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ABSTRACT

In this paper, we address the problem of predicting the usage
of home appliances where a key challenge is to model the ev-
eryday routine of homeowners and the inter-dependency be-
tween the use of different appliances. In particular, given an
efficient day—ahead prediction of electrical usage, home en-
ergy management systems can suggest homeowners when is
the best time to run appliances in order to save cost, without
violating their preferred everyday habits. To this end, we
propose an agent based prediction algorithm that captures
the everyday habits by exploiting their periodic features.
In addition, our algorithm uses a episode generation hid-
den Markov model (EGH) to model the inter-dependency
between appliances. We demonstrate that our approach
outperforms existing methods by up to 40% in experiments
based on real-world data from a prominent database of home
energy usage. We also show that the computational cost of
our algorithm is 100 times lower on average, compared to
that of the benchmark algorithms.

1. INTRODUCTION

In the face of dwindling fossil fuels, an ageing electricity
distribution infrastructure, and the adverse effects of high
levels of green house gasses on climate change, the problem
of generating affordable and clean electricity reliability is one
of the greatest challenges of this century [5]. To make mat-
ters worse, energy demand is growing at a fast pace given
the electrification of heating and transport [6]. In more de-
tail, figures show that worldwide energy consumption in the
domestic sector accounts for approximately 27% of all elec-
tricity consumption. In the UK in 2009, domestic electricity
use accounted for approximately 24% of the country’s over-
all electricity consumption and approximately 30% to the
UK’s total CO2 emissions [7]. Given this, energy demand
in housing and domestic appliances is rapidly increasing,
hence, improving the efficiency of energy usage in the home
can significantly impact on national C'O2 emissions.

Now, to make the use of the electrical devices in the home
more efficient, and thus, to reduce both carbon emissions
and cost, a set of agent based demand side management
techniques have recently been introduced to optimise the
schedule of loads [16]. In particular, in these approaches
an agent controls the smart meter and takes into account
the real time carbon content/cost if electricity in order to
optimise the schedule of specific loads. However, these tech-
niques typically do not take into account the homeowner’s
preferences in their optimisation. Thus, such scheduling

methods might not be acceptable to real homeowners as they
do not meet the latter’s everyday routine. For example, sup-
pose that a homeowner prefers to use her washing machine
on weekends when she has time to take the clothes out to
dry and iron them. Thus, she would not accept a schedule
that would put the use of the washing machine on another
day even it is cheaper to do so.

Moreover, demand—side management algorithms ignore inter-

dependencies between the usage of different appliances. In
particular, the home owner might use the dishwasher and
the oven on the same day, or prefers turning on the TV
whenever she starts cooking. Given this, schedules that do
not take these possible inter—-dependencies might not meet
the homeowner’s preferences either, and thus, would not be
accepted.

Within all the aforementioned scenarios, the main chal-
lenge is to predict the energy consumption activities of home-
owners, so that the agent can design optimal schedules by
planning ahead the electricity usage that meets the human’s
preferences. To date, no research has been done to address
both predicting human behaviour and inter-dependency be-
tween the usage of appliances within the energy domain.
In particular, existing human activity prediction models are
typically designed for location prediction [11, 19], and thus,

may not be adaptable for modelling complex inter-dependencies

between the usage of different appliances within a typical
home (as location prediction has to deal with only one data
stream). In turn, a number of efficient methods for tackling
complex prediction problems with multiple inter-dependent
data streams have been developed [18, 12]. As we will show
in Section 4, since they are not designed specifically for hu-
man activities, they may not be appropriate for this purpose.

Against this background, we propose a novel approach
to predicting the energy consumption of different home ap-
pliances, that takes into account both the human routine
activities and the inter-dependency between appliances. To
do so, we rely on the common assumption that human be-
haviour follows a certain cyclic pattern [11]. Based on this,
we build a model that exploits this cyclic behaviour. To han-
dle the inter-dependency between the appliances, we use the
episode generation Hidden Markov model (EGH) [18] to effi-
ciently identify the patterns that form the inter—-dependency
between the usage of the appliances. By putting the two
models together, we demonstrate that our approach outper-
forms the state—of-the—art, that only focus on either human
behaviour detection on inter—-dependency pattern identifica-
tion.



