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Abstract

We present a novel negotiation protocol to facili-
tate energy exchange between off-grid homes that are
equipped with renewable energy generation and elec-
tricity storage. Our protocol imposes restrictions over
negotiation such that it reduces the complex interdepen-
dent multi-issue negotiation to one where agents have a
strategy profile in subgame perfect Nash equilibrium.
We show that our negotiation protocol is tractable, con-
current, scalable and leads to Pareto-optimal outcomes
in a decentralised manner. We empirically evaluate our
protocol and show that, in this instance, a society of
agents can (i) improve the overall utilities by 14% and
(ii) reduce their overall use of the batteries by 37%.

1 Introduction

Lack of access to electricity is a serious hindrance to eco-
nomic and social development in the developing world
(UNDP 2012, p.14), and currently affects 1.4 billion peo-
ple in small communities in Sub-Saharan Africa and Asia
(IEA 2010, p.239). Recent initiatives have sought to provide
these remote communities with off-grid renewable micro-
generation such as solar panels and electric batteries (Alam
et al. 2013). At present, these resources (i.e., microgenera-
tion and storage) are operated in isolation, however, we envi-
sion that their interconnection and autonomous coordination
could result in their more efficient use. As a step towards
this vision, we explore the possibility of energy exchange
between homes in such communities. We represent an indi-
vidual home as a software agent that acts on the household’s
behalf. The whole community can be perceived as a multi-
agent system composed of self-interested agents that nego-
tiate with each other to reach energy exchange agreements
while maximising their own utility. However, negotiation in
this context poses many issues that come from the very na-
ture of communities and realities of life in developing coun-
tries, e.g., lack of banking systems, low-processing power at
hand, absence of a centralised infrastructure. Furthermore,
negotiation over energy exchange involves multiple issues,
specifically, the amount of energy exchange and also, how
this amount is scheduled across the day. These issues are
interdependent as the recipient’s utility for any period may

depend on the energy received in earlier periods. This in-
terdependent multi-issue negotiation, along with the socio-
economic limitations of remote communities, make negotia-
tion over energy exchange a very challenging task for agents.

To address this challenge, Alam et al. (2011) presented a
bi-lateral negotiation protocol to facilitate negotiation over
energy exchange between two agents. Their attempt is in-
spired by more general work of Rosenschein and Zlotkin
(1994) which shows that careful design of a negotiation pro-
tocol can reduce the complexity in negotiation. Their proto-
col restricts the type and number of offers that agents can
make such that each agent has a weakly dominant strat-
egy to reveal its true energy needs, resulting in a Pareto-
optimal outcome. Their empirical evaluation demonstrates
that agents can use a smaller battery capacity (40% less)
without losing their utilities when they exchange energy.
However, their protocol is applicable to two agents only and
not scalable to larger communities.

More general work on interdependent multi-issue negoti-
ation is focused on two tracks. The first focuses on settings
where interdependence between issues is removable or re-
ducible. For example, Fujita et al. (2010) and Hindriks et
al. (2006) remove dependencies by approximating the util-
ity space. However, both techniques work only when a few
(among all) issues are interdependent. This is not so in our
case where energy storage makes all time periods interde-
pendent. The second track (e.g., Hattori et al. 2007 and Ito
et al. 2007) focuses on settings in which a mediator collects
information about the agents’ utility functions. This centre
then finds the set of Pareto-optimal solutions, from which
the agents choose one. However, these solutions require the
presence of an independent mediator, capable of carrying
out intensive computations. Such assumptions are hard to
justify in our decentralized settings with no centre and where
agents are required to negotiate directly with each other.

