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Abstract

We propose a new representation for coalitional

value. Arguably, the most fundamental problems that have
been studied in this class of games are:

games, called theoalitional skill vector model,
where there is a set gkillsin the system, and each
agent has a skill vector—a vector consisting of val-
ues that reflect the agents’ level in different skills.
Furthermore, there is a set gbals each with
requirements expressed in terms of the minimum
skill level necessary to achieve the goal. Agents
can form coalitions to aggregate their skills, and
achieve goals otherwise unachievable. We show
that this representation is fully expressive, that is,
it can represent any characteristic function game.
We also show that, for some interesting classes
of games, our representation is significantly more
compact than the classical representation, and fa-
cilitates the development of efficient algorithms to

1. Coalition Structure Generation. How to efficiently

search through the many possible coalition structures,
and find the one(s) that maximize the sum of coalition
values. This problem has received significant attention
in recent years [Larson and Sandholm, 2000; Rahwan,
2007; Keinanen, 2009; Maust al., 2010].

. Payoff Distribution. How should the gains from co-

operation be distributed among the coalition members.
Several solution concepts have been proposed to answer
this question, with the most common ones in the liter-
ature being theShapley valugShapley, 1953] and the
core[Gillies, 1959]. While the focus of the former val-
ues is orfairness the core focuses stability, i.e., how

to identify solutions from which no group of agents has
an incentive to deviate.

solve the coalition structure generation problem, as
well as the problem of computing the core and/or

the least core. We also demonstrate that by us-
ing the coalitional skill vector representation, our

solver can handle up to 500 agents.

In this paper, the two optimisation problems that we will be
focusing on are the coalition structure generation problem
and the problem of identifying stable solutions (i.e., siolus
that are in the core), as they represent two important prob-
lems within the coalition formation domain. While those two
. problems are very interesting to study, their use in realdvo
1 Introduction applications has been limited by their inherent combirakor
Coalition formation is an important research topicin asiifi ~ nature, which often makes them unsolvable in practice éxcep
intelligence, as it studies situations where autonomoantsg for a small number of agents. To be more precise, the prob-
can cooperate and coordinate their activities to improeath lem of determining whether there exists stable solutions is
performance. It has a wide range of applications, includingNP-complete [Conitzer and Sandholm, 2003]. Likewise, the
among others, increasing the throughput of cognitive radigoalition structure generation problem is NP-hard [Satdho
networks [Khanet al, 2010], optimising energy consump- et al, 1999], and while a number @xactalgorithms (i.e.,
tion in smart grids [Robiet al, 2012] and aggregating the algorithms that provide an optimal solution) have been Heve
demands of buyers to obtain price discountsdt.al, 2010]. oped to solve this problem, none of them can handle more
A formal model of a coalition formation scenario is called than 30 agents [Rahwaat al, 2012; Michalaket al., 2010].
a cooperative game. Here, given a set of agetiteach sub- By studying the reason behind this intractability, many
setC C Ais called a coalition, and each partition df(into  researchers realised that a key part of the problem comes
disjoint and exhaustive coalitions) is called a coalititnus- ~ from using the classical characteristic function représen
ture. A class of cooperative games that has received consition. Specifically, in this representation, no assumptiars
erable attention in the literature is callekdaracteristic func- made on how a coalition’s value is calculated. Insteadgif-is
tion games (CFGs)where the assumption is that the worth ten assumed that the values of all coalitions are storedén on
(or valug of any coalition,C C A, can be“represented”  big table (which provides instant access to every coalion
using a single, real value. It is also assumed that this valuealue). This leads to several major limitations. First, nogyn
depends solely on the identities of the agent€’in To be  requirement grows exponentially with the number of agents.
more precise, CFGs assume the existenceabfagiacteristic  Second, algorithms that are based on this representatiem of
function v : 24 — R, which, given a coalition, returns its cannot exploit any extra information that might be avaiabl



about the way a coalition’s value is computed. Consider, for  as the problem of computing the core and/or st
example, a scenario where every coalition’s value depends core using a constraint generation linear programming
solely on the coalition’s size. Such information can signifi technique;

cantly reduce the difficulty of solving the aforemention@é o, \ye empirically evaluate the efficiency of our represen-
timisation problems. Often, however, an algorithm designe tation and soiver, and show that for certain classes of
to deal with the classical representation cannot readiliyan games (i.e., games with convex goal sets and piecewise—
efficiently exploit such information. While at first glande i inear valué functions), it can solve problems with 500

might appear that the most widely-applicable algorithnes ar agents, while existing exact algorithms can only handle
those that place no assumption on the value function (becaus 30 agents or so.