Against this background, we contribute to the state—of—
the-art as follows.

e We propose the first algorithm that merges techniques
for human behaviour prediction and inter—-dependency
pattern identification in order to efficiently predict the
usage of electrical appliances in the home.

e We demonstrate through extensive simulation, using
real-world data, that our algorithm outperforms the
state—of-the—art by up to 40%, while its running time
is typically 100 times faster than that of the bench-
marks.

The remainder of the paper is structured this paper as fol-
lows. In the Section 2, we review existing models that could
be used in our scenario. We then formalise our problem sce-
nario in Section 3. Section 4 evaluates the algorithm and
analyses the results that we obtain from our experiments.
Finally, Section 5 concludes.

2. RELATED WORK

As our approach lies on the nexus of human behaviour pre-
diction and prediction with multiple inter—-dependent data
streams, we discuss these two areas in more detail in this
section.

Prior work on human behaviour prediction mainly address
user location prediction in spatio—temporal domains. In par-
ticular, prior work has focused on predicting the user’s loca-
tion using mobile applications [11, 2, 19]. These approaches
include, but are not limited to, prediction tasks with eigen-
value decomposition [9], non-linear time series analysis of ar-
rival times [17], and variable order Markov models [2]. More
recently, a number of works relied on the use of the Pitman—
Yor Process to detect whether the homeowner is away from
home [19, 10]. Recently, McInerney et al. addressed the
problem of predicting human behaviour with sparse data
[15]. Although these techniques are efficient at predicting a
single user’s behaviour, they do not address the challenges
of the inter—dependency between different sequences of data
(i-e. history of appliance activity).

On the other hand, graphical models are typically used
to describe the aforementioned inter—-dependencies. In par-
ticular, graphical models have been used to represent the
structure of conditional independence among random vari-
ables [8]. In addition to these models, Bayesian networks [1,
13] are also widely used for cases when missing data entries
occur. More recently, Gunawardana et al. proposed PCIM,
a technique for modelling inter-dependencies among vari-
able [12]. The authors claim that their model is efficient at
capturing the dependencies between the data streams. An-
other popular class of methods is the rule-based approach,
where the main goal is to detect dependency patterns (i.e.
rules). In particular, these methods are used to generate
rules that are based on discovered episodes (i.e. patterns),
and the future activities can be predicted based on those
rules [3]. A state—of-the—art technique in this domain is the
Episode Generation Hidden Markov Model (EGH) [18].

Both rule-based methods and dependency models, how-
ever, are not designed to exploit the cyclic behaviour of hu-
man users, and thus, might fail in predicting human related
data sequences, as is the case in our settings (see Section 4

for more details). To fill the aforementioned gaps, we de-
velop a human routine activities prediction method that can
take into account both the cyclic patterns of human routine
and the inter-dependencies between the usage of electrical
appliances.

3. PREDICTING THE USAGE ACTIVITIES
OF APPLIANCES

In this section we describe the problem of predicting appli-
ance usage activities in more detail. To do so, we first de-
scribe the formalisation of our problem in Section 3.1. We
then introduce our algorithm in Section 3.2.

3.1 Model Description

In this paper we aim to design an agent based approach
that predicts whether a particular appliance is used (and
for how many times) in the next day, in order to estimate
the future energy consumption of the home. To do so, we
assume that we have a finite set of consumer activities, where
different types of activities are distinguished by labels | € L.
An activity profile of label I a; + is a tuple (¢,1,n), composed
of a time step ¢ (measured in days), a label | and number
of usage n, that denotes the number of occurrences of label
l on day t. For example, such usage profiles are “Washing
Machine was used on Tuesday” (i.e. a = (Tue, washing
machine, 1)), or “Oven was used on Thursday” (i.e. a =
(Thu, oven, 1)). For the sake of simplicity, we only consider
the binary case of occurrence. That is, we assume that n €
{0,1}. Let & = (a1,¢, a2y, - .., ar,:) denote the usage profile
of day ¢ that contains the information about the usage of
each label [ € L on day t. The appliance usage history h: of
time slot ¢ is the sequence hy = {x1,x2,...,2+}. Our goal is
to estimate x¢y1 for any ¢t > 0 with high accuracy, given h;.
To solve this problem, the agent has to take into account two
main dependencies that underlie a consumer’s activities:

e Time dependencies: Consumers can trigger their ac-
tivities at different time slots which satisfy their needs
and daily routine. For example, if we use a washing
machine at time ¢, it is unlikely we will use it again at
time (¢ + 1)) due to lack of dirty clothes to wash.

e Activity inter—dependencies: Some types of activities
may depend on other activities. For example, when
one cooks, one might need to use the oven and mi-
crowave, then one might need to use the dishwasher
to clean the dirty dishes. Therefore, the activities of
using the oven, microwave, and dishwasher are depen-
dent on cooking.

