maheswaran et al., 2005). The almost-sanvergence CA-2 is proven using the
same method a3SA, except that the absorbing states are the set of 2—optinveevtw, note that bounds
on worst—case 2—optima only exist for DCOPs containingyaad binary constraints, so the benefits of
usingMGM-2 in DCOPs with constraint arity greater than 2 are unclanetheless, these proofs can
easily be extended to convergencé&toptima for the corresponding algorithms.

4.2 Algorithms Using Averaging Target Functions

In this section, we discuss averaging algorithms that usati@ns of the expected payoff over historical
frequencies of actions and average regret target functidasbegin with the fictitious play family of
algorithms, before considering regret—based algorithms.

4.2.1 Fictitious Play Algorithms

The term *fictitious play’ is often used to denote a family afaptive processes that use the expected
payoff over historical frequencies of actions as a targetfion (Fudenberg and Levine, 1998). Now, all
versions of fictitious play that use historical frequeneies target function and tleegmaxdecision rule
(regardless of the adjustment schedule used) have therprdpat if play converges to a pure strategy

Iterative approximate best—response algorithms for DCOPs 25

profile, it must be a Nash equilibrium, because if it were sotne agent would eventually change their
strategy.

The standard fictitious play algorithm, described in TablasFP, uses the expected payoff over
historical frequencies as a target function (Equation &) tre argmax-B decision rule, and agents
follow the flood schedule and adjust their state simultasgo\ proof of the convergence &fP to
Nash equilibrium in weighted and exact potential games vergby Monderer and Shapley (1996a).
Specifically, in repeated potential games, this algoritiomverges in beliefshat is, each agents’ estimate
of its opponents’ strategies, which are used to calculath @4 its own strategies’ expected payoffs,
converge as time progresses. This process induces soniiystalan agent’s choice of strategy because
an agent’s current strategy is based on its opponents’ gegrast strategies, which means that an agent’s
belief moves through its belief space with decreasing siep. £onsequently thrashing and cycling
behaviour is reduced, compared to, 9a9A or the best—response dynamics.

The same target function and adjustment schedule are ussedAR as in FP, but, typically, the
multinomial logit decision rule substitutes for tla@gmaxrule. However, unlikeSAP or DSAN, this
substitution does not imply that the algorithm convergdahéoglobal maximum of the potential function.
Rather,smFP converges to a Nash equilibrium, in much the same wayPaHofbauer and Sandholm,
2002). Nonetheless, in practice, using the logit decisida does, on average, produce better quality
solutions than thargmaxrule. Leslie and Collins (2006) show how to analgseP when the temperature
parameter reduces over time asmFP approximate&Pin the limit.

The dynamics of all versions of joint—strategy fictitiouaypl(JSFP) are quite different to that dfP.
Specifically, strict Nash equilibria are absorbing for atgogithm that uses th@SFP target function
(Equation 7) anédirgmax-A as a decision rule. This is because if agents have beliafinduce them to
play a strict Nash equilibrium, these beliefs are reinfdreach time the strict Nash equilibrium is played.

To date, convergence to Nash equilibrium has not been shoman fersion ofISFP that operates on
the flood schedule. However, regarding the version thatadegion the parallel random schedulgrP
with inertia (JSFP-1), its proof of convergence to strict Nash equilibria is lther a similar argument to
that for the convergence ofSA (Marden et al., 2009b). Given that strict Nash equilibria absorbing,
all that needs to be shown is that at any given time Si&pP-I has some positive probability of visiting a
strict Nash equilibrium. Now, undgsFP—I any unilateral change in strategy climbs the potential.nThe
as with DSA, when inertia is added to the agents’ choice of action (iyeusing the parallel random
adjustment schedule), the probability that a sequenceitzitaral moves numbering at least the length of
the longest improvement path occurs is strictly positiveerEfore, over time, the probability of entering
the absorbing state approaches one. As Withbecause agents’ current strategies are based on average
past joint strategies, thiSFP-I process produces relative stability in an agent’s choictrategy, and as
a consequence thrashing and cycling behaviour is reduaiditidnally, becaus@SFP-I uses the parallel
random schedule, the number of messages required eaché¢ipi®sun the algorithm is less th&r.