they can be applied with any function), in practice it turns ] ) ) )
out such algorithms are in fact the least applicable. This is The remainder of the paper is as follows. Section 2 provide

because, by being too general, they lose the ability to scaléhe necessary background. Section 3 formally introduces ou

Those arguments form the rationale behind a line of researchSY model. Section 4 discusses the coalition structure gen-
that focuses on developing alternative representatiasén ~ €ration issues in more detail, while Section 5 discusses the
efficiently capture situations where the characteristicfion ~ core-related issues. Section 6 concludes.

has some structure [Conitzer and Sandholm, 2004; leong and

Shoham, 2006; Elkingt al,, 2009; Ohtzet al, 2009]. Inthis 2 Background

context, an alternative representation should ideallyetihe In this section, we outline the main notation and definitions

following properties: (Section 2.1), and then outline previous models that ingorp
o ExpressivenessThe ability to represent any character- rated skills into coalitional games (Section 2.2).
istic function game. A representation with such an abil- o
ity is said to be‘complete” or “fully expressive” 2.1 Preliminaries

e ConcisenessThe ability to represent certain classes of A characteristic function gaméCFG) is a tuple CFGA, v),

games<concisely”, i.e., without the need to store altl ~~ whereA = {1,...,n} is a set of agents and: 24 — Ris
values. a characteristic functiorthat maps each subset, ayalition,

e Efficiency: The ability to facilitate the development of of agents to a reaj!‘number. ajfbalmon structure is a set of
S X X : . coalitions,C'S C 24 such that:
efficient algorithms for solving the aforementioned opti-
misation problems. ¢ UgeesC =4, and

Against this background, we develop an novel represemtatio e CNC’' = forany C,C" € CS:C # C'.
called thecoalitional skill vectofCSV) model, where there is
a set ofskillsin the system, and each agent hakil vector—
a vector consisting of values that reflect its level at masger
different skills. Furthermore, there is a set of tasks, eeitih
requirements expressed in terms of the minimum skill level
necessary to achieve the task. The set of skill vectors th e . .
satisfy these requirements are termegetsof goals While 296Nt in C'S. An outcome must satisfy; > 0 for all i =
an agent on its own might not possess the required skill level " |CS], and safisfy) ;e v: = v(C) forall C € CS.
to achieve a particular task (i.e. to have its skill vectobéo Definition 1 Given a characteristic function game,
within the set of goals), the agents may form coalitions thalCFG(4,v), the coalition structure generation (CSG)
are capable of achieving such tasks (because every caditio problemis the problem of finding a coalition structure in:
skill vector is an aggregation of the skill vectors of its mem argmaxcgecsa Yo cecg v(C)
bers). Put differently, by forming coalitions, the ageras c
jointly produce coalitions with skill vectors that are with
the goal set. This is a generalizatioroofalitional skill games s ;
[Baghrach and Rosengschein, 2008], where an age?'lt’s posses«eC i = 1.}(6.') foranyC’ € A. Similarly, thec-coreis the
sion of a skill, and a task’s dependence on skill, are both rep®ne that satisfiey ;. z; > v(C) — ¢ foranyC C A.
resented using binary numbers. We argue that, by incorporat  An outcome in the core is said to kstable” since no agent
ing the level of mastering different skills, the model be@sm has an incentive to deviate from it. Unfortunately, there ar
more realistic. This generalization is discussed more &diym  cases where the core happens to be empty. As for-tieee,
in subsequent sections. it is always non-empty given a sufficiently large valuesof
We analyse the skill vector representation, and show that:Of course, in practice we are usually interested in findireg th

e Itis fully expressive, i.e., it can represent any charactersmallest value ot such that thes-core is non-empty. The
istic function game; corresponding-core is called théeast core More formally:

« For certain classes of games, such as the coalitional skilP€finition 3 Given a characteristic function ~game,
games, it is significantly more concise than the classicaPFG(4, v), if we define as follows:
representation;

o It facilitates the development of efficient algorithms to ) , .
solve the coalition structure generation problem, as welthen theleast coreof CFG(A, v) is defined as*-core.