In addition, we have to take into account the cyclic be-
haviour of users as well. Following the work of Gonzalez
et al. [11], we assume that the human behaviour in terms of
appliance usage forms cycles of weekly periods.

In what follows, we propose a novel algorithm that, by tak-
ing the aforementioned dependencies and cyclic behaviour
into account, efficiently predicts future activities.

3.2 The Prediction Algorithm

As mentioned earlier, the foundations of our prediction al-
gorithm rely on the EGH method. However, as EGH is not
designed for detecting human activities, we tailor the model



to fit our settings by exploiting the periodic features of the
human everyday routine. In addition, we further advance
EGH by using an adaptive prediction threshold value in or-
der to improve the efficiency of prediction. In particular,
if the probability of the occurrence of an event (i.e. usage
of an appliance) exceeds this threshold, the algorithm pre-
dicts that the event will occur. Given this, we first detail the
training phase of our approach in Section 3.2.1, where we use
a set of training data to build up a dependency model for
the correlations between the usage of appliances. We then
continue with the description of our human routine model in
Section 3.2.2. Based on these models, we then construct a
mixture model of the significant episodes (i.e. sets of possible
inter—dependency rules, see Section 3.2.1 for more details) in
order to calculate the probability of activities’ occurrence in
Section 3.2.3. Finally, Section 3.2.4 focuses on the prediction
model in detail.

3.2.1 The Inter—Dependency Model

To build the inter-dependency model, we rely on the EGH
approach described by Srivatsa et al. [18] as follows. Sup-
pose that the inter—dependency between the usage of differ-
ent appliances follow some probabilistic patterns. For ex-
ample, a typical pattern can be the following: it is likely
that the dryer is also used after the usage of the washing
machine, or the use of the microwave follows the use of the
oven within two days. In our model we denote these patterns
as episodes (i.e. a sequence of appliance activities).

To evaluate the likelihood of an episode, we calculate its
probability of occurrence, given the history of appliance
usage. To do so, we use the EGH approach, which as-
signs a discrete hidden Markov model (HMM) to the cor-
responding episode. In particular, suppose that episode «
consists of N activities (@i, ¢,y tgs---,Qiy,tx) Such that
t1 <tz--- <tn. EGH assigns a HMM H, = (5, Aa,na) to
a such that S = {1,...,2N}, denotes the state space, Ay =
(aiy,t15 Qg tgy- - - ,alN,tN) denotes the activities, and 74 is the
noise parameter. The latter is set equal to T=¥fo where
T is the total number of activities in the training dataset
and f, is the number of times the episode a occurres in the
training dataset, if it is less than #ﬂ and to 1 otherwise.
The intuition behind the use of A, is that it represents a
Markov model of a sequences activities that contains the
corresponding episode (see [18] for more details).

Now, we calculate its corresponding frequency f. of each
possible episode a within the dataset (i.e. the number of
times the episode occurs in a non—overlapping way). Here-
after, we only consider those episodes that have a frequency
fa higher than m, where M is the number of activity
types, and N («) is the number of activities within a. We
denote these as significant episodes. The reason we focus on
these episodes (and thus, ignore the rest) is that the oth-
ers are unlikely to occur given the training data set. These
significant episodes can be regarded as rules that model the
inter—dependency between the occurrence of different activ-
ities.

3.2.2 The Human Routine Model

By building up the set of significant episodes, we can then
predict the occurrence of activities within the next time step
by analysing whether they can be a part of a significant
episode. However, as the number of significant episodes can

be an exponential in size of the training dataset, EGH is inef-
ficient computation—wise. In addition, EGH might overesti-
mate the occurrence of activities, due to redundant episodes.
In particular, due to the cyclic nature of human routines, a
sequence of activities that consists of two non—overlapping,
but identical, episodes can also be regarded as a significant
episode. This might lead to inaccurate estimation of the
probability of an activity’s occurrence.

