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Abstract

We propose a new representation for coalitional
games, called thecoalitional skill vectormodel,
where there is a set ofskills in the system, and each
agent has a skill vector—a vector consisting of val-
ues that reflect the agents’ level in different skills.
Furthermore, there is a set ofgoals, each with
requirements expressed in terms of the minimum
skill level necessary to achieve the goal. Agents
can form coalitions to aggregate their skills, and
achieve goals otherwise unachievable. We show
that this representation is fully expressive, that is,
it can represent any characteristic function game.
We also show that, for some interesting classes
of games, our representation is significantly more
compact than the classical representation, and fa-
cilitates the development of efficient algorithms to
solve the coalition structure generation problem, as
well as the problem of computing the core and/or
the least core. We also demonstrate that by us-
ing the coalitional skill vector representation, our
solver can handle up to 500 agents.

1 Introduction
Coalition formation is an important research topic in artificial
intelligence, as it studies situations where autonomous agents
can cooperate and coordinate their activities to improve their
performance. It has a wide range of applications, including,
among others, increasing the throughput of cognitive radio
networks [Khanet al., 2010], optimising energy consump-
tion in smart grids [Robuet al., 2012] and aggregating the
demands of buyers to obtain price discounts [Liet al., 2010].

A formal model of a coalition formation scenario is called
a cooperative game. Here, given a set of agents,A, each sub-
setC ⊆ A is called a coalition, and each partition ofA (into
disjoint and exhaustive coalitions) is called a coalition struc-
ture. A class of cooperative games that has received consid-
erable attention in the literature is calledcharacteristic func-
tion games (CFGs), where the assumption is that the worth
(or value) of any coalition,C ⊆ A, can be“represented”
using a single, real value. It is also assumed that this value
depends solely on the identities of the agents inC. To be
more precise, CFGs assume the existence of acharacteristic
function, v : 2A → R, which, given a coalition, returns its

value. Arguably, the most fundamental problems that have
been studied in this class of games are:

1. Coalition Structure Generation. How to efficiently
search through the many possible coalition structures,
and find the one(s) that maximize the sum of coalition
values. This problem has received significant attention
in recent years [Larson and Sandholm, 2000; Rahwan,
2007; Keinänen, 2009; Mauroet al., 2010].

2. Payoff Distribution . How should the gains from co-
operation be distributed among the coalition members.
Several solution concepts have been proposed to answer
this question, with the most common ones in the liter-
ature being theShapley value[Shapley, 1953] and the
core [Gillies, 1959]. While the focus of the former val-
ues is onfairness, the core focuses onstability, i.e., how
to identify solutions from which no group of agents has
an incentive to deviate.

In this paper, the two optimisation problems that we will be
focusing on are the coalition structure generation problem,
and the problem of identifying stable solutions (i.e., solutions
that are in the core), as they represent two important prob-
lems within the coalition formation domain. While those two
problems are very interesting to study, their use in real-world
applications has been limited by their inherent combinatorial
nature, which often makes them unsolvable in practice except
for a small number of agents. To be more precise, the prob-
lem of determining whether there exists stable solutions is
NP-complete [Conitzer and Sandholm, 2003]. Likewise, the
coalition structure generation problem is NP-hard [Sandholm
et al., 1999], and while a number ofexactalgorithms (i.e.,
algorithms that provide an optimal solution) have been devel-
oped to solve this problem, none of them can handle more
than 30 agents [Rahwanet al., 2012; Michalaket al., 2010].

By studying the reason behind this intractability, many
researchers realised that a key part of the problem comes
from using the classical characteristic function representa-
tion. Specifically, in this representation, no assumptionsare
made on how a coalition’s value is calculated. Instead, it isof-
ten assumed that the values of all coalitions are stored in one
big table (which provides instant access to every coalition’s
value). This leads to several major limitations. First, memory
requirement grows exponentially with the number of agents.
Second, algorithms that are based on this representation often
cannot exploit any extra information that might be available



about the way a coalition’s value is computed. Consider, for
example, a scenario where every coalition’s value depends
solely on the coalition’s size. Such information can signifi-
cantly reduce the difficulty of solving the aforementioned op-
timisation problems. Often, however, an algorithm designed
to deal with the classical representation cannot readily and/or
efficiently exploit such information. While at first glance it
might appear that the most widely-applicable algorithms are
those that place no assumption on the value function (because
they can be applied with any function), in practice it turns
out such algorithms are in fact the least applicable. This is
because, by being too general, they lose the ability to scale.
Those arguments form the rationale behind a line of research
that focuses on developing alternative representations that can
efficiently capture situations where the characteristic function
has some structure [Conitzer and Sandholm, 2004; Ieong and
Shoham, 2006; Elkindet al., 2009; Ohtaet al., 2009]. In this
context, an alternative representation should ideally have the
following properties:

• Expressiveness:The ability to represent any character-
istic function game. A representation with such an abil-
ity is said to be“complete” or “fully expressive”.

• Conciseness:The ability to represent certain classes of
games“concisely”, i.e., without the need to store all2|A|

values.

• Efficiency: The ability to facilitate the development of
efficient algorithms for solving the aforementioned opti-
misation problems.

Against this background, we develop an novel representation,
called thecoalitional skill vector(CSV) model, where there is
a set ofskills in the system, and each agent has askill vector—
a vector consisting of values that reflect its level at mastering
different skills. Furthermore, there is a set of tasks, eachwith
requirements expressed in terms of the minimum skill levels
necessary to achieve the task. The set of skill vectors that
satisfy these requirements are termed asset of goals. While
an agent on its own might not possess the required skill level
to achieve a particular task (i.e. to have its skill vector tobe
within the set of goals), the agents may form coalitions that
are capable of achieving such tasks (because every coalition’s
skill vector is an aggregation of the skill vectors of its mem-
bers). Put differently, by forming coalitions, the agents can
jointly produce coalitions with skill vectors that are within
the goal set. This is a generalization ofcoalitional skill games
[Bachrach and Rosenschein, 2008], where an agent’s posses-
sion of a skill, and a task’s dependence on skill, are both rep-
resented using binary numbers. We argue that, by incorporat-
ing the level of mastering different skills, the model becomes
more realistic. This generalization is discussed more formally
in subsequent sections.

We analyse the skill vector representation, and show that:

• It is fully expressive, i.e., it can represent any character-
istic function game;

• For certain classes of games, such as the coalitional skill
games, it is significantly more concise than the classical
representation;

• It facilitates the development of efficient algorithms to
solve the coalition structure generation problem, as well

as the problem of computing the core and/or theleast
core using a constraint generation linear programming
technique;

• We empirically evaluate the efficiency of our represen-
tation and solver, and show that for certain classes of
games (i.e., games with convex goal sets and piecewise–
linear value functions), it can solve problems with 500
agents, while existing exact algorithms can only handle
30 agents or so.

The remainder of the paper is as follows. Section 2 provide
the necessary background. Section 3 formally introduces our
CSV model. Section 4 discusses the coalition structure gen-
eration issues in more detail, while Section 5 discusses the
core-related issues. Section 6 concludes.

2 Background
In this section, we outline the main notation and definitions
(Section 2.1), and then outline previous models that incorpo-
rated skills into coalitional games (Section 2.2).

2.1 Preliminaries
A characteristic function game(CFG) is a tuple CFG(A, v),
whereA = {1, . . . , n} is a set of agents andv : 2A → R is
a characteristic functionthat maps each subset, orcoalition,
of agents to a real number. Acoalition structure, is a set of
coalitions,CS ⊆ 2A such that:

•
⋃

C∈CS C = A, and

• C ∩ C′ = ∅ for any C, C′ ∈ CS : C 6= C′.

The set of all coalition structures overA will be denotedCSA.
An outcomeof a game is a pair,(CS,x), whereCS ∈ CSA is
a coalition structure, andx = (x1, . . . , xn) is apayoff vector,
which specifies how the value of each coalitionC ∈ CS is
distributed among its members,i.e., xi specifies the payoff of
agenti in CS. An outcome must satisfyxi ≥ 0 for all i =
1, . . . , |CS|, and satisfy

∑

i∈C xi = v(C) for all C ∈ CS.