Against this background, we present a negotiation proto-
col to address the issue of negotiation over energy exchange.
Our protocol imposes four key restrictions on the offers that
agents can make and specifies the negotiation process in a
way such that it leads to a subgame perfect Nash equilib-
rium (SPNE). Our work can be seen in line with Alam et
al. (2011), however, our protocol is concurrent and scalable
to a community. In addition, our protocol does not assume
financial payments or a mediator which makes it applicable
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in the decentralised remote communities. More specifically,
we extend the state-of-the-art in the following ways:

1. We present a novel negotiation protocol for concurrent ne-
gotiation over energy exchange in a mutiagent system.

2. We show that this protocol leads to a subgame perfect
Nash equilibrium where outcomes are Pareto-optimal.

3. We empirically evaluate our protocol against the Nash
bargaining solution (NBS) and show that, in this instance,
a community can use our protocol to reduce its overall
battery charging by close to 37% (while via the NBS it is
49%) and improve its social welfare (sum of utilities) by
14% (via the NBS up to 17%).

The rest of paper is as follows. Section 2 presents a model of
a single home while Section 3 shows a community model.
Section 4 details our protocol and Section 5 discusses its
properties. Section 6 establishes the benchmark and Sec-
tion 7 shows an empirical evaluation. Section 8 concludes.

2 Model of an Individual Home

We model an individual home similar to that of Alam et. al
(2011) and Vytelingum et al. (2011). Each home has a re-
newable generation unit, some loads and a battery to store
electricity. Let agent a represent a home, with a genera-
tion g = (g1,...,9:) € RL, denoting the energy it gen-
erates over t = (1,...,t) € N’ time periods and a load
h = (hi,...,h:) € RL, denoting its load requirements.
The battery is characterised by four parameters: (i) a maxi-
mum storage capacity, ¢mq. € R>o, (i) a maximum charg-
ing rate, Cpar € R>q, (iii) @ maximum discharging rate,
dmaz € R>g, and (iv) an efficiency e € R[0 < e < 1.
The efficiency describes the loss of energy when the bat-
tery is charged. The dynamic state of the battery is given by:
the energy flow into the battery (charge) ¢ = (c1,...,¢t) €
R’5>0| Ve € e 0 < ¢ < Cnagq, the flow going out (dis-
charge) d = (dy,...,d;) ERL | Vd; €d 0 < d; < dimas
and the amount of charge stored in battery ¢ = (q1, ..., q;) €
Rt>o| Vq;€q 0 < ¢; < Gmaq- Finally, in some cases an agent
may not be able to immediately use or store the available en-
ergy due to its limited battery flow or capacity. We call this
the wasted energy and denote it by w = (wy, ..., w;) ERL .
Using the battery an agent can compute an energy alloca-
tion, p = (p1, ..., pr) ERL, allocating the generated energy
g to loads h. The utility of agent a at time 3 is then load p;
that is powered at time 7. The overall utility u® is given by:

t
u="p e))
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Thus, the goal of an agent is to power as much of its load
as possible to maximise its utility. The battery is useful here
as it gives the agent flexibility in deciding when to store and
when to use energy and thus, it enables the agent to find an
optimal energy allocation, p*, given by:

t

p* = argmax Zpi Viet 2)
i=1

This can be transformed to a linear programming (LP)
model with the following constraints:

Constraint 1: At time 1, the allocated power p; depends on
the generated power g;, charging ¢; and discharging d;:

pi=¢i—¢ci+di—w; Viet (01)
Constraint 2: The current battery state g; depends on the last
battery state q(;_1), charge c(;_1) and discharge d(;_1). The
charge flow ¢; € c is subjected to the battery efficiency e.
Also, the initial battery state q; is zero.

i—1) + € X Cii— _di— ifi>1
qi:{g< D (i-1) ~ di-1) i;izl (02)
Constraint 3: Allocated power p; must not exceed load h;:
pi<h, Vp;,€p, hy €h (03)

Having outlined the model of a single agent, we now discuss
how agents can be connected to form a community.