The set of all coalition structures ovémwill be denoted’S*.
An outcomeof a game is a paifC'S, x), whereC'S € csis
a coalition structure, and = (x1, ..., x, ) is apayoff vector
é/vhich specifies how the value of each coaliti©he CS is
aqistributed among its membeig., x; specifies the payoff of

Definition 2 The core of a characteristic function game,
CFG(A4,v), is the set of all outcomes$('S, x), that satisfy

e* = inf{e | e-core of(A,v) is non-empty,



2.2 Skills& Coalitional Games requirements, that can be expressed as a set of skill vectors

In this subsection, we briefly outline previous models thati G- Put differently, letG C R™ denote the set of skill vec-
corporated skills into coalitional games. To this end, Gétta {OrS that are suitable for successfully achieving the afiere-
al. [2006] proposed a model where there is a set of skills, tioned tasks. For the sake of simplicity, hereafter we refer
and each agenite A has a subset of those skills; ¢ §. G asthesetofoals In other words, the agentgoal” is to
Moreover, there is a skill-value functian: 25 — R which (collectively) reach a certain level of skills that is suffiet to
assigns a real value to every subset of skills. The value of §chieve certain tasks. With the use@fwe define the value

coalition,C' C A, is then equal tou(U;ccS"?). of coalitionC’s skill vector as follows:

Bachrach and Rosenschein [2008] incorporated into this v(r(C)) = fdr(C),G)), (1)
model a set of taskg,. Each task¢ € T', has a skill require-  \yhareq (r(C), @) = mingeg d(r(C),g) is the distance of
mentSt C S. AcoalitionC C 24 can achlegieataskf it has r(C) from G, andf : R* U{0} — R is a value function of
all th? requwec}sknls, €., 'S_ C UgecS™. Atask-value ;" 3ha inwition behind the CSV model is that each agent is
function,w : 2° — R, specifies the payoff that can be ob- represented by its own skill vector, which reflects the skill
tained by a coalition when it achieves a given subset of task§eye| of the particular agent. By forming coalitions, these
The value of a coalitio” is then given by skill values are added together. A coalition formation isrth

_ t a; motivated by the desire of agents to get into the goal set. The

v(€) = w({t| 57 € VaecS™}). coalition’s value is defined as a function over the distarfce o

Such games are known asealitional skill gamegBachrach  the coalition’s skill vector and.
and Rosenschein, 2008]. Given special classes of thesesgame Given the described model, we show that the CSV game
(e.g., the class where(T’) = |T"| foranyT’ C T), the au-  representation is fully expressive. That is, it is equinate
thors studied the computational complexity of several probthat of the class of CFG (i.e., characteristic function gsime
lems, such as: (1) calculating the core, (2) testing whetheFhus, for any instance of CFG defined in Section 2, there
the core is empty, and (3) computing the Shapley value.  exists a skill vector model that is identical to the CFG. Tikis

In a follow-up publication, Bachrachkt al. [2010] stud- guaranteed by the following theorem:
ied the coalition structure generation problem in coaléib  Theorem 1 For any instance of CFG, there exists an equiva-
skill games. They showed that the problem can be solvegnt skill vector game CSV on the same set of agénighere
in time polynomial in the number of agents and skills, butfor any feasible coalitiol”’ C CFG, vesy (r(C)) is equal
exponential in the number of tasks and in the treewidth of &g the value of S withi@®' F'G (i.e.,vcra(C)).