4.2.2 Adaptive Play Algorithms

TheAP variants we consider here are all of those in which an ag&esta sample of sizefrom a finite
memory of the previoum plays of the game to evaluate their expected rewards fog $Euation 8)
and chooses a state using tagireedy choice rule, and all of the agents operate usingdbd fichedule
(note that this excludeSAP). A subset of these algorithms can be shown to converge tdch Niash
equilibrium, using results from perturbed Markov procesééoung, 1993, 1998). The key elements of
the proof are as follows.

First, call the particular joint memory maintained by theats att, the memory configuratiorNote
that if € = 0, then the memory configurations containing only strictiNaguilibria are absorbing for any
k <m. That s, with no random play, if all agents’ memories comt@ily a single strict Nash equilibrium,
that equilibrium will be played from there on. Second, usingsistance treargument (Young, 1993),
it can be shown that from any memory configuration, for &fyi)ie > 0 (wherev(i) arei’s neighbours),
the probability of moving along an improvement path towaadstrict Nash equilibrium is greater than
that for a movement away. As such, over time the probabifityaversing an entire (finite) improvement

26 A. C. CHAPMAN, A. ROGERS ET AL

path goes to 1. This result holds provided that the sampdeksizm/Lr +2, wherelr is the longest minimal
improvement path from any joint—action profile to a strictsNaquilibrium. Building on this, as— 0,
the probability of the memory configuration consisting exyi of one strict Nash equilibrium also goes
to 1. Then, in the limit, this strict Nash equilibrium is ablsimg.

4.2.3 Regret Matching and Weighted Regret Monitoring Athors

Like the variations of fictitious play, algorithms that use taverage regret for past actions to evaluate
states also come in many different forms. Here we limit oterdion to the regret matchingR{1) and
weighted regret monitoring with inertisMRM-1) algorithms, which show contrasting behaviour as a result
of a small difference in the target function they employ.

RM uses the average regret for past actions (Equation 9) irugotipn with a linear probabilistic
decision rule (which assigns zero probability to strategigth negative regret values) to decide on a
strategy, with agents adjusting by the parallel random digleeRM converges to the set of correlated
equilibria (a generalisation of Nash equilibria) in all fingames (Hart and Mas-Colell, 2000), however,
it does not necessarily converge to Nash equilibria. Nale#ls, it is easy to see that by using this
target function, an agent’s worst performing strategiesrafted out earliest, and although the use of a
linear probabilistic decision rule does cause some thngsltie presence of negative regrets lessens these
effects.

On the other handWRM-I does converge to a pure—strategy Nash equilibrium in pelegames
(Arslan et al., 2007). This algorithm uses a target functiat discounts past regrets by a constant weight
(Equation 10) and the parallel random schedule, and may éeafigal with any probabilistic decision
rule that only selects a strategy from those with non—-negatverage regret (e.g. linéaor logit™).

In the case of the lineardecision rule WRM-I differs from RM only in the target function used. The
proof of its convergence is similar @SA andJSFP, and proceeds as follows. First, note that the target
function used inWRM-I discounts past regrets (Equation 10). As a consequencegjivea strict Nash
equilibrium is played consecutively a sufficient numberiofds, it will be the only strategy for which any
agent has a positive regret. Additionally, the converse latdds: if each agent has only one strategy with
non—negative regret, the corresponding joint strategyt im@ia Nash equilibrium. Second, the decision
rules used iNWRM-I only select from those strategies with non—negative redilerefore, if the joint
regret—state is ever at a point where only one joint stratetg/a positive regret for every agent, the
algorithm will continue to select that joint strategy. Leteall this region in the agents’ joint regret—space
an equilibrium’sjoint regret sink Third, the final step in the proof is to show that there is sanietly
positive probability that the agents’ joint regret entemseguilibrium’s joint regret sink. This is achieved
via the finite improvement property and the use of inertiaainargument similar to that used in the
proof of convergence dbSA. Note that if past regrets are not discounted, then connesy a Nash
equilibrium cannot be guaranteed, and the algorithm magven converge to a stationary point (as is the
case inRM).