To address these challenges, we reduce the set of poten-
tial significant episodes by exploiting the cyclic features of
human everyday routine. In particular, we assume that hu-
man behaviour in home energy usage follows a weekly cycle.
Thus, if the goal is to predict whether a target activity type [
occurs on the specific day d, we only consider activities that
happen at most one week earlier than an occurrence of [ on
the same day d in the past. More formally, let K denote the
number of occurrences of the target activity type ! on the
specific day d of the week in the activity usage history h¢—1.
Thus, for each label [ and the prediction day of the week d,
from the original training dataset D, we extract a training
set Dy q = {Xi}f(zl, where X; = < xy,—7,..., %4, —1 > is the
weekly preceding window of activities from x that imme-
diately preceded the i*" occurrence of I in , and ¢; is the
time that the target activity type ! occurred at the ¢*" in
the activity sequence.

Given this reduced training dataset D; 4, we then use the
EGH approach to identify the significant episodes. The in-
tuition behind this technique can be described as follows.
We assume that the activities are typically influenced only
by activities within a week time (i.e. older activities do not
have affect on them), it is more efficient to only consider
these past activities. By doing so, we can reduce the com-
putational costs and also improve the quality of prediction
(as we will demonstrate later in Section 4).

3.2.3 The Mixture Model

Given the episode reduction using the human routine model,
we now turn to the discussion of how to use these episodes
to predict the future activities. To do so, we first analyse
the joint influence of these episodes on the probability of
a single activity’s future occurrence. Supppose that for a
given training data set D; 4 = {Xi}fil, we have calculated
a set of significant episodes, denoted as F*° = {a1,...,as},
and each HMM H,; of episode a;. Now, to predict activity
a in the next time step ¢, we use these episodes in order to
calculate the probability of occurrence. To do so, we calcu-
late the probability that a is a part of a significant episode.
However, as an episode typically has a certain positive prob-
ability of indicating the occurrence of a, we have to take into
account all of them. To model the effect of this joint influ-
ence, we compute a mixture model A; (i.e. a combination of
probabilistic processes) of the significant episodes’ HMMs.
This mixture model then can be used to predict the future
occurrences of the target activity a. In what follows, we first
build the aforementioned mixture model and then demon-
strate how to predict future activities.

Now, the likelihood function of the training dataset D
under a mixture model A; can be written as follows:

K K
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where 6;, j =1..J are the mixture coefficients of A; (with
6; € [0,1] for all j, and 25:1 0; =1). Recall that each
HMM H,, is fully characterised by the significant episode
a; and its noise parameter 7.,;. Given this, the likelihood
of the activity sequence X;, given the HMMs {Hq; Moy, is
computed by approximating the likelihood along the corre-
sponding most likely state sequence:

Na; | X5 1—7704' ‘aj‘fo‘j(xi)
I e A @

where |X;| denotes the length of sequence, X, Jay (X;) de-
notes the non-overlapped occurrences-based frequency of o
in the sequence X;, and |o;| denotes the size of the episode
Q.

We use the Expectation Maximisation (EM) algorithm
to estimate the set of mixture coefficients of the mixture
model A;. In particular, the algorithm is initialised with the
current guess for the mixture coefficients, denoted by ©9 =
{09,...,0%}. These mixture coefficient values is initially set
to be uniform, that is, 67 = % for every j € J. We then use
these current guesses to update the mixture coefficients as
follows. Let ©™¢% = {07°%,...,07°"} denote the new values
of these coefficients. Given this, we have:

K
new 1
gq = ?ZP[(”X“@‘Q] (3)

i=1
where ¢ = 1..J. Let P[q|X;, ©7] denote the posterior prob-
ability for the ¢'* mixture component, with respect to the
window X; € D, which can be computed using Bayes’ Rule:

GlgP[X’LlHal] (4)
7, 07 P[Xi| Ha,]

j=1"3

P[l|X;,09] =

The new set of mixture coefficients ©™“* is then used as the
current set of guesses (i.e. ©7) of the mixture coefficients.
The process is repeated until the coefficients converge.