_certain, graphical representati_on Qf the agents’ skillusT Proof sketch: Consider a skill vector model/ where for
implies that the CSG problem is still computationally expen 5y “nair of agents, j, the corresponding skill vectors are
sive within the formulation of coalitional skill games. orthogonal, that isy;m; = 0. Given this, for any coalition

" Olur mot%el IS a gergera[:ﬁatl?r? OoT coah(';mnal %kluNgamesk;_ , 7(C) is unique. This implies that there exists a vector
It relaxes the assumplion that the dependence betwees SKIYy '« r™ such thatd(r(C), g) is unique for each coalition

and tasks is a binary relation betwegrandT'. Instead, this We set the set of goal§' to be {g}. Now, we define

dependence is represented in our model as a mapping frogn'as follows: for eachC, we havef(d(r(C) _
.. . . . . . ’ 79)) - U(C)’
S x T'toR. This s formalised in the following section. wherev(C) is the value of coalitior' given in the coalition
.\ . formation gameC' F'G. O
3 The Coalitional Skill Vector Game Model
In this section, we introduce our model—the coalitionallski YWe now turn to the discussion of the model’s conciseness.

vector games—and demonstrate that it is fully expressiveArguably, in many realistic situations, the set of ga&lsnd
concise, and efficient. the value functiory’ naturally happen to be concise (i.e., can
Let CSV(A, m, {r;}, f) denote a coalitional skill vector be expressed in a closed form). In particular, in many cases,
model as follows. Letl,2,...,n € A denote the agents the setofgoalsis typically convex (e.g., each skill hasate s
within the system, where is the number of agents. We as- iSfy some thresholds), and thus, can be expressed in a closed
sign anm dimensionalskill vectorr; = (ri1, ..., 7mm) to form (e.g., with a set of constraints that have to be satisfied
agenti, where the value;; € R represents agerits level In add|t|qn, the value fun_ct|on is typ|ca_lly p_|ece—W|see|frr, .
at mastering skillj. Here,m denotes the number of skills Polynomial, or exponential (or a combination of these) with
we take into account within our model. Furthermore, for any? finite number of “pieces” (for more details, see, e.g., Khan

agents andk, if r;; < ri; then we say that agehtis better ~ €t al. 2010, Robtet al. 2012, or Liet al. 2010). Given this,
than agent at skill j. Let R € R™*" be the skill matrix with within these situations, we only need the set of each agent’s

columnsr: and rowr skill vector and the closed formulae of the value functiod an
Let C é 1,2,... J'n} denote a coalition of agents. Then set of goals to describe the CSV model. This type of represen-
the skill vector ofC is the sum of skill vectors of agents from tation is indeed significantly more concise, compared to the
C (i.e., the superposition of the corresponding vectorshtTh Original CSF model, as it does not need all #él coalition
is, we haver (C) = .. r, wherer (C) is the skill vector values for description.
of coalition C. In addition, letd(r, r2) define the distance .. .
between skill vectors; andr, i,.E SlomQG) nornt.. 4 Coalition Structure Generation in CSVs
The agents’ goal is to achieve a number of given task$Given the CSV model above, we now turn to the discussion
T’ C T. To do so, the agents have to meet certain skill levebf the computational efficiency of the model. To do so, we fo-



cus in this section on the coalition structure generatid®GL computational cost. However, it is interesting to obsehas t
problem in CSVs. In particular, we show that the CSG prob-ypically only a small number of constraints are tight at the
lem with the CSV model naturally lends itself to a mixed in- optimal solution [Desaulnierst al, 2005]. This means the
teger linear programming (MILP) problem. However, this remaining non-binding constraints can be removed without
MILP model is still computationally expensive, as it has to changing the optimal solution. This leads to the very papula
deal with an exponential number of constraints. To overcomeonstraint generatiomethod (see, for example, [Desaulniers
this issue, we propose our constraint generation basednhethet al, 2005]) in the operations research literature, where we
in Section 4.1, and demonstrate its computational effigiencstart with a relaxed problem &@SG.,q with a small set of
in Section 4.2. constraints and then keep introducing violating constsaim
Note that there ar@™ possible coalitions in a character- the relaxed problem until all the constraints are satisfisd.
istic function game withn agents. Let these coalitions be that point, the optimal solution of the relaxed problem &oal
C1,Ca,...,Con and letA = {1,...,n} be the grand coali- the optimal solution of the original problem. Formally, the

tion. Let A € R™*?" be a matrix with element;; in rowi,  constraint generation method for solVi@$ G4 is:
columnjy, that indicates whether ageris in coalitionC;. Let

a; = (ay;, . ..,an;)" be thej column of A. For convenience Initialization step: _Starting with any initial weight vector
in notation, we denote; = v(a;) = v(C;) as the payoff of y(o) > 0, set the initial relaxed constraint s@t?) = I asthe
coalitionC;. identity matrix of size(n x n) and set = 0.