Definition 1 Given a characteristic function game,
CFG(A, v), the coalition structure generation (CSG)
problem is the problem of finding a coalition structure in:
arg maxCS∈CSA

∑

C∈CS v(C)

Definition 2 The core of a characteristic function game,
CFG(A, v), is the set of all outcomes,(CS,x), that satisfy
∑

i∈C xi ≥ v(C) for anyC ⊆ A. Similarly, theε-coreis the
one that satisfies

∑

i∈C xi ≥ v(C) − ε for anyC ⊆ A.

An outcome in the core is said to be“stable” since no agent
has an incentive to deviate from it. Unfortunately, there are
cases where the core happens to be empty. As for theε-core,
it is always non-empty given a sufficiently large value ofε.
Of course, in practice we are usually interested in finding the
smallest value ofε such that theε-core is non-empty. The
correspondingε-core is called theleast core. More formally:

Definition 3 Given a characteristic function game,
CFG(A, v), if we defineε∗ as follows:

ε∗ = inf{ε | ε-core of(A, v) is non-empty},

then theleast coreof CFG(A, v) is defined asε∗-core.



2.2 Skills& Coalitional Games
In this subsection, we briefly outline previous models that in-
corporated skills into coalitional games. To this end, Ohtaet
al. [2006] proposed a model where there is a set of skills,S,
and each agenti ∈ A has a subset of those skills,Si ⊆ S.
Moreover, there is a skill-value functionu : 2S → R which
assigns a real value to every subset of skills. The value of a
coalition,C ⊆ A, is then equal to:u(∪i∈CSi).

Bachrach and Rosenschein [2008] incorporated into this
model a set of tasks,T . Each task,t ∈ T , has a skill require-
mentSt ⊆ S. A coalitionC ⊆ A can achieve a taskt if it has
all the required skills, i.e., ifSt ⊆ ∪ai∈CSai . A task-value
function,w : 2T → R, specifies the payoff that can be ob-
tained by a coalition when it achieves a given subset of tasks.
The value of a coalitionC is then given by

v(C) = w({t | St ⊆ ∪ai∈CSai}).

Such games are known ascoalitional skill games[Bachrach
and Rosenschein, 2008]. Given special classes of these games
(e.g., the class wherew(T ′) = |T ′| for anyT ′ ⊆ T ), the au-
thors studied the computational complexity of several prob-
lems, such as: (1) calculating the core, (2) testing whether
the core is empty, and (3) computing the Shapley value.

In a follow-up publication, Bachrachet al. [2010] stud-
ied the coalition structure generation problem in coalitional
skill games. They showed that the problem can be solved
in time polynomial in the number of agents and skills, but
exponential in the number of tasks and in the treewidth of a
certain, graphical representation of the agents’ skills. This
implies that the CSG problem is still computationally expen-
sive within the formulation of coalitional skill games.

Our model is a generalization of coalitional skill games;
it relaxes the assumption that the dependence between skills
and tasks is a binary relation betweenS andT . Instead, this
dependence is represented in our model as a mapping from
S × T to R. This is formalised in the following section.

3 The Coalitional Skill Vector Game Model
In this section, we introduce our model—the coalitional skill
vector games—and demonstrate that it is fully expressive,
concise, and efficient.

Let CSV(A, m, {ri}, f) denote a coalitional skill vector
model as follows. Let1, 2, . . . , n ∈ A denote the agents
within the system, wheren is the number of agents. We as-
sign anm dimensionalskill vector ri = (ri1, . . . , rim) to
agenti, where the valuerij ∈ R represents agenti’s level
at mastering skillj. Here,m denotes the number of skills
we take into account within our model. Furthermore, for any
agentsi andk, if rij < rkj then we say that agentk is better
than agenti at skill j. LetR ∈ R

m×n be the skill matrix with
columnsri and rowrj.

Let C ⊆ {1, 2, . . . , n} denote a coalition of agents. Then
the skill vector ofC is the sum of skill vectors of agents from
C (i.e., the superposition of the corresponding vectors). That
is, we haver (C) =

∑

i∈C ri, wherer (C) is the skill vector
of coalitionC. In addition, letd(r1, r2) define the distance
between skill vectorsr1 andr2 in some normL.