3.2.4 The Prediction Model

Given the mixture model Ay = {(a;,0;)};_;
turn to the prediction phase of our approach. Let ¢ denote
the current time. For the set of target activity labels [ € , we
want to predict their occurrences in the next day, t + 1. As
we are mainly interested in occurrences of recent activities
of the users, therefore, we construct a 7—length window
of activities from the weekly period [t —7,t]. The recent
list of activities can be written as X = [a¢t—741,...,a:]. We
then estimate the likelihood of this recent activity sequence,
given the mixture model, A;, that is obtained from the train-
ing phase. The algorithm determines the occurrence of the
target activity at time step (¢+ 1) based on the value of
the threshold. In particular, if the probability of the win-
dow under the mixture model is greater or equal than the
prediction threshold, the algorithm predicts that the target
activity will occur at the next time step (¢ 4+ 1). Otherwise,
if the probability of the window under the mixture model is
less than the threshold value, the algorithm predicts that the
target activity will not occur at the next time step (¢ + 1).
This raises the difficult task of how to define the reasonable
threshold value that would work best for each dataset in the
scenario.

Finally, we compute the value of the prediction threshold
as follows. We first compute the likelihood of each preced-

ing window of the target activity, X; where i = 1,2,..., K,
under the mixture model A;. Then, the final threshold value
we use for prediction is the minimum value of all the likeli-
hood values of preceding windows, which can be written as
below:

s = min{ P[X;|A:]} ()

where i =1,2,..., K. Note that since none of the exist-
ing prediction algorithms are designed specifically for pre-
dicting the usage of electrical appliances in the home, our
agent based method is the first that addresses this particu-
lar problem. In what follows, we demonstrate the by using
our approach, an agent can achieve efficient performance
in accurately predicting the usage of electrical consumption
activities.

4. EMPIRICAL EVALUATION

Given the prediction model, we now turn to demonstrate
how our algorithm outperforms the existing prediction al-
gorithms in predicting the next day usage of electrical ap-
pliances in the home. To do so, we first introduce a set of
benchmark algorithms against which we compare our method
(Section 4.1). We also detail two real-world datasets that
we use in our experiments in Section 4.2. Finally, we show
our results in Section 4.3.

4.1 Benchmark Algorithms

As mentioned in Section 1, related work has typically fo-
cused on single user behaviour prediction and dependency
model prediction for non—-human data. Given this, to demon-
strate that these algorithms are not designed for our settings,
we choose a number of state—of—the—art methods from these
domain to benchmark against. In particular, we compare
our method against the following approaches:

e Pitman—Yor Process (PYP): This algorithm is designed
for predicting the presence at locations of a single user
[10]. In particular, it regards a set of binary obser-
vations (i.e. whether the user is at a certain place
at a particular time), modelled by beta distributions.
The parameters of these distributions are conditioned
on a day type category for that particular day. These
day types are latent states that enable the clustering
of behaviours, introducing dependencies between each
separate observation of the day (allowing prediction).
They are generated by a Dirichlet distribution with un-
known component coefficient parameters. All of these
parameters are inferred from the training data during
learning. The prediction is then done by finding the
probability of the day type given the day of the week
(see [10, 19] for more details).

e PCIM: The piece—wise constant conditional intensity
model (PICM) is a state—of-the-art approach in pre-
dicting multiple—source web data where data from dif-
ferent sources might depend on each other. In partic-
ular, it uses a set of piece—wise constant dependency
functions to capture the correlation between labels (i.e.
data from different sources). It uses these functions to
create a decision learning tree to describe the inter—
dependency model. Based on this model, it then esti-
mates the probability of event occurrence in the future



by using forward and importance sampling (for more
details, see [12]).

e EGH: We also compare our algorithm against the orig-
inal EGH method to demonstrate that, by adding the
extensions described in Section 3, we make the ap-
proach suitable for our domain, and thus, advance its
performance.

In addition, for the sake of simplicity, we refer to our algo-
rithm as EGH-H (i.e. EGH for human routine prediction).

4.2 Real-World Datasets

In this section, we describe the REDD dataset [14] and our
own collected data. These datasets, in fact, are collected
from real-world applications and are used in our experi-
ments to evaluate our algorithm and the benchmark ap-
proaches.