In the coalition structure generation (CSG) problem, we
want to divide the agents into a disjoint set of coalitions.
Thus, each agent will appear in at most one coalition, suc

Iterative steps
hl Solve theconstraint generation problem

that the total value the coalitions is maximized. let= w = argmin 2y — v(z)} )
(z1,x2,...,x9n) be avector of binary variables that indicate ze{0,1}»
whether coalitiong’, Co, . .. ,Con are in the coalitiqn struc- 2. If wiy® — v(w) > 0, terminate the algorithm (be-
ture. Then the set of feasible coalition structures is: cause we have already found the optimal solugiéh).

2m Otherwise, addw to the relaxed constraint set, i.e.,

where e is a column vector with all elements equal t0 3 Set;; = £ + 1 and solve theelaxed problem:
one, The total value of a coalition structueis v7z = *) . .
Z?:l z;jv;. The CSG problem can be formulated as a MILP Yy = argiiin ey

>0,zty>v(z),VzeJ
problem as follows: y>0,z'y>v(2)

CSG := max vl

xzeX

4. Go backto step 1.

In step 1, we find a coalition that violates constraint (2)
This MILP is very dlfflCU't to_solve as it has an exp_onentially most|y for the given propos@(k)_ Here, a coalition is char-
large number of binary variables. Instead, we aim to solveycterised by a binary indicator vectemwherez; = 1 if agent

its linear relaxation version, i.e., allowing to be fractional.  ; js in the coalition and; = 0 otherwise. In step 2 we check
Being able to efficiently solve the relaxed version, we canthe optimality condition. If the worst coalition does not vi
then use standard branch—-and—bound techniques to find tgate (2) then all other coalitions satisfy this constraintl
exact optimal solution of the original LP. The LP relaxation hencey® is an optimal solution 0€SG.q. Otherwise, we

problem can be described as follows: introduce the newly generated constrairfty — v(w) > 0 to
CSG, = max Tz the relaxed problem. In step 3, we solve the updated relaxed
x ’ problem to obtain a new proposgi{®) before going back to
s.t. Ax <e, x >0, step 1.

where the constraint < 1 can be ignored because the con- Notice that the relaxed problem is a LP with smaller size

straint Az < e has already enforced this. Notice, however,2d IS €asy to solve. The key, and often difficult, part for
that the LP problem is not easy to solve in general becausg successful constraint generation algorithm is the gt

of the exponentially large number of decision variables. WeJEN€erate violating constraints efficiently. We will shovath
will, however, show how to exploit the special structuret t this is indeed the case in the CSV game with various forms of

CSV game to solve the LP relaxation problem efficiently forthe value functions as follows:

reasonably large games. v(z) =K — ;neig [|[Rz —gll,
4.1 A Constraint Generation Method for CSG, whereRz = ). zr; = r(C) is the aggregated skill of
We formalise the dual oSG, as follows: coalition C' and K is some appropriate constant such that
. . v(@) = 0. The distancel(r(C), G) can be measured in vari-
CSGyq = min ey, ous norms such ab;, Ly, Lg and L. In this case, the con-
- . , . straint generation problemin.co 1 [2'y*®) —v(2)]
st agy 2w, Viel,.2"  (2)  can pe reformulated as:

The dual problem contains a decision variafple R™ and an . ¢ (k) IR K
exponentially large number of constraints which make high sefonyn - Y +|min IRz —gl| - K|,
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(B) Time per iteration (in seconds)
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Figure 1: Numerical results for finding optimal fractionakdition structure generation of the CSV games.