3 Connecting Agents to Build a Community

Connecting two agents requires a physical link between
them to enable them to (i) communicate and (ii) exchange
energy. However, the absence of a centralised infrastructure
(e.g., the electricity grid or telephone networks) in remote
communities makes it challenging to connect homes. We en-
vision that this challenge can be addressed by establishing
a light-weight peer-to-peer network of homes where each
home owns an exchange box that connects it to other homes
(see Figure 1). Two homes are connected if there exists a
direct physical link between their exchange boxes. A sin-
gle exchange box can be connected to multiple exchange
boxe, forming a network of interconnected agents from the
ground-up without a centralised infrastructure. When an
agent is connected, the power available to it also includes
the flow on the links (in short, the flow) between it and the
agents to which it is connected to. Let M be a set of agents
connected to a and let 177 = (1§77 ... I{77) € R? denote
the agreed flow between a and some agent j € M. Then the
total flow f; available to agent a at time period ¢ is:
| M|
fi=z2x Y 15?7 VjeM\Viet
j=1

Here 0 < z < 1 is the efficiency of the physical link.> We
can modify constraint o; to include this power in the total
power that is available to a at time period ¢ as follows:

Di=0i —Ci+di —w; + f; Viet (04)

For a given flow f = (fl, cery ft) € R?, @ can maximise its
utility by using Equation 1 and constraint o4 as follows:

t
u'(f) =max (g —ci+di—w;i + fi) Viet (3)
i=1

A

Where u®(f) denotes the maximum utility that a can get

for f subjected to constraints {os, ..., 04 }. Similarly, when
a needs to compute f* that maximises its utility it can use:

i—Cit+di —wi + f;) Viet (4)



Now that an agent can compute its optimal flow and eval-
uate its utility for any offered flow, it can negotiate with
other agents to reach an agreed flow that increases its utility.
Here, the increase in utility comes from the fact that via ex-
change an agent can avoid energy storage losses and utilise
energy that will be unused otherwise. Note that, if an agent
has 100% efficient battery and infinite storage, it cannot in-
crease its utility via exchange. The negotiation is challeng-
ing for agents because it involves interdependent issues and
multiple agents. To faciliate negotiation in this context, we
next present a protocol that reduces this complexity and en-
ables agents to reach agreements efficiently.

4 Energy Exchange Protocol (EEP)

The core idea behind our energy exchange protocol (EEP)
is to divide agents into two power pools that need energy at
alternate times, and impose restrictions on the negotiation to
reduce complexity. These restrictions are engineered so that
the negotiation ends in outcomes with certain properties.
Before defining the EEP, we define our terminology. We
consider exchange over finite time (e.g., a day) which can
be divided into exchange periods. An exchange period is an
atomic unit of time (e.g., 12 consecutive hours) for energy
exchange and consists of at least one time period. The EEP
allows only two exchange periods and divides agents into
two exchange types as per the exchange period in which they
require energy. The negotiation starts with round zero where
agents declare their exchange types followed by offer rounds
at specified times. In each offer round, only one exchange
type is allowed to make simultaneous offers to all connected
agents in order to reach an agreed flow. If a makes an offer
to b, we denote this offer as [ °. The EEP imposes restric-
tions (r1,72,73,74) (Figure 2) on the offers made (called
valid flow (VF) offers). The receiver can accept this offer or
any VF part of it (r5), and the outcome (i.e., agreed flow) is
denoted by 12**®. Given these terms, Figure 2 describes the
EEP in detail. In order to negotiate, an agent needs to know
its desired outcomes and its strategy which we discuss next.

Computing Valid Link Flows

As discussed in Section 3, the utility u® of an agent a de-
pends on its total flow f. Let S be the set of all flows, then
a can find f* € S that maximises u®, via Equation 4 (see
Section 3). However, under the EEP only valid flows can be
agreed (since agents can make or accept only VF offers, the
agreed flow if any, is also a VF). In this sense, the EEP re-
duces S to the set of all valid flows Sy C S that meets the
restrictions (71, 72). To find f* € Sy g, a can use Equation 4
subjected to 7y and 75 (in addition of {0a, ..., 04 }). Knowing
f*, acaneasily infer its exchange type (i.e., which exchange
period it prefers to receive energy in).