The agents’ goal is to achieve a number of given tasks
T ′ ⊆ T . To do so, the agents have to meet certain skill level

requirements, that can be expressed as a set of skill vectors
G. Put differently, letG ⊆ R

m denote the set of skill vec-
tors that are suitable for successfully achieving the aforemen-
tioned tasks. For the sake of simplicity, hereafter we referto
G as the set ofgoals. In other words, the agents’“goal” is to
(collectively) reach a certain level of skills that is sufficient to
achieve certain tasks. With the use ofG, we define the value
of coalitionC ’s skill vector as follows:

v (r(C)) = f (d (r(C), G)) , (1)

whered (r(C), G) = ming∈G d(r(C), g) is the distance of
r(C) from G, andf : R

+ ∪{0} → R is a value function of
d. The intuition behind the CSV model is that each agent is
represented by its own skill vector, which reflects the skill
level of the particular agent. By forming coalitions, these
skill values are added together. A coalition formation is then
motivated by the desire of agents to get into the goal set. The
coalition’s value is defined as a function over the distance of
the coalition’s skill vector andG.

Given the described model, we show that the CSV game
representation is fully expressive. That is, it is equivalent to
that of the class of CFG (i.e., characteristic function games).
Thus, for any instance of CFG defined in Section 2, there
exists a skill vector model that is identical to the CFG. Thisis
guaranteed by the following theorem:
Theorem 1 For any instance of CFG, there exists an equiva-
lent skill vector game CSV on the same set of agentsA, where
for any feasible coalitionC ⊆ CFG, vCSV (r(C)) is equal
to the value of S withinCFG (i.e.,vCFG(C)).
Proof sketch: Consider a skill vector modelM where for
any pair of agentsi, j, the corresponding skill vectors are
orthogonal, that is,rirj = 0. Given this, for any coalition
C, r(C) is unique. This implies that there exists a vector
g ∈ R

m such thatd(r(C), g) is unique for each coalition
C. We set the set of goalsG to be{g}. Now, we define
f as follows: for eachC, we havef(d(r(C), g)) = v(C),
wherev(C) is the value of coalitionC given in the coalition
formation gameCFG. �

We now turn to the discussion of the model’s conciseness.
Arguably, in many realistic situations, the set of goalsG and
the value functionf naturally happen to be concise (i.e., can
be expressed in a closed form). In particular, in many cases,
the set of goals is typically convex (e.g., each skill has to sat-
isfy some thresholds), and thus, can be expressed in a closed
form (e.g., with a set of constraints that have to be satisfied).
In addition, the value function is typically piece–wise linear,
polynomial, or exponential (or a combination of these) with
a finite number of “pieces” (for more details, see, e.g., Khan
et al. 2010, Robuet al. 2012, or Liet al. 2010). Given this,
within these situations, we only need the set of each agent’s
skill vector and the closed formulae of the value function and
set of goals to describe the CSV model. This type of represen-
tation is indeed significantly more concise, compared to the
original CSF model, as it does not need all the2|A| coalition
values for description.

4 Coalition Structure Generation in CSVs
Given the CSV model above, we now turn to the discussion
of the computational efficiency of the model. To do so, we fo-



cus in this section on the coalition structure generation (CSG)
problem in CSVs. In particular, we show that the CSG prob-
lem with the CSV model naturally lends itself to a mixed in-
teger linear programming (MILP) problem. However, this
MILP model is still computationally expensive, as it has to
deal with an exponential number of constraints. To overcome
this issue, we propose our constraint generation based method
in Section 4.1, and demonstrate its computational efficiency
in Section 4.2.

Note that there are2n possible coalitions in a character-
istic function game withn agents. Let these coalitions be
C1, C2, . . . , C2n and letA = {1, . . . , n} be the grand coali-
tion. LetA ∈ R

n×2n

be a matrix with elementaij in row i,
columnj, that indicates whether agenti is in coalitionCj . Let
aj = (a1j , . . . , anj)

t be thej column ofA. For convenience
in notation, we denotevj ≡ v(aj) ≡ v(Cj) as the payoff of
coalitionCj .

In the coalition structure generation (CSG) problem, we
want to divide the agents into a disjoint set of coalitions.
Thus, each agent will appear in at most one coalition, such
that the total value the coalitions is maximized. Letx =
(x1, x2, . . . , x2n) be a vector of binary variables that indicate
whether coalitionsC1, C2, . . . , C2n are in the coalition struc-
ture. Then the set of feasible coalition structures is:

X =
{

x | Ax ≤ e, x ∈ {0, 1}2n
}

,

where e is a column vector with all elements equal to
one. The total value of a coalition structurex is vT x =
∑2n

j=1 xjvj . The CSG problem can be formulated as a MILP
problem as follows:

CSG := max
x∈X

vT x.