which is equivalent to agentsn between 100 and 500 while fixing the skill dimen-
sionm at 5 (other values of dimension show similar results).
In each test, we generate the skill vectors uniformly, i.e.,
ri; ~ U[0,1]. For each fixech, we generatd< random in-

by combining the two minimisation operators. Notice thatstances of the problem so that we can test the robustness of
the objective function is convex dz, g). In fact, if the dis- ~ the algorithm when varying the dataThe goal seG is fixed
tanced(r(C), G) is measured irL; or Lo, norms, thenthe asG = {g : g; > 1} *. This type of goal set, we argue, is
problem can be reformulated as a mixed integer linear pronatural in many real-world applications, as it represetms t

gramming problem. This also applies to any piece-wise linearequirement that in order to achieve a goal, an agent (or a
functions of the following form: coalition of agents) has to satisfy a set of minimal skill-lev

els. Note that we do not compare our algorithm against exist-
ing general coalition structure generation exact algorghas

the latter are (by definition) designed to solve games with no
underlying structure of the characteristic function, amaist
they can only solve up to 30 agents or so.

CG = min _zty® +||Rz —g]|,

z€{0,1}",geG

v(z) = K—lenlmx (alglelg ||RZ —9)” +bl) :

ERRE}

We will demonstrate these results with the distance mea-

sure! To this end, in thel., norm case, we have(z) = Figure 1 shows the performance of the constraint genera-
K —mingeg i, |rj.z — gj| with r; is thej-row of the  tion algorithm. In particular, the red lines depict the nzetli
skill matrix R. The constraint generation problem becomes: values, the boxes represent ftie- 25 percentiles, and the red

m crosses are the outlier values. Sub-figure (A) shows the num-

2ty 4 Z .z — g ber of iterations the algorithm takes. This is also the numbe

. I I of constraints the algorithm generates in addition toitial

=1 constraints. For a problem with 500 agents, the number of
additional constraints generated is around 750. This means
instead of solving a large LP wittP%° constraints, we only
need to solve 750 smaller LPs, each with the number of con-
straints varying between 500 and 1250. It is interesting to
note that the number of constraints generated, and hence the
number of small LPs involved, grows linearly with the num-
ber of agents. Sub-figure (B) shows the time taken in each
iteration for solving both the relaxed LP and for solving the
constraint generation proble®G. Overall, there is a linear
trend in the computational time as the number of agents in-
creases. Sub-figure (C) shows the total computational time
taken by the algorithm. This is equal to the product of the
number of iterations and the computational time for each it-
eration. There is a quadratic trend in the total time as the
number of agents increases. The algorithm took less than an
hour to solve the largest instances with 500 agents

min
z€{0,1}",geG

Letd; = |r;.z — g,|, the problem can be reformulated as:

zty(k) + Z 5jv

min
, i

z,0,9

s.t. 0j>rjz—gj Viel . ..,m

5.7' > —-rjz+g;, Viel,..m
z€{0,1}",g € G.

This is a MILP and thus, is typically NP-hard. How-
ever, in the following subsection we will show numerically
that CPLEX—a state-of-the-art MILP solver—can solve the
CSV game very efficiently for many instances with up to 500
agents. e an approximated solution is sufficient.

4.2 Numerical Results

We perform numerical tests on the algorithm for various set-  3we setx = 50 for n = {100, 200, 300}, andK = 10 for n =

tings using theL, measuré. In this case, problenCG  {400,500}. We run the Matlab functiomand(’state’) with the

is equivalent to a mixed integer second order cone probrandom seed varying between 1 and for the K corresponding

lem [Drewes and Ulbrich, 2009]. We vary the number of random instances before generating the random skill v&cidrese

fixed seeds are used for convenient replication and tesfitigese

We can easily extend our results to models with other normdnstances in the future.

such asl» or L. and for piece-wise linear functions. “It is easy to extend the calculations to problem instancéis wi
2We have also used other norms, suchlasand L.., and the  other convex goal sets, such as cones, or hyperplanes.

results are similar from a broad view. SAll the numerical tests appearing in this paper are perfdrore