Here, we note that r; and 7o are designed such that Sy g
is a convex set where all members lie on the same geometric
line. More specifically, if f=(f1, fo, f3, fa) €ESvF, then ry
requires the sum of energy in both exchange periods to be
equal (e.g., f1+ fo =—(f3 + f1)) while ro says that |f;| =
| f2|=|f3|=|f4|- Now, any scalar multiple of f,i.e.,c x f:

2For our experiments in Section 7, we have z = 0.999.

Figure 1: Agent a connected to b and ¢ via exchange boxes.

c€R also meets r; and r and hence all scalar multiples of
f are in Sy p. This also implies that if f €Sy r then all f/ €
Sy i can be described as ¢ x f (e.g.,if f=(1,1,—1,—-1)€
Syr then f/ =(2,2,—2,—2) € Sy r can be expressed as
2 x f. This geometric characteristic of Sy r ensures that
if f* € Syp maximises u®, then f* is unique and u® is
monotonically decreasing over 0 < f < f* (see Lemma 1).

Making Valid Link Flow Offers

Having known f* € Sy r and its exchange type, a needs to
know what VF offers to make. To reduce complexity at this
stage, the EEP imposes 73 which requires a to treat all agents
(that it is making offers to) equally (see Figure 2). This re-
duces the strategy space for an agent, and together with other
restrictions, entails an SPNE that we prove in Section 5.
Before we explain the properties of the EEP, we give an
intuitive example to show how it will work in action:

Example 1. Imagine that in a society of agents, the follow-
ing are the already agreed on conventions:

1. Negotiation begins at 0200 hours every morning. Subse-
quent rounds take place every minute.

2. The total time of an exchange is 24 hours. The exchange
starts at 0600 hours and ends at 0600 hours the next day.

3. This day is divided into two exchange periods, each con-
sisting of 6 two-hours-long time periods.

4. Agents that need energy in the first exchange period are
exchange type 1 and allowed to make offers in each round.

Now, in a society of agents a, b and ¢, a finds that its optimal
VF is f%=(4,4,4,4,4,4,-4,-4,-4,-4,-4,-4) and its exchange
type is 1. Similarly, b and c find their exchange type to be 2
and their optimal VFs fb=(-],-l,-],-],-],-],],I,I,],],I) and
f€=(-3,-3,-3,-3,-3,-3,3,3,3,3,3,3). At round zero, all agents
declare their types simultaneously. At round 1, a (being ex-
change type 1) makes a VF offer l“_’b=(2,2,2,2,2,2,-2,-2,-
2,-2,-2,-2) to b and 1*7°=(2,2,2,2,2,2,-2,-2,-2,-2,-2,-2) to ¢
(Note: 190112 >C=f2) Since f® <197 b sends a PAR-
TIAL ACCEPT message to a and the flow 1% = fb is
agreed. While for ¢, 1°7¢ > f€, it sends an ACCEPT mes-
sage with FO=1(see Figure 2). In round 2, a makes a further
offer of 1%**¢=(1,1,1,1,1,1,-1,-1,-1,-1,-1,-1) to c which it ac-
cepts and sends an ACCEPT message with FO=0. Thus, the
overall exchange is agreed as per 12(5:¢) = (b fe),

S Properties of Our protocol

Here, we first show that the agents have a strategy profile in
SPNE. We then discuss Pareto-optimality and scalability.

Subgame Perfect Nash Equilibrium: We model ne-
gotiation under the EEP as a sequential game where agents



make their moves in a well-defined sequence (e.g., declaring
exchange types and then making offers) at specified times
(i.e., rounds). A subgame is then a part or subset of this
sequential game (e.g., some offer rounds). To show that
a strategy profile is SPNE it is necessary to show that it
represents an SPNE in every subgame of the original game.
In the following, we first show that all agents have a best
response (BR) for any given round (i.e., round zero or offer
round) such that when all agents play their BR, it leads to
a Nash equilibrium (NE) in that particular round. We then
show that the strategy profile where all agents play their BR
in all rounds is SPNE.

Theorem 1. In round zero, all agents have a BR which is to
declare their true exchange type.