This MILP is very difficult to solve as it has an exponentially
large number of binary variables. Instead, we aim to solve
its linear relaxation version, i.e., allowingxj to be fractional.
Being able to efficiently solve the relaxed version, we can
then use standard branch–and–bound techniques to find the
exact optimal solution of the original LP. The LP relaxation
problem can be described as follows:

CSGr := max
x

vT x,

s.t. Ax ≤ e, x ≥ 0,

where the constraintx ≤ 1 can be ignored because the con-
straintAx ≤ e has already enforced this. Notice, however,
that the LP problem is not easy to solve in general because
of the exponentially large number of decision variables. We
will, however, show how to exploit the special structure of the
CSV game to solve the LP relaxation problem efficiently for
reasonably large games.

4.1 A Constraint Generation Method for CSGr

We formalise the dual ofCSGr as follows:

CSGrd := min
y≥0

ety,

s.t. at
jy ≥ vj , ∀j ∈ 1, .., 2n. (2)

The dual problem contains a decision variabley ∈ R
n and an

exponentially large number of constraints which make high

computational cost. However, it is interesting to observe that
typically only a small number of constraints are tight at the
optimal solution [Desaulnierset al., 2005]. This means the
remaining non-binding constraints can be removed without
changing the optimal solution. This leads to the very popular
constraint generationmethod (see, for example, [Desaulniers
et al., 2005]) in the operations research literature, where we
start with a relaxed problem ofCSGrd with a small set of
constraints and then keep introducing violating constraints to
the relaxed problem until all the constraints are satisfied.At
that point, the optimal solution of the relaxed problem is also
the optimal solution of the original problem. Formally, the
constraint generation method for solvingCSGrd is:

Initialization step : Starting with any initial weight vector
y(0) ≥ 0, set the initial relaxed constraint setJ (0) ≡ I as the
identity matrix of size(n × n) and setk = 0.

Iterative steps:
1. Solve theconstraint generation problem:

w = argmin
z∈{0,1}n

[

zty(k) − v(z)
]

.

2. If wty(k) − v(w) ≥ 0, terminate the algorithm (be-
cause we have already found the optimal solutiony(k)).
Otherwise, addw to the relaxed constraint set, i.e.,
J (k+1) = {J (k), w}.

3. Setk = k + 1 and solve therelaxed problem:

y(k) = argmin
y≥0,zty≥v(z),∀z∈J

ety.

4. Go back to step 1.

In step 1, we find a coalition that violates constraint (2)
mostly for the given proposaly(k). Here, a coalition is char-
acterised by a binary indicator vectorz wherezi = 1 if agent
i is in the coalition andzi = 0 otherwise. In step 2 we check
the optimality condition. If the worst coalition does not vi-
olate (2) then all other coalitions satisfy this constraintand
hencey(k) is an optimal solution ofCSGrd. Otherwise, we
introduce the newly generated constraintwty− v(w) ≥ 0 to
the relaxed problem. In step 3, we solve the updated relaxed
problem to obtain a new proposaly(k) before going back to
step 1.

Notice that the relaxed problem is a LP with smaller size
and is easy to solve. The key, and often difficult, part for
a successful constraint generation algorithm is the ability to
generate violating constraints efficiently. We will show that
this is indeed the case in the CSV game with various forms of
the value functions as follows:

v(z) = K − min
g∈G

||Rz − g|| ,

whereRz =
∑

i ziri ≡ r(C) is the aggregated skill of
coalition C and K is some appropriate constant such that
v(∅) = 0. The distanced(r(C), G) can be measured in vari-
ous norms such asL1, L2, LQ andL∞. In this case, the con-
straint generation problemminz∈{0,1}n

[

zty(k) − v(z)
]

can be reformulated as:

min
z∈{0,1}n

zty(k) +

[

min
g∈G

||Rz − g|| − K

]

,
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Figure 1: Numerical results for finding optimal fractional coalition structure generation of the CSV games.

which is equivalent to

CG := min
z∈{0,1}n,g∈G

zty(k) + ||Rz − g|| ,

by combining the two minimisation operators. Notice that
the objective function is convex on(z, g). In fact, if the dis-
tanced(r(C), G) is measured inL1 or L∞ norms, then the
problem can be reformulated as a mixed integer linear pro-
gramming problem. This also applies to any piece-wise linear
functions of the following form:

v(z) = K − max
l∈1,..,L

(

al min
g∈G

||Rz − g)|| + bl

)

.