(A) Number of constraints

(B) Time per iteration (in seconds) (C) Total time (in seconds)
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Figure 2: Numerical results for finding the least core of ti8/@ames.
5 Stable Payoff Distribution in CSVs 3. Setk = k + 1 and solve theelaxed problem:
In this section, we present the computational method for find (y®) k) = argmin £

(y:¢) : ety=v(A),zty+e>v(z),Vz€T
4. Go backto step 1.

ing the core and the least core in CSV games. To this end, we

denote the core of a games as:
t . no_t We perform numerical tests on finding the core of the CSV

Core = {y lajy = viag), Vi€1,.,2" ey = U(A)} ' gam% for a number of instances withgthe number of agents
A solution in the core can be found by finding a feasible soranging between 25 and 100. Figure 2 shows the perfor-
lution in polyhedrorCore. We notice that this constraint set mance of the constraint generation algorithm with sub-&gur
is very similar to the feasible set of tl&SG,.4 problem de-  (A-C) showing the number of iterations, the computational
fined in section 4, i.e., it also includes the same exponientigime taken in each iteration and the total time the algorithm
set of constrainta’y > v(a;), Vj € 1,..,2". Therefore,we takes, respectively. The boxplots show the variation a$¢he
can apply the same constraint generation technique to finstatistics over 20 random instances for each fixed number of
a feasible solution (by optimising any arbitrary linear dun agents. Overall, the computational time for each iteraison
tion). Note, however, that the core contains an additionahbout the same as that for solvifff G4 and this increases
constrainte’y = v(A), that requires the total share of all the linearly with the number of agents. However, the time for
agents to be equal to the payoff that the grand coalition casomputing the core is higher than that for solvi@$G .4
achieve. This additional restriction might result in theeco due to a larger number of iterations required. Nevertheless
being empty. Hence, we focus on finding a solution withinthe total computational time follows a quadratic trend as th
the least core, which can be formalised as follows: number of agents increase. The algorithm took less than 8

LC = m; minutes to find the core for the case of 100 agents.
e

s.t.

€,

6 Conclusions

a§-y+52v(aj), Vjel,., 2™, ) :

; In this paper we introduced a new vector—based representa-
e'y =v(A). tion, called the CSV model, for CFGs. In more detail, this
The least core is always non-empty because we can choosgodel assigns a skill vector to each agent, and a coalition’s
large enoughe such that the constraint set is non-empty.skill level can be expressed with the aggregation of the skil
To solvelLC, we can apply the same constraint generatiorvector of agents from the coalition. The value of a coali-

method for solvingCSG..q as follows:

Initialization step: Start with any initial weight vector
(y(©, () such thatety = v(A), set the relaxed constraint
set7(® = I and set; = 0.

Iterative steps
1. Solve theconstraint generation problent

[zty(k) - v(z)} .

w argmin

z€{0,1}n
2. If wiy® + e®) — y(w) > 0, terminate the algorithm,
we have already found the optimal solutigy(*), £(*)).

Otherwise, addw to the relaxed constraint set, i.e.,
JED = L 7)),

a personal computer, Int®l Xeon®) CPU W3520 @2.67GHz with

tion is then measured as a function of the distance between
the corresponding coalition’s skill vector and a set of goal
We showed that the CSV model is fully expressive, that is,
it can represent any CFG. In addition, we demonstrated that
the model is concise, if the set of goals and the value func-
tion can be expressed within close forms, as is the case in
many real-world applications. We also proposed an efficient
method to calculate the optimal solution for the CSG and the
stable payoff distribution problems with low computatibna
cost. In particular, we demonstrated that the proposedadeth
can provide tractability even within problem instanceshwit
up to 500 agents. This result significantly outperforms other
existing methods which can only deal with up to 30 agents.
As future work, we aim to extend our solver to problem in-
stances with nhon—convex goal sets and more complex value
functions, such as exponential or polynomials with higher
ranks. Since our method relies on the convexity and the

12GB RAM and under Windows 7 operation system. The code wagpiece—wise) linearity of the value function, this extemsis

written and tested on Matlab R2012a.

far from obvious.
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