5 Conclusions

In this paper, we focused on local approximate best—regpalgerithms for DCOPs, for optimisation in
domains where communication is difficult, costly or impbgsj and in which optimality can be traded
off against timeliness or computational and communicatibaorden. Specifically, our key contribution is
a framework for analysing local approximate best-respaig@ithms for DCOPs — that is, algorithms
that operate by having agents exchange messages thatoomiiatheir strategy. Our framework captures
many algorithms developed in both the computer science amegheory literatures. Moreover, we argue
that the appropriate solution concept for the class of lapgiroximate best-response algorithms is the
Nash equilibrium condition. Given this, our framework isilbon the insight that when formulated as
noncooperative games, DCOPs form a subset of the class eftdtgames. In turn, this allowed us to
apply game theoretic methods to analyse the convergenpernpies of local approximate best-response
algorithms developed in the computer science literature.

Iterative approximate best—response algorithms for DCOPs 27

In general, our framework is based on a three stage decotigpothat is common to all local
approximate best—response DCOP algorithms. Given an ppate trigger, an individual agent enters
a state evaluation stage, which produces some measure a@ésirability of each state. This is followed
by a decision on which action to take, based on the precedng evaluations. Then, the system—-wide
process that controls which agent adjusts its state at eziahip given by an adjustment schedule. We
populate our framework with algorithm components, coroesling to the three stages above, that are
used in existing algorithms, and which can be used to coctstiavel algorithms.

Our framework can assist system designers by making the gmmdscons of the various DCOP
algorithm configurations clear. To illustrate this, we donsted three novel hybrid algorithms from
the components identified in our parameterisation. We evetlithese hybrids alongside eight existing
algorithms taken from both the computer science and ganueythiégeratures. Our experimental results
show that an algorithm’s behaviour is accurately predibiealentifying its constituent components. For
example, algorithms that use fictitious play—like targetions and aargmaxdecision rule converge to a
Nash equilibrium, but by varying the adjustment schedutiesigner may trade off between convergence
time and communication use. Thus, a system designer mayungeamework to tailor a DCOP algorithm
to suit their mix of requirements, whether they be high gyaolutions (but, for example, in the presence
of bandwidth restrictions), rapid convergence (such aséi-time settings), or low communication costs
(e.g. in the presence of resource constraints such as\béfer Furthermore, we expect most of our
experimental results to generalise to other problems #ilavithin the class of hypergraphical potential
games.

Generally in field of DCOPs, the main problems requiringrattan involve extending the basic, static
model with known payoffs and lossless communication to enmgass the real-world aspects of typical
DCOP application domains. In more detail, the most salidrthese aspects can be broken into the
following groupings:

Online learning of unknown rewards: Online learning of reward functions poses a difficult probia
DCOPs, particularly if coordinated search of the jointi@atspace is not possible. It is important
to consider the differences in approaches to the probletatieaneeded if the goal is to maximise
the long—term reward (as is often addressed in Markov dmtiprocesses) or to find a ‘good
enough’ solution quickly (as in optimal stopping problen®)is problem can be further extended
by considering the case were rewards are not just unknovtrofdaervations of them are noisy, or
even stochastic.

Dynamic problems: DCOPs have proven to be very useful for describing statiblpros, but their
usefulness for dynamic and stochastic problems is not.Cléare is, however, scope for exporting
techniques for DCOPs to decentralised Markov decisionge®es and partially—observable Markov
decision processes in order to identify tractable clas§ebase problems and to, subsequently,
develop algorithms based on DCOP solution techniquesh&murtore, if decentralised optimisation
mechanisms that produce timely solutions are desirableainynstatic scenarios, then there is an
even greater demand for principled decentralised appmtiom heuristics for real-time sequential
decision—making in dynamic scenarios, and we believe tpeoaighes developed here represent a
first step in developing such techniques.

Communication: The model of communication adopted in this paper is a nata#hough naive
one. Communication in real-world applications of DCOP&sY, noisy, delayed and otherwise
asynchronous, and has not been systematically addressathrly, we assume communication
takes place over a network defined by the constraint grapk tédaxing this assumption, to
consider cases where agents do not have a direct commuonidiatk with all of the agents their
utility depends on, affects the efficacy of existing apphecis unknown.

28 A. C. CHAPMAN, A. ROGERS ET AL

Appendix A.

The following pseudocode describes several of the alguosthiscussed in this paper. The pseudocode
states the computations carried out by an individual agerd,unless otherwise stated, the algorithms
(including their various adjustment schedules) are imgleted by each agent running the stated
procedure at every time step. In all that follows, we dropghle-scripi because the pseudocode refers
to an agent’s internal processes. We denote an agent'sgt®E S and its target function’s value for
strategyk as stateValue(kpr stateRegret(k)as appropriate. An agent’s neighbours are indexedv,
with their joint—strategy profile notatexj. Finally, an agent’s immediate payoff for an stratégygiven

its neighbours’ joint—strategy profile is writtar(k,s,). The algorithms listed here are the maximum-
gain messaging algorithnvGM), the distributed stochastic algorithm using Hrgmax-B decision rule
(DSA-B), better-response with inerti8R-1), spatial adaptive playS@P), fictitious play EP), smooth
fictitious play 6mFP), joint—strategy fictitious play with inertiad6FP-1) and weighted regret monitoring
with inertia WRM-I).

M AXIMUM —GAIN M ESSAGING(MGM)

currentReward ®(s= currentStatgs,)
for k=1:K
stateGain(k) u(s=k,s,)— currentReward
end for
bestGainState = argmajstateGain]

bestGainValue = stakteGain(bestStateGain)
sendBestGainMessage[allNeighbours, bestGainValue]
neighbourGainValues = getNeighbourGainValues[allNb@irs]
if bestGainValue> max[neighbourGainihen
newState = bestGainState
sendStateMessage[allNeighbours, newState]
end if

O©CoO~NOO ObhwWNBE

R
NEFO

DISTRIBUTED STOCHASTIC ALGORITHM (DSA-B)

currentValue =u(s= currentStatss,)
for k=1:K
stateRegret(k) s(s=k,s,)— currentValue
end for
candidateState = argmajstateRegret]

if rand[0,1]< p
newState = candidateState
end if
if newState# currentState
sendStateMessage[allNeighbours, newState]
end if

POOWO~NO ORhwWNBEF

R

BETTER—RESPONSE WITH INERTIA (BR-I)

currentValue =u(s= currentStatss,)
for k=1:K
stateRegret(k) = maw[s=k,s,)— currentValue,0]
end for
normFactor 5 X, stateRegret
randomNumber = rand(Q)
for k= 1:K
mixedStrategyCDF(K) mrzlk:l stateRegret(l)
if randomNumbekK mixedStrategyCDF(kjhen 1
candidateState = k
break for loop 10
end if 11
end for 12
if rand[0,1]< p 13
newState = candidateState 14
end if 15
if newState# currentState 16
sendStateMessage[allNeighbours, newState] 17
end if 18

ONO N~ WNPE

Iterative approximate best—response algorithms for DCOPs 29

In SAP the agents adjust their state in a random sequence. Ingeatttere are a number of ways to
implement this type of schedule, however, the simplest mtalomly select an agent to run the stated
procedure. Note this usually means some agents may be giventhan one opportunity to adjust their
state in a particular time step, while other agents may hanen

SPATIAL ADAPTIVE PLAY (SAP)

currentValue =u(s= currentStatss,) 1
for k= 1:K 2
stateRegret(k) s(s=k,s,)— currentValue 3
end for 4
for k=1:K 5
statePropensity(k) = exp['stateRegret(k)] 6
end for 7
normFactor :z{f:l statePropensity(k) 8
randomNumber = rand(Q) 9
for k=1:K 10
mixedStrategyCDF(K) mrﬁ:l statePropensity(l) 11

if randomNumbekK mixedStrategyCDF(kjhen 12
newState = k 13
break for loop 14
end if 15
end for 16
if newState# currentState 17
sendStateMessage[allNeighbours, newState] 18
end if 19

In FP andsmFP, |v| is the number of neighbours an agent tegsis a vector of the frequencies with
which neighboujj has played each stratelgyin the past| {k; = s‘j} is an indicator vector with an element
equal to one for the statg played byj at timet and zero everywhere else, add= ﬂhi"l |Sj| is the size
of the agent’s neighours’ joint—strategy space.

FicTiTious PLAY (FP)

for j = 1:]v| 1
of = t(1{kj =sj} +(t—)aj] 2
end for 3
t=t+1 4
for k=1:K 5
for h=1:H 6
Elu(s=k)] = u(s &) Mg o 7

end for 8
stateValue(k) SH ; Elu(s =k,)] 9
end for 10
newState = argmaxstateValue] 11

k

if newState# currentState 12
sendStateMessage[allNeighbours, newState] 13

end if 14

30

A. C. CHAPMAN, A. ROGERS ET AL

SMOOTH FICTITIOUS PLAY (SMFP)

for j=1:v| 1
g = Hi{k =)+ (t— 1 2
end for 3
t=t+1 4
for k =1:K 5
for h=1:H 6
Elu(s= k)] =u(s &) Mgeq 7
end for 8
stateValue(k) SH Elu(s =k,)] 9
end for 10
for k=1:K 11
statePropensity(k) = exg['stateValue(k)] 12
end for 13
normFactor 5K, statePropensity(k) 14
randomNumber = rand(@) 15
for k=1:K 16
mixedStrategyCDF(k) =t sk , statePropensity(]) 17
if randomNumbekK mixedStrategyCDF(k)hen 18
newState = k 19
break for loop 20
end if 21
end for 22
if newState# currentState 23
sendStateMessage[allNeighbours, newState] 24
end if 25
JOINT STRATEGY FICTITIOUS PLAY WITH INERTIA (JSFP-I)
for k=1:K 1
stateValue(k) =t [u(s=k,s,) + (t — 1)stateValue(K) 2
end for 3
t=t+1 4
candidateState = argmajstateValue] 5
if rand[0,1]< p 6
newState = candidateState 7
end if 8
if newState# currentState 9
sendStateMessage[allNeighbours, newState] 10
end if 11
WEIGHTED REGRET MATCHING WITH INERTIA (WRM-I)
currentValue =u(s= currentStatss,) 1
for k =1:K 2
avgDiff(k) = pu(s=k, s, — currentValue+ (1 — p)avgDiff(k)) 3
stateRegret(k) = maavgDiff(k), 0] 4
end for 5
normFactor 5 X, stateRegret 5
randomNumber = rand(@) 6
for k=1:K 7
mixedStrategyCDF(K) Fsrmizer,> <1 StateRegret(l) 8
if randomNumbekK mixedStrategyCDF(k)hen 12
candidateState = k 9
break for loop 10
end if 11
end for 12
if rand[0,1]< p 13
newState = candidateState 14
end if 15
if newState# currentState 16
sendStateMessage[allNeighbours, newState] 17

end if 18

Iterative approximate best—response algorithms for DCOPs 31

References

S. M. Ajiand R. J. McEliece. The generalized distributive.l8EEEE Transactions on Information Theory
46:325-343, 2000.

S. P. Anderson, A. de Palma, and J. This§iscrete Choice Theory of Product DifferentiatioMIT
Press, Cambridge, MA, USA, 1992.

K. R. Apt. Principles of Constraint Programmingcambridge University Press, Cambridge, UK, 2003.

M. Arshad and M. C. Silaghi. Distributed simulated anngatmd comparison to DSA. IRroceedings
of the 4th International Workshop on Distributed Consttd®asoning (DCR—03Mcapulco, Mexico,
2003.

G. Arslan, J. R. Marden, and J. S. Shamma. Autonomous vetaigiet assignment: A game theoretical
formulation. ASME Journal of Dynamic Systems, Measurement and Cot#8(584-596, 2007.

R. J. Aumann. Acceptable points in general cooperativeragmegames. In A. W. Tucker and R. D.
Luce, editorsContributions to the Theory of Games, Ipages 287—-324. Princeton University Press,
Princeton, NJ, USA, 1959.

M. Benaim, J. Hofbauer, and S. Sorin. Stochastic appraiamand differential inclusionsSIAM Journal
of Control and Optimisation44(1):328-348, 2005.

M. Benaim, J. Hofbauer, and S. Sorin. Stochastic appraims and differential inclusions, part II:
Applications.Mathematics of Operations Researéi(4):673—695, 2006.

U. Berger. Brown'’s original fictitious playlournal of Economic Theory 35(1):572-578, 2007.

A. Blum and Y. Mansour. From external to internal regréaurnal of Machine Learning ResearcB:
1307-1324, June 2007.

E. Bowring, J. Pearce, C. Portway, M. Jain, and M. Tambe. kBoptimal distributed constraint
optimization algorithms: New bounds and algorithms. Rroceedings of the 7th International
Conference on Autonomous Agents and Multiagent SystendABA08) pages 607—-614, Estoril,
Portugal, 2008.

G. W. Brown. lIterative solution of games by fictitious plap. T. C. Koopmans, editoActivity Analysis
of Production and Allocatiofpages 374-376. Wiley, New York, NY, USA, 1951.

A. Chapman, R. A. Micillo, R. Kota, and N. Jennings. Decedligeal dynamic task allocation: A practical
game—theoretic approach. Time 8th International Conference on Autonomous Agents antidgent
Systems (AAMAS—Q®ages 915-922, 2009.

M. Cooper, S. de Givry, and T. Schiex. Optimal soft arc cdesisy. InProceedings of the 20th Internation
Joint Conference on Atrtificial Intelligence (IJCAI-Qppages 68—73, 2007.

V. P. Crawford. Adaptive dynamics in coordination gamesonometrica63:103-143, 1995.

A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Dewdised coordination of low-power
embedded devices using the max—sum algorithnPrbteedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS&$s 639—646, 2008.

S. Fitzpatrick and L. Meertens. Distributed coordinatibrough anarchic optimization. In V. Lesser,
C. L. Ortiz Jr., and M. Tambe, editorBjstributed Sensor Networks: A Multiagent Perspectpages
257-295. Kluwer Academic Publishers, 2003.

D. Fudenberg and D. Kreps. Learning mixed equilibr@ames and Economic Behavi&:320-367,
1993.

32 A. C. CHAPMAN, A. ROGERS ET AL

D. Fudenberg and D. K. Levine. Consistency and cautiousidics play.Journal of Economic Dynamics
and Contro| 19:1065-1089, 1995.

D. Fudenberg and D. K. Levinélhe Theory of Learning in GameMIT Press, Cambridge, MA, USA,
1998.

B. P. Gerkey and M. J. Mataric. Sold!: Auction methods for tinobot coordinationlEEE Transactions
on Robotics and Automatioh8(5):758—768, Oct 2002.

G. Grimmett and D. StirzakeRrobability and Random Processé3xford University Press, third edition,
2001.

S. Hartand A. Mas-Colell. A simple adaptive procedure legdo correlated equilibriunEconometrica
68:1127-1150, 2000.

S. Hart and A. Mas-Colell. A reinforcement procedure legdimcorrelated equilibrium. In G. Debreu,
W. Neuefeind, and W. Trockel, editoisgconomic Essays: A Festschrift for Werner Hildenbrgraes
181-200. Springer, New York, NY, USA, 2001.

M. Hayajneh and C. T. Abdallah. Distributed joint rate an@vpocontrol game—theoretic algorithms for
wireless datalEEE Communications Letter8:511-513, 2004.

T. Heikkinen. A potential game approach to distributed powentrol and scheduling. Computer
Networks 50:2295-2311, 2006.

K. Hirayamaand M. Yokoo. The distributed breakout alganithArtificial Intelligence 161(1-2):89-115,
2005.

J. Hofbauer and W. H. Sandholm. On the global convergendeofiastic fictitious playEconometrica
70:2265-2294, 2002.

J. Kho, A. Rogers, and N. Jennings. Decentralised contr@dafptive sampling in wireless sensor
networks.ACM Transactions on Sensor Netwqrkg3), 2009.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimisatiby simulated annealing Science 220:
671-680, 1983.

H. Kitano, S. Todokoro, I. Noda, H. Matsubara, T. TakahashiShinjou, and S. Shimada. Robocup
rescue: Search and rescue in large-scale disaster as andfona@utonomous agents research. In
Proceedings of the IEEE International Conference on Systdan, and Cybernetics (SMC-99)
volume 6, pages 739-743, Tokyo, Japan, 1999.

M. Krainin, B. An, and V. Lesser. An application of automatezhotiation to distributed task allocation.
In Proceedings of the 2007 IEEE/WIC/ACM International Coafiee on Intelligent Agent Technology
(IAT-07) pages 138-145, Fremont, CA, USA, November 2007. IEEE Cten@ociety Press.

F. R. Kschischang, B. J. Frey, and H. Loeliger. Factor grapidthe sum-product algorithmEEE
Transactions on Information Theqr§7:498-519, 2001.

P. La Mura and M. R. Pearson. Simulated annealing of gamdiledar A simple adaptive procedure
leading to Nash equilibrium. Ifnternational Workshop on The Logic and Strategy of Distréul
Agents Trento, Italy, 2002.

D. S. Leslie and E. J. Collins. Generalised weakened figstiglay. Games and Economic Behavi&6:
285-298, 2006.

R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributeditdgns for DCOP: A graphical-game-based
approach. IrfProceedings of the 17th International Conference on Patahd Distributed Computing
Systems (PDCS-04)ages 432-439, San Francisco, CA, USA, 2004.

Iterative approximate best—response algorithms for DCOPs 33

R. T. Maheswaran, J. P. Pearce, and M. Tambe. A family of gcapbgame-based algorithms for
distributed constraint optimization problems. @oordination of Large-Scale Multiagent Systems
pages 127-146. Springer-Verlag, Heidelberg, Germany.200

R. Mailler and V. Lesser. Asynchronous partial overlay: Avrgdgorithm for solving distributed constraint
satisfaction problemslournal of Artificial Intelligence Research5:529-576, 2006.

J. R. Marden, G. Arslan, and J. S. Shamma. Connections betweperative control and potential games
illustrated on the consensus problefEEE Transactions on Systems, Man and Cybernetics, Part B:
Cyberneticsin press, 2009a.

Jason R. Marden, Gurdal Arslan, and Jeff S. Shamma. Jabtegy fictitious play with inertia for
potential gameslEEE Transaction on Automatic Contrah press, 2009b.

G. M. Matthews and H. F. Durrant-Whyte. Scalable decermsdlicontrol for multi-platform recon-
naissance and information gathering tasks. Ploceedings of the 9th International Conference on
Information Fusion (Fusion’062006.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, dadTeller. Equation of state calculations by
fast computing machinesournal of Chemical Physic21:1087-1092, 1953.

C. Mezzetti and J. W. Friedman. Learning in games by randenpbag. Journal of Economic Theory
98(1):55-84, 2001.

P. Jay Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynclows distributed constraint
optimization with quality guaranteeéurtificial Intelligence 161(1-2):149-180, 2005.

D. Monderer and L. S. Shapley. Fictitious play property fanges with identical interestslournal of
Economic Theory68:258-265, 1996a.

D. Monderer and L. S. Shapley. Potential gam@ames and Economic Behavjd#:124-143, 1996b.

P. Morris. The breakout method for escaping from local maninin Proceedings of the 11th National
Conference on Atrtificial Intelligence (AAAI '93)ages 40-45, Washington, DC, USA, 1993.

C. H. Papadimitriou and T. Roughgarden. Computing cordl&guilibria in multi-player gamesJ.
ACM, 55(3):14, 2008.

J. P. Pearce and M. Tambe. Quality guarantee&-optimal solutions for distributed constraint opti-
misation problems. I#Proceedings of the 20th Internation Joint Conference oiifiéidl Intelligence
(IJCAI-07) pages 1446-1451, Hyderabad, India, 2007.

A. Petcu and B. Faltings. DPOP: A scalable method for mudtidgconstraint optimization. In
Proceedings of the 19th International Joint Conference atifidial Intelligence (IJCAI-05) pages
266-271, Edinburgh, Scotland, Aug 2005.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. VatigtriNumerical Recipes: The Art of Scientific
Computing Cambridge University Press, 1992.

J. Robinson. An iterative method of solving a garAanals of Mathemati¢c$4:296—-301, 1951.

A. Rogers, D. D. Corkill, and N. R. Jennings. Agent techn@edor sensor networksEEE Intelligent
Systems24(2):13-17, March 2009.

T. RoughgardenSelfish Routing and the Price of AnarchylIT Press, 2005.

T. Schiex, H. Fargier, and G. Verfaillie. Valued constraatisfaction problems: Hard and easy problems.
In Proceedings of the 14th International Joint Conference difiéial Intelligence (IJCAI-95) pages
631-639, 1995.

34 A. C. CHAPMAN, A. ROGERS ET AL

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari. v@agence results for single-step on—policy
reinforcement—learning algorithmilachine Learning39:287-308, 2000.

R. Stranders, A. Farinelli, A. Rogers, and N. R. Jenningsceb&alised coordination of mobile sensors
using the max-sum algorithm. roceedings of the 21st International Joint Conference difiéal
Intelligence (IJCAI-09)2009.

A. Stranjak, P. S. Dutta, M. Ebden, A. Rogers, and P. Vyteling A multi-agent simulation system for
prediction and scheduling of aero engine overhauProceedings of the 7th International Conference
on Autonomous Agents and Multiagent Systems (AAMASM@§)2008.

G. Tel. Introduction to Distributed AlgorithmsCambridge University Press, Cambridge, UK, 2000.

K. Tumer and D. H. Wolpert, editorsCollectives and the Design of Complex Syste@gringer, New
York, NY, USA, 2004.

P. van Leeuwen, H. Hesselink, and J. Rohling. Schedulingadirusing constraint satisfaction. In
Electronic Notes in Theoretical Computer Scienuages 252—-268. Elsevier, 2002.

Y. Weiss. Correctness of local probability propagation maphical models with loops. Neural
Computation12(1):1-41, 2000.

Y. Xu, P. Scerri, B. Yu, S. Okamoto, M. Lewis, and K. Sycara. iAregrated token—based algorithm for
scalable coordination. IRroceedings of the 4th International Conference on AutamesrAgents and
Multiagent Systems (AAMAS—-0pages 407-414, 2005.

M. Yokoo and K. Hirayama. Distributed breakout algorithm $olving algorithm for solving distributed
constraint satisfaction and optimization problemsPtoceedings of the 2nd International Conference
on Multiagent Systems (ICMAS '9¢)ages 401-408, 1996.

H. P. Young.Individual Strategy and Social Structure: An Evolutiondiyeory of InstitutionsPrinceton
University Press, Princeton, NJ, USA, 1998.

H. Peyton Young. The evolution of conventioi&conometrica61:57—-84, 1993.

W. Zhang and Z. Xing. Distributed breakout vs. distributethastic: A comparative evaluation on scan
scheduling. InProceedings of the AAMAS—02 workshop on Distributed CaimdtReasoningpages
192-201, 2002.

W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributeddtastic search and distributed breakout:
Properties, comparison and applications to constrainimigdation problems in sensor networks.
Artificial Intelligence 161:55-87, 2005.