We will demonstrate these results with theL1 distance mea-
sure.1 To this end, in theL1 norm case, we havev(z) =
K − ming∈G

∑m

j=1 |rj.z − gj | with rj. is thej-row of the
skill matrix R. The constraint generation problem becomes:

min
z∈{0,1}n,g∈G

zty(k) +

m
∑

j=1

|rj.z − gj| .

Let δj = |rj.z − gj|, the problem can be reformulated as:

min
z,δ,g

zty(k) +

m
∑

j=1

δj ,

s.t. δj ≥ rj.z − gj, ∀j ∈ 1, .., m

δj ≥ −rj.z + gj , ∀j ∈ 1, .., m

z ∈ {0, 1}n, g ∈ G.

This is a MILP and thus, is typically NP-hard. How-
ever, in the following subsection we will show numerically
that CPLEX—a state-of-the-art MILP solver—can solve the
CSV game very efficiently for many instances with up to 500
agents. e an approximated solution is sufficient.

4.2 Numerical Results
We perform numerical tests on the algorithm for various set-
tings using theL2 measure.2 In this case, problemCG
is equivalent to a mixed integer second order cone prob-
lem [Drewes and Ulbrich, 2009]. We vary the number of

1We can easily extend our results to models with other norms
such asL2 or L∞ and for piece-wise linear functions.

2We have also used other norms, such asL1 andL∞, and the
results are similar from a broad view.

agentsn between 100 and 500 while fixing the skill dimen-
sionm at 5 (other values of dimension show similar results).
In each test, we generate the skill vectors uniformly, i.e.,
rij ∼ U [0, 1]. For each fixedn, we generateK random in-
stances of the problem so that we can test the robustness of
the algorithm when varying the data.3. The goal setG is fixed
asG = {g : gj ≥ 1} 4. This type of goal set, we argue, is
natural in many real–world applications, as it represents the
requirement that in order to achieve a goal, an agent (or a
coalition of agents) has to satisfy a set of minimal skill lev-
els. Note that we do not compare our algorithm against exist-
ing general coalition structure generation exact algorithms, as
the latter are (by definition) designed to solve games with no
underlying structure of the characteristic function, and thus,
they can only solve up to 30 agents or so.

Figure 1 shows the performance of the constraint genera-
tion algorithm. In particular, the red lines depict the median
values, the boxes represent the75−25 percentiles, and the red
crosses are the outlier values. Sub-figure (A) shows the num-
ber of iterations the algorithm takes. This is also the number
of constraints the algorithm generates in addition ton initial
constraints. For a problem with 500 agents, the number of
additional constraints generated is around 750. This means
instead of solving a large LP with2500 constraints, we only
need to solve 750 smaller LPs, each with the number of con-
straints varying between 500 and 1250. It is interesting to
note that the number of constraints generated, and hence the
number of small LPs involved, grows linearly with the num-
ber of agents. Sub-figure (B) shows the time taken in each
iteration for solving both the relaxed LP and for solving the
constraint generation problemCG. Overall, there is a linear
trend in the computational time as the number of agents in-
creases. Sub-figure (C) shows the total computational time
taken by the algorithm. This is equal to the product of the
number of iterations and the computational time for each it-
eration. There is a quadratic trend in the total time as the
number of agents increases. The algorithm took less than an
hour to solve the largest instances with 500 agents5.

3We setK = 50 for n = {100, 200, 300}, andK = 10 for n =

{400, 500}. We run the Matlab functionrand(’state’,k) with the
random seedk varying between 1 andK for theK corresponding
random instances before generating the random skill vectors. These
fixed seeds are used for convenient replication and testing of these
instances in the future.

4It is easy to extend the calculations to problem instances with
other convex goal sets, such as cones, or hyperplanes.