4.2.1 The REDD dataset

The REDD data set includes six different houses. These
houses have been monitored for approximately 35 days with
sub-meters installed on multiple relevant electrical home ap-
pliances. The data in the REDD set is the power consump-
tion for the specific devices every 3 seconds. We converted
the raw data of power consumption into a list of cyclic on-off
events as follows:

e We set a threshold of power consumption (typically
55W) to determine the periods that the appliances
turned on. We store all these segments of durations
that the appliances turned on.

e We set a gap allowance parameter for two consecutive
segments. If the gap between these two consecutive
segments is greater than the gap allowance, we connect
these two segments together, and considered as one
segment.

e We select a noise removal parameter to filter the noise
of the data. All the segments that are less than the
noise parameter are removed.

The gap allowance parameters and noise removal parame-
ter are adjusted to adapt to the behaviour of the appliances.
For example, the period of dishwasher cycle is typically over
30 minutes, thus we set the noise parameters for the full cy-
cle of using dishwasher is up to 30 minutes. In addition,
the power consumption of the dishwasher is controlled by
the built-in sensor of temperature in the dishwasher. Given
this, the power consumption consumed for the dishwasher
is fluctuated. However, the gap between these two consec-
utive periods that the power consumption over 55W is less
than 10 minutes. Thus, we set the gap allowance param-
eter for the dishwasher is 10 minutes. Then, we observed
that there were 3 houses which do not have enough informa-
tion to judge the performance of the prediction. Hence, we
only carry out our tests on data from 3 houses. For those
houses, we use the first 20 days as a training data set, and
the remaining 15 days as a testing set.

4.2.2 Data Collected from FigureEnergy

In addition to the REDD dataset, we also use another dataset
collected from homeowners in the UK. In particular, this in-
cluded 13 participating homes. Each user (i.e. homeowner)

Type| Start End Energy Baseline| UserID
time time usage
oven 2011- 2011- 1.562 0.069 32

08-31 08-31
18:58:27 | 19:42:47
kettle | 2011- 2011- 0.094 0.007 32
09-01 09-01
07:21:05 | 07:26:17
shower| 2011- 2011- 0.102
09-01 09-01
08:12:45 | 08:21:08
tv 2011- 2011- 0.3902 0.151 32
09-01 09-01
17:54:16 | 19:18:20
stove | 2011- 2011- 0.585 0.0396 32
09-01 09-01
19:18:20 | 19:41:16

0.0144 32

Table 1: An example of data collected from Fig-
ureEnergy.

was given a smart meter, which integrated into the user’s
home and transferred data into the application’s server over
the internet. Users then could observe their aggregated en-
ergy consumption from their web browser using FigureEn-
ergy, a web—based application designed for appliance usage
labelling (see [4] for more details).

This application allows users to identify and label indi-
vidual activities as follows. By clicking on the graph with
their mouse and dragging, users can select a segment and
fill information about the activities that they spent. There
is a preset list of labels that users can choose from for their
activities. The labels will be on the aggregate energy con-
sumption to show users the results that they have annotated
(see Figure 1). An example of the collected data can be seen
in Table 1.

In the next section, we describe the experimental settings,
and empirically evaluate the performance of our methods to
other state—of—the-art on REDD, and FE datasets.

4.3 Experimental Results

The experimental settings are described as follows. Since
we only consider binary prediction, we set a value of thresh-
old at 0.5 to determine occurrence of the labels. That is,
for a specific label at a given time, if the predicted prob-
ability is greater or equal than 0.5, the label is considered
to have a high probability of occurring. Otherwise, if the
predicted probability is less than 0.5, the label is considered
not to occur. We first use the REDD dataset to evaluate the
performance of the algorithms (see Section 4.3.1) and then
continue with the data collected from FigureEnergy (Sec-
tion 4.3.2). We also compare the average running time of
the algorithms in Section 4.3.3.

4.3.1 Performance on REDD Data

Here, we run our algorithms to predict all the labels of the
REDD dataset. We then compute the F—score of each algo-
rithm to measure their accuracy of prediction. The results
can be seen in Table 2. In overall, our method outperforms
other state-of-the-art by up to 40%. In particular, it is bet-
ter than PYP, EGH, and PCIM by approximately 73%, 40%,
and 75% on average, respectively. Note that since home 1
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Figure 1: An example of using annotation in the FE application.
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Figure 2: ROC curve of the algorithms run on three homes from REDD.

