
Chapter 8

Computational Coalition Formation

Edith Elkind,∗ Talal Rahwan,∗ and Nicholas R. Jennings

1 Introduction
In many multiagent systems, agents can improve their performance by forming
coalitions, i.e., pooling their efforts and resources so as to achieve the tasks at
hand in a more efficient way. This holds both for cooperative agents, i.e., agents
who share a common set of goals, and for selfish agents who only care about their
own payoffs. For cooperative agents, to find the optimal collaboration pattern,
it suffices to identify the best way of splitting agents into teams. In contrast,
when the agents are selfish, we also have to specify how to distribute the gains
from cooperation, since each agent needs to be incentivized to participate in the
proposed solution.

In this chapter, we discuss coalition formation in multiagent systems for both
selfish and cooperative agents. To deal with selfish agents, we introduce classic
solution concepts of coalitional game theory that capture the notions of stability
and fairness in coalition formation settings. We then give an overview of existing
representation formalisms for coalitional games. For each such formalism, we
discuss the complexity of computing the solution concepts defined earlier in the
chapter, focusing on algorithms whose running time is polynomial in the number
of agents n. In the second half of the chapter, we focus on practical approaches for
finding an optimal partition of agents into teams. We present the state-of-the-art
algorithms for this problem, and compare their relative strengths and weaknesses.

∗The first two authors have contributed equally to the chapter.

330 Chapter 8

1.1 Coalitional Games: A Bird’s Eye View
The goal of the coalition formation process is to split the set of agents – or play-
ers – into disjoint teams, or coalitions: a partition of the set of agents into coali-
tions is called a coalition structure.1 Once a coalition structure forms, each coali-
tion chooses its action in a way that results in payoffs to its members. Coalitional
games provide a formal model of coalition formation scenarios. They are usu-
ally classified according to two orthogonal dimensions: (1) whether agents can
make payments to each other and (2) whether the payoff that a coalition obtains
by choosing a particular action depends on the actions of other coalitions. We will
now discuss this classification in more detail.

In some settings modeled by coalitional games, all agents have comparable
utilities and can commit to monetary transfers among the members of a coalition.
Whenever this is the case, we can simply assume that the coalitional action gen-
erates a single payoff, which is subsequently shared among the members of the
coalition; this payoff is referred to as the value of this coalition. Such games are
known as transferable utility games, or TU games. However, sometimes agents
cannot make side payments to each other, either because their payoffs from the
coalitional action are non-monetary in nature, or because there is no suitable in-
frastructure to transfer the money.

Example 8.1 If several researchers from different universities write a joint paper,
each researcher receives a payoff from its own university: the paper can count
toward promotion or tenure, receive an internal prize, or, sometimes, be rewarded
with a monetary bonus. However, these payoffs are allocated to individual re-
searchers, and, with the exception of a bonus payment, cannot be transferred from
one researcher to another.

The settings similar to the one in Example 8.1 are modeled by assuming that each
coalitional action corresponds to a vector of payoffs – one for each member of
the coalition. Games represented in this manner are known as games with non-
transferable utility, or NTU games.

It is important to note that in NTU settings two coalitional actions may be
incomparable. For instance, consider the 2-player coalition {a1,a2} that chooses
between actions x and y. Suppose that whenever the players choose x, player
a1 gets a payoff of 5, whereas player a2 gets a payoff of 1; on the other hand,
if players choose y, player a1 gets 2 and player a2 gets 7. Obviously, player
a1 prefers x to y, even though action y has a higher total utility, whereas player
a2 prefers y to x. In contrast, in TU games, all players prefer the action(s) that
result(s) in the highest sum of payoffs, as they can distribute the total payoff so

1Recently, games with overlapping coalitions have also been considered; see, e.g. [12].

Chapter 8 331

that everyone is better off. This intracoalitional competition makes NTU games
more difficult to analyze, which may explain why TU games received much more
attention in the multiagent literature. We will follow this trend, and for the rest of
the chapter focus on TU games only.