Proof. Only two exchange periods are allowed (r1), thus an
agent can be one of the two exchange types. This divides
agents into two power pools that need energy in the alternate
exchange periods. Agents in the same pool will not exchange
energy between them as they prefer to receive energy in the
same exchange period. If an agent misreports its exchange
type, it will either make or receive offers from the agents in
its own pool, hence no agreement will take place. Also, once
declared, an agent cannot make offers that do not correspond
to its prior declared exchange type (r4). Thus, an agent’s
BR is to declare its true exchange type to negotiate with the
opposite pool. Hence, the strategy profile where all agents
declare their true exchange type is NE in round zero. O

Theorem 2. In an offer round, an agent making offers to a
set of agents has a BR which is to make an equal offer to
each agent such that the sum of all its offers equals the VF
that maximises its own utility.

Proof. Let a be an agent with f® € Sy that maximises its
utility. Let X be the set of agents to which a would like to
make offers and 17 denote a VF offer to an agent j € X.
Under the EEP, j can either accept some or all of 1279 (1),
depending on its optimal VF and the other offers it may have
received. Let [%*J denote the agreed VF between a and j.
Let 197X be the sum of offers that a makes to each agent in
X while 1% X be the sum of agreed VFs between a and all
agents in X . Now, Table 1 lists all three possible strategies of
a in offering 12X and, assuming all agents in X play their
BR (see Theorem 3), their outcomes. We note that offering
127X =f dominates 12X < £2 because it offers at least
as much utility along with a potential outcome of f¢. Note,
when a offers 12X =f2 and the outcome is [27X < f2,
then it can reach new agreements in further rounds by of-
fering the remaining flow (i.e., £¢ — [2X). We also note
that @ can achieve f@ with [~X > £ However, one po-
tential outcome of this strategy is when 12X > £ (ie.,
a is now committed to a VF that exceeds its optimal VF)
which not only means that a does not get its optimal VF
f¢ but also that the further negotiation rounds (thus agree-
ing to even greater flow) will not lead to f. Therefore,
127X =fa is BR for a such that it cannot do better by of-
fering any other VF, provided all agents in X play their BR.
Note, as rs mandates, a will make an equal offer to all (i.e.,
1973 = 1970+ v j € X)so that 127X = fa, O

Energy Exchange Protocol (EEP)

1. Negotiation starts at a specified time with round zero where all
agents declares their exchange type to connected agents.

2. Subsequent offer rounds take place at specified intervals. Only
one exchange type is allowed to make offers in all offer rounds.

3. Agents make simultaneous valid flow offers to connected
agents. An offer [ is valid if it meets the following criteria.

e The offer comprises of exactly two exchange periods. Each
exchange period consists of an equal number of consecutive
time periods. The amount of energy exchanged in each ex-
change period must be the same, with opposite flows. For ex-
ample, if exchange starts at time period 1, then:

n/2 n
L=(h,dn)€Svr: Y Li=— > L (1)
i=1 i=n/2+1

e The amount of energy in each time period is equal.
l:(ll, ..... ln)ESVFI Viiel: ‘lt‘=|lt+1| (r2)

e If an agent makes offers to n agents in a round, then the
amount of energy in each offer must be the same. (r3)

e The offer conforms to the agent’s declared exchange type.(r4)

4. On receiving an offer 1% ® from a, an agent b has two options:.

o Accept: bcan accept 1% and sends to a a two-part message.

First part is the ACCEPT message to indicate that it accepts
1% Second is a boolean signal FO (Further Offers) indi-
cating if b is interested in receiving further offers from a. The
agreed flow is 1% = [*®_ The EEP round terminates.

o Partial Accept: b can accept any partial VF I = y x 197 ;
y€R|0 <y <1 (rs). It can send a PARTIAL ACCEPT
message with I, indicating the partial acceptance of 1272,
The agreed flow is [%**® = 1. Note, I = 0 x 1**® is also a
partial VF which b can choose to send to a to indicate that it
does not wish to exchange. The EEP round terminates. (r5)

Figure 2: The Energy Exchange Protocol

Theorem 3. An agent considering the received offers from a
set of agents has a BR which is to immediately accept offers
in this round such that the sum of accepted offers is less than
or equal to the VF that maximises its own utility.