Home| No. PYP PCIM | EGH | EGH-

ID Appli- H
ances

1 8 0.770 0.330 0.743 0.844
3 0.190 0.308 0.571 0.772

4 3 0.4 0.714 0.368 0.75

Table 2: Overall F—score results three homes from
REDD.

has the most detailed data, all the algorithms typically pro-
vide their best performance on this home. An exception is
the PCIM method, which performs by far the worst. The
reason here is that due to the large size of available data,
the PCIM overfits the inter-dependency model (since it does
not take into account the cyclic feature of human routine).
Given this, it fails to correctly detect the occurrence of ac-
tivities.

To better demonstrate this, we depict the receiver oper-
ating characteristic (ROC) curve of the algorithms for each
home in Figure 2. From this figure, we can see that our algo-
rithm dominates all the others. In particular, the area under
the curve (AUC) of EGH-H in home 1 is 0.84, while the AUC
value for PYP, EGH, and PCIM is 0.68, 0.56, and 0.53, re-
spectively. We can also observe that since data from homes
3 and 4 is less detailed, all the algorithms provides worse
performance, compared to themselves in home 1. However,
our algorithm still dominates the benchmark approaches.

We continue with evaluating the performance on appli-
ances that are likely to be strongly correlated with each
other. In particular, in our initial observations, we learnt
that the kitchen’s appliances are most likely to be used to-

gether by consumers. Therefore, we focus on a set of kitchen
appliances, such as oven, dishwasher, microwave, kitchen
outlet 1, or kitchen outlet 2, to perform our tests. We gener-
ate all possible combinations of these appliances for the test
data, then matched each combination to the houses that
have these labels of activities. We then compute the F-
score of the algorithms for each test data. The results are
shown in Table 3. On average, the F—score obtained by our
method is approximately 0.84, while the F—score of PYP is
0.76, PCIM is 0.50, and EGH is approximately 0.73. Hence,
we can conclude that our method has better prediction of
13% compared to PYP, 15% compared to EGH, and 90%
compared to PCIMs in predicting appliance dependencies.

4.3.2  Performance on Data from FigureEnergy

In this section, we test the performance on three selected
homes from the FE dataset. In particular, the other homes
did not provide sufficient data. Thus, we could not be able
to set up a proper training dataset for those homes. Similar
to the previous section, we also consider the overall perfor-
mance of the algorithms. Note that within the FE data set,
the labels of energy usage activities were mainly annotated
by consumers. Thus, the uncertainty of the labels is high and
this uncertainty in labels could cause the learning structure
of dependencies to behave incorrectly, and hence worsen the
prediction performance'. Therefore we selected labels that
occurred sufficiently in both training and testing datasets.
The F-score of the algorithms for each house is depicted in
Table 4. We can observe that, due to the uncertainty of the

IThis is an aspect which we will further investigate as part
of our future work
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Figure 3: ROC curves of the algorithms for three homes from FigureEnergy.
Test Data PYP PCIM | EGH | EGH- Test Data PYP PCIM | EGH | EGH-
H H
{Oven, dish- | 0.4444 | 0.486 0.536 0.667 {tv, kettle} 0.736 0.434 0.732 0.75
washer} {toaster, mi- | 0.514 0.444 0.486 0.561
{Oven, mi- | 0.860 | 0.698 0.776 0.88 crowave}
crowave} {computer, tv} 0.705 0.692 0.643 0.727
{Oven, kitchen | 0.813 0.697 0.750 0.850
outlets 1} Table 5: F-Score results of predicting appliance de-
{Oven, mi- | 0.762 0.560 0.732 0.842 pendencies in FigureEnergy.
crowave,  Dish- show independence from each other. Thus, a naive exten-
washer} _ sion of the single human behaviour prediction such as PYP
{Oven, DIS}}' 0.849 0.308 0.800 0.883 is expected to work well in these settings.
washer, o To justify the previous argument, we also analysed the
crowave, kitchen dataset for appliances with high possible inter—dependency.
outlets1} _ The list of these is depicted in Table 5. In addition, we
{Oven, Dls}?' 0.838 0.279 0.792 0.903 also show the performance of the algorithms in predicting
washer, o these dependencies. Here, our algorithm also outperforms
crowave, k¥tchen the others. However, the improvement is not that high,
outletsl, kltcl}en compared to the case of REDD data. In particular, EGH-H
outlets2, washing outperforms PYP, PCIM and EGH by 4%, 34%, and 10%,
machine} respectively.