Now, in each of the examples considered so far, the payoffs that each coalition
could attain were determined by the identities and actions of the coalition mem-
bers. However, there are cases where a coalition’s productivity also depends on
the coalition structure that it is a part of, i.e., it may be influenced by the actions of
non-members. This is the case, for instance, in market-like environments, where
each coalition provides a service, and the payment it can charge for its service de-
pends on the competition it faces. While this phenomenon can be observed both
in TU and in NTU settings, traditionally, it has been studied in the transferable
utility model only. Transferable utility games where the value of each coalition
may depend on the coalition structure it appears in are known as partition func-
tion games [37]. On the other hand, games where the value of each coalition is
the same in every coalition structure are known as characteristic function games.
Clearly, characteristic function games form a proper subclass of partition function
games, and tend to be much easier to work with. Thus, from now on, we will
further restrict our attention to characteristic function games.

2 Definitions
In this section, we will formally define characteristic function games as well as
several important subclasses of these games.

Definition 8.1 A characteristic function game G is given by a pair (A,v), where
A = {a1, . . . ,an} is a finite set of players, or agents, and v : 2A→R is a character-
istic function, which maps each subset, or coalition, of agents C to a real number
v(C). This number is referred to as the value of the coalition C.

We remark that we can represent a characteristic function game by explicitly
listing all coalitions together with their values; the size of this naive representation
is exponential in n. However, in practice we are usually interested in games that
admit a succinct representation and can be analyzed in time polynomial in n. A
number of such representations have been considered in the literature; we will
discuss some of them in Section 4.

We will now present two examples of characteristic function games.

Example 8.2 Charlie (C), Marcie (M), and Pattie (P) want to pool their savings
to buy ice cream. Charlie has c dollars, Marcie has m dollars, Pattie has p dollars,
and the ice cream packs come in three different sizes: (1) 500g which costs $7,

332 Chapter 8

(2) 750g which costs $9, and (3) 1000g which costs $11. The children value
ice cream, and assign no utility to money. Thus, the value of each coalition is
determined by how much ice cream it can buy.

This situation corresponds to a characteristic function game with the set of
players A = {C,M,P}. For c = 3, m = 4, p = 5, its characteristic function v is
given by v(/0) = 0, v({C}) = v({M}) = v({P}) = 0, v({C,M}) = v({C,P}) = 500,
v({M,P}) = 750, v({C,M,P}) = 1000. For c = 8, m = 8, p = 1, its characteristic
function v is given by v(/0) = 0, v({C}) = v({M}) = 500, v({P}) = 0, v({C,P}) =
v({M,P}) = 750, v({C,M}) = 1250, v({C,M,P}) = 1250.

Example 8.3 A fictional country X has a 101-member parliament, where each
representative belongs to one of the four parties: Liberal (L), Moderate (M),
Conservative (C), or Green (G). The Liberal party has 40 representatives, the
Moderate party has 22 representatives, the Conservative party has 30 representa-
tives, and the Green party has 9 representatives. The parliament needs to decide
how to allocate $1 billion of discretionary spending, and each party has its own
preferred way of using this money. The decision is made by a simple majority
vote, and we assume that all representatives vote along the party lines. Parties
can form coalitions; a coalition has value $1 billion if it can win the budget vote
no matter what the other parties do, and value 0 otherwise.

This situation can be modeled as a 4-player characteristic function game,
where the set of players in A = {L,M,C,G} and the characteristic function v
is given by

v(C) =

{
0 if |C| ≤ 1, or |C|= 2 and G ∈C
109 otherwise.

It is usually assumed that the value of the empty coalition /0 is 0, i.e., v(/0) = 0.
Moreover, it is often the case that the value of each coalition is non-negative (i.e.,
agents form coalitions to make a profit), or else that the value of each coalition is
non-positive (i.e., agents form coalitions to share costs). Throughout this chapter,
we will mostly focus on the former scenario, i.e., we assume that v(C)≥ 0 for all
C ⊆ A. However, all our definitions and results can be easily adapted to the latter
scenario.

2.1 Outcomes
An outcome of a characteristic function game consists of two parts: (1) a partition
of players into coalitions, and (2) a payoff vector, which distributes the value of
each coalition among its members.

Formally, a coalition structure over A is a collection of non-empty coalitions
CS = {C1, . . . ,C|CS|} such that

Chapter 8 333

• ⋃|CS|
j=1C j = A, and

• Ci∩C j = /0 for any i, j = 1, . . . , |CS