Proof. Let agent a with f® € Sy p that maximises u® and
X7 be the sum of offers that it has received from agents in
X. Now, if f* < 1X—a then a can ACCEPT or PARTIAL
ACCEPT offers such that £ = 1X 2, thus acquiring its
optimal VE. However, if £ > 1% then a can ACCEPT
all offers in this round and then participate in further rounds
to get its remaining VF. Note, an agent is never worse off by
accepting offers immediately. On the contrary, if it delays
the acceptance in a round then the other agents may reach
agreements with each other in that round and thus in the
further rounds the number of offers will reduce, reducing its
chances of reaching agreements. Hence, the offer-accepting
agent has a BR which is to accept offers immediately such
that their sum is less than or equal to its optimal VF. O

Theorem 4. The strategy profile where agents play their BR
- as per Theorem 1,2 and 3 - is SPNE.



Proof. We know that all agents have a BR in round zero
which is to declare their true exchange type and the strat-
egy profile where all agents declare their true exchange type
is NE as no agent can do better by deviating individually
(Theorem 1). We also know that in any offer rounds, each
offer-making agent has a BR which is to make offers such
that the sum of their offers equals its optimal VF (Theorem
2). Similarly, each offer-accepting agent has a BR which is
to immediately accept the offers such that their sum is less
than or equal to its optimal VF (Theorem 3). Note, no offer-
making or offer-accepting agent can do better by individu-
ally deviating from its BR, and thus when all agents play
their BR in an offer round it leads to a NE in that round.
Now, consider the overall strategy profile (O.S P) where all
agents play their BR in round zero according to Theorem 1
as well as their BR in all offer rounds according to Theorem
2 (if they are making an offer) or Theorem 3 (if they are ac-
cepting an offer). Now, the OSP is SPNE for a sequential
game because it defines a NE at every stage (i.e., round) of
the game. Similarly, the OS P is SPNE for every subgame of
the original game because any subgame consists an optional
round zero and an optional number of offer rounds, and for
any of these rounds the OS P defines a NE. O

Pareto-optimal outcomes: Consider a, with the optimal
VF f¢, connected to a set of agents X. Under EEP,
its negotiation with other agents ends in two scenarios.
First, where it agrees to VFs such that their sum equal
to f¢ in which any further change in the agreed VF will
decrease its utility (f® is unique, see Lemma 1) and
thus the outcome is Pareto-optimal. Second, when the
agreed VF is less than f® but no other agent is willing to
negotiate in further rounds (they already have reached their
optimal VFs). In this case, though increasing the flow will
improve u®, the other agent(s) will no longer gain their
maximum utilities; hence, Pareto-optimality ensues. There-
fore, all outcomes under the EEP are Pareto-optimal in Sy .

Tractability, Concurrency and Scalability: The EEP re-
strictions simplify negotiation such that it becomes tractable,
concurrent and scalable. More specifically, 1 and ro reduce
S to Sy r where it becomes easier for an agent to compute
the optimal VF (Equation 4) using an LP solver. This LP for-
mation makes the computation tractable. If an agent knows
its optimal VF and would like to make offers to some agents,
r3 dictates that it make equal offers to all. In this sense, 73
makes it easier for an agent to negotiate with multiple agents
simultaneously which ensures scalability and concurrency.