Table 3: F-Score performance of predicting appli-
ance dependencies in REDD

Home| No. PYP PCIM | EGH | EGH-

ID Appli- H
ances

FE22 | 6 0.550 0.40 0.6 0.613

FE32 | 4 0.488 0.444 0.619 0.667

FE39 | 4 0.444 0.491 0.609 0.623

Table 4: Overall F—score results on three homes
from FigureEnergy.

homeowners’ manual labelling process, the performance of
the algorithms are much lower, compared to the case of the
REDD dataset. However, EGH-H still provides the highest
accuracy in predicting future activities.

For more detailed analysis, we also plot the ROC curve of
the algorithms for these homes in Figure 3. From this figure,
we can observe that PYP provides the second best perfor-
mance (after EGH-H). A possible reason is the following:
In the FigureEnergy dataset, the collected labels typically

4.3.3 Average Running Time of the Algorithms

Having evaluated the prediction accuracy of the algorithms,
we now turn to evaluate the running time of each algo-
rithm. In particular, we run the algorithms on an Intel(R)
Xeon(R) computer (64-bit operating system) with 2.67 GHz
and 12GB. The results measured in seconds are depicted in
Table 6. We can observe that on average, our algorithm is
1504.78, 119.3, and 151.19 times faster than PYP, PCIM,
and EGH on average. In addition, we can also see that even
in the case of 8 labels, the running time of the benchmark
algorithms becomes extremely high (13, 6, and 20 minutes
for PYP, PCIM, and EGH). In contrast, the running time
of EGH-H still remains under 2 seconds. Given this, our
algorithm needs significantly less computation time, while
providing the highest accuracy, compared to the state—of—
the—art benchmarks. This implies that our algorithm could
be used for interactive feedback, where the agent suggests
homeowners different home energy consumption plans in
real-time, as it can use our algorithm to quickly predict the
next—day usage, based on the real-time feedback of users.

5. CONCLUSIONS AND FUTURE WORK



Home | No. PYP PCIM | EGH | EGH-
ID of H
appli-
ances
Home 8 779.95 | 371.3 1221.72 | 1.406
1
Home | 3 240.64 | 8.8 1.05 0.067
3
Home | 3 328.81 | 12.84 2.09 0.288
4
FE22 |6 494.97 | 43.769 | 2.6 0.97
FE32 |4 289.76 | 19.9 1.26 0.16
FE39 |4 255.28 | 18.897 | 0.886 0.172

Table 6: Running time on homes from REDD and
FigureEnergy.

We investigated the problem of predicting the usage of elec-
trical appliances in the home. To solve this problem, we
proposed EGH-H, the first algorithm that addresses human
behaviour prediction within the energy management domain
by extending the EGH algorithm. In particular, our algo-
rithm combines an inter-dependency model between the us-
age of appliances with the exploitation of the cyclic features
of homeowners’ everyday routine. We also demonstrated
through extensive evaluations, using real-world data taken
from the REDD and FigureEnergy datasets, that our algo-
rithm outperforms state—of-the—art methods by up to 40%
in prediction accuracy. As a result, our work could poten-
tially form an efficient solution to real-world home energy
management systems, where usage predictions are needed to
optimally schedule the electrical consumption of the home.
Note that during the experiments on data from the Fig-
ureEnergy, all the algorithms (including ours) provides low
performance. This is due to the uncertainty within the la-
belling process of homeowners. Since our current model does
not take into account this source of uncertainty, it is not triv-
ial that how our approach can be extended to such settings.
Given this, we aim to further study prediction with noisy
or uncertain labels as future work. In addition, we intend
to improve the quality of prediction by allowing interactive
feedback from users, where the agent can use these feedbacks
to learn and refine its prediction in real-time, as the running
time of our algorithm makes it suitable for such scenarios.
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