5All the numerical tests appearing in this paper are performed on
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Figure 2: Numerical results for finding the least core of the CSV games.

5 Stable Payoff Distribution in CSVs
In this section, we present the computational method for find-
ing the core and the least core in CSV games. To this end, we
denote the core of a games as:

Core =
{

y | at
jy ≥ v(aj), ∀j ∈ 1, .., 2n, ety = v(A)

}

.

A solution in the core can be found by finding a feasible so-
lution in polyhedronCore. We notice that this constraint set
is very similar to the feasible set of theCSGrd problem de-
fined in section 4, i.e., it also includes the same exponential
set of constraintsat

jy ≥ v(aj), ∀j ∈ 1, .., 2n. Therefore, we
can apply the same constraint generation technique to find
a feasible solution (by optimising any arbitrary linear func-
tion). Note, however, that the core contains an additional
constraint,ety = v(A), that requires the total share of all the
agents to be equal to the payoff that the grand coalition can
achieve. This additional restriction might result in the core
being empty. Hence, we focus on finding a solution within
the least core, which can be formalised as follows:

LC := min
y,ε

ε,

s.t. at
jy + ε ≥ v(aj), ∀j ∈ 1, .., 2n,

ety = v(A).

The least core is always non-empty because we can choose
large enoughε such that the constraint set is non-empty.
To solveLC , we can apply the same constraint generation
method for solvingCSGrd as follows:

Initialization step : Start with any initial weight vector
(y(0), ε(0)) such thatety = v(A), set the relaxed constraint
setJ (0) = I and setk = 0.

Iterative steps:
1. Solve theconstraint generation problem:

w = argmin
z∈{0,1}n

[

zty(k) − v(z)
]

.

2. If wty(k) + ε(k) − v(w) ≥ 0, terminate the algorithm,
we have already found the optimal solution(y(k), ε(k)).
Otherwise, addw to the relaxed constraint set, i.e.,
J (k+1) = {J (k), w}.

a personal computer, Intelr Xeonr CPU W3520 @2.67GHz with
12GB RAM and under Windows 7 operation system. The code was
written and tested on Matlab R2012a.

3. Setk = k + 1 and solve therelaxed problem:

(y(k), ε(k)) = argmin
(y,ε) : ety=v(A),zty+ε≥v(z),∀z∈J

ε

4. Go back to step 1.
We perform numerical tests on finding the core of the CSV
game for a number of instances with the number of agents
ranging between 25 and 100. Figure 2 shows the perfor-
mance of the constraint generation algorithm with sub-figures
(A-C) showing the number of iterations, the computational
time taken in each iteration and the total time the algorithm
takes, respectively. The boxplots show the variation of these
statistics over 20 random instances for each fixed number of
agents. Overall, the computational time for each iterationis
about the same as that for solvingCSGrd and this increases
linearly with the number of agents. However, the time for
computing the core is higher than that for solvingCSGrd

due to a larger number of iterations required. Nevertheless,
the total computational time follows a quadratic trend as the
number of agents increase. The algorithm took less than 8
minutes to find the core for the case of 100 agents.

6 Conclusions
In this paper we introduced a new vector–based representa-
tion, called the CSV model, for CFGs. In more detail, this
model assigns a skill vector to each agent, and a coalition’s
skill level can be expressed with the aggregation of the skill
vector of agents from the coalition. The value of a coali-
tion is then measured as a function of the distance between
the corresponding coalition’s skill vector and a set of goals.
We showed that the CSV model is fully expressive, that is,
it can represent any CFG. In addition, we demonstrated that
the model is concise, if the set of goals and the value func-
tion can be expressed within close forms, as is the case in
many real–world applications. We also proposed an efficient
method to calculate the optimal solution for the CSG and the
stable payoff distribution problems with low computational
cost. In particular, we demonstrated that the proposed method
can provide tractability even within problem instances with
up to500 agents. This result significantly outperforms other
existing methods which can only deal with up to 30 agents.

As future work, we aim to extend our solver to problem in-
stances with non–convex goal sets and more complex value
functions, such as exponential or polynomials with higher
ranks. Since our method relies on the convexity and the
(piece–wise) linearity of the value function, this extension is
far from obvious.
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