6 The Nash Bargaining Solution: Benchmark

The Nash bargaining solution (NBS) is a widely known ax-
iomatic bargaining solution in cooperative bargaining that
agents can use to find a common satisfying solution (Nash
1950). Its axioms define a unique solution that maximises
the product of gains in utility of agents. In the context of
energy exchange, computing the NBS involves finding the
flow f for each agent so that the product of gains in their
utility is maximised. Let (d*,...,d™) € R™ be the utilities
that m agents obtain when they are disconnected (also called

Agent a Potential Utility

offers joeX u® (12X
la—»X < fa la<—>X < fa u“(la‘_’x) < ua(fa) la(—»X < fa
e X _ ga LT SFT wt@0TF) <ut(fY) 100F < f0
1eX = fe w00 = ut(£)
e < fe wt@T0) <ut(f) e X < g
X e e = fo w100 = ut (%)

w9 X) <ut (£2)

la«—»X a
>V peSyr £ £ ut () <ut(F%)

Table 1: Offering £ is the best response for agent a.

disagreement utilities). These disagreement utilities are the

maximum utilities that agents can get with no energy ex-

change. Let F = (f1,...,f™) denote the flows for all agents.

Then, the NBS is the solution that maximises the following:
m

Fyps = argmax H [u](fj) - d]] 5)
(Frnf™) j=1

When F' is compact and convex then the solution Fiypg is
unique (Nash 1953) and computing the optimal solution is
straight forward using convex optimisation. However, inter-
dependency between issues gives rise to a non-convex so-
Iution set with multiple NBS (Fujita et al. 2010) whereby
stochastic optimisation techniques are needed. Note that, the
NBS only defines which solutions (in the set of all solutions)
meet the defined axioms and not how agents can reach such
agreements. However, we can use it as the theoretical upper
bound to evaluate the EEP as we discuss in the next section.

7 Empirical Evaluation

Having outlined the benchmark, we now set-up a realis-
tic example to demonstrate the practical applicability of
the EEP. To this end, we consider an example of en-
ergy exchange in a community of 20 agents where each
agent has either a 1.5kW wind turbine or a 1.75kW so-
lar panel with equal probability. The energy generation
data for the wind turbine comes from a wind farm near
Lugo, Northwest Spain (www.sotaventogalicia.com), while
the output of the solar panel is estimated to be directly
proportional to the daily radiance for the same region
(www.re.jrc.ec.europa.eu/apps/radday.php). We use data for
July 2011, estimate the average generation for a day and
scale it to match the output of a 1.5kW wind turbine and a
1.75kW solar panel. The load requirements of homes in re-
mote areas are not available so we use load data, recorded
and provided by a UK electric company in low-income
homes equipped with smart meters. Figure 3 shows this con-
sumption along with the generation (solar and wind). The
actual generation and consumption for each agent comes
from a distribution over these profiles. More specifically, we
model generation/consumption in each time unit as an in-
dependent Gaussian distribution (with scaled value as the
mean and the variance within 10% of it). We assume that
agents have identical batteries [s = 20kWh, ¢ = 4kWh,
d = —4kWh, e = 90%]. Given these profiles, agents can
compute their utilities without exchange using an LP solver.
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Figure 3: Avg. consumption and generation.

Given this setup, our main objectives are to show that via
energy exchange using the EEP, agents can (i) reduce their
battery charging needs (ii) increase their utility even as the
battery efficiency decreases. We simulate a community of
20 agents and calculate the total battery charging with (i)
no exchange and when they exchange energy via (ii) the
EEP and (iii) the NBS. We repeat this simulation 20 times
and find that, on average, when agents do not exchange en-
ergy their overall battery usage is 222.7kWh while with en-
ergy exchange via the NBS their overall battery usage is
113.6kWh (i.e., 49% reduction compared to no exchange)
and with the EEP their usage is 141kWh (37% reduction).
This is important because electric batteries are expensive
(costing as much as 500 USD/kWh) and have a limited num-
ber of charging cycles (3000 to 5000). Reducing the battery
charging prolongs the battery life and reduces the need for
frequent replacements and thus savings in maintenance cost.

The above reduction in battery charging via exchange be-
comes more useful as the battery efficiency deteriorates with
time and usage. To show this, we simulate a community of
20 agents and calculate its social welfare function (sum of
all agents’ utilities) as the battery efficiency of all agents is
reduced (other parameters remain unchanged). With a less
efficient battery, the storage losses increases and therefore
agents’ utilities (without exchange) decrease. However, by
exchanging energy such losses can be avoided. Indeed, Fig-
ure 4 shows that the exchange becomes increasingly useful
as the battery efficiency reduces. In particular, we note that,
on average, the NBS improves the social welfare by 16.5%
while the EEP does so by 13.7%.

8 Conclusion and Future Work

The problem of negotiation over energy exchange is a com-
plex interdependent multi-issue negotiation problem. Here,
we presented a negotiation protocol, the EEP, which tackles
this complexity by imposing certain restrictions over offers,
as so that agents have a strategy profile in SPNE and nego-
tiaton is concurrent, scalable and entails Pareto-optimal out-
comes (within allowed agreements). Using real-world data,
we empirically evaluate the EEP and benchmark it against
the NBS. Our results show that energy exchange via the EEP
is useful in communities to improve the efficient use of en-
ergy and storage. Future work will investigate how relaxing
the EEP restrictions affects the negotiated outcomes when
the energy generation is uncertain and loads are deferrable.
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A Appendix

Lemma 1. If f = (f1,..., fn) € Svr maximises u® then f is
unique and u® is a strictly monotonically decreasing function over
V' eSvr:(0,...,0) < f’ < f range.

Proof. Let a be an agent with the optimal VF f=(f1,f2,fs,f1) €
Svr and with exchange periods ex: comprises of time period 1
and 2, and ez, comprises of time period 3 and 4. Let’s assume that
a prefers to receive energy in ex; and transfer in ex2. Note that
r1 requires agents to receive and transfer the same amount in ex
and ez, i.e., fi+f2 = -(fs+f4). The gain in the utility for a comes
merely because a can utilise more of the same amount of energy
in ex; than ex2 (due to lack of demand in ex2 or storage losses).
This implies that for any VF f’ € Sy to improve u®, it must
be that a1 [ f1| + az|f3| > as|fi| + aalfa] or ea|fi] + az|f3] —
ag‘fé| —Oé4|fi| > 0 where a:(al, Q9, (3, Ot4) Vo, eca 0 <a; <
1. Now, the greater the inequality, the greater the amount of energy
saved that would otherwise be unused. Indeed, Equation 4 attempts
to maximise this inequality and find the optimal VF for maximum
increase in the utility (see Section 4).

Now, if f=(f1,f2,f3,f4)€ Sy F is the optimal VF then the max-
imum inequality is a1 | f1|+az] f2| > as|fs|+as|fa]. Let 0< B2 <
B1<1. Since 2 < p1, the following will hold:

= Ba(aalfi| + azlfa| — as|fs| — aa|fa]) <
Bi(aalfi| + az|fz| — as|fs| — aal fal)
= a1|Bafi| + az|Bafe| — as|B2f3] — aa|B2fs]) <
a1|Bifi| + az|Bfz| — as|B1fs] — calBifa

Here, (1 f; and (3 f; are just the scalar multiple of f (see Section 4
on the geometric properties of Sy r). Let f'=31f and f'=Bof.
Note, 0< B2 < 81 <1 implies 0< " < f’ < f. Therefore:

= | fl'| + as|f3| — sl f5'] — cal fi] <
| fi| + ool fa| — as|fs] — aalfi| ()

This shows that the amount of energy that can be saved (that would
otherwise be lost) due to flow £/ (i.e., a1 |fi' |+ az|f3 | —as|f5|—
au|fi]) is less than that of due to £’ for all 0 < f”/ < f' < f.
We know that the utility of an agent is the total amount of energy
used (Equation 1). Therefore, if Inequality (¢) holds, then u(f"") <
u(f’) also hold for all 0< f” < f' < f.

We know that if f € Syp, then V' €Syr : f £ f f =
cx f’ where ceR|0 <c <1 (see Section 4), therefore, the amount
of energy that is transferred by each VF (i.e., fi + f2 or f3 + f4)
is unique. Thus, when an agent needs to exchange a certain amount
of energy (for optimal utility), there is only one corresponding VF
in Sy r. Hence, optimal VF f is unique for an agent.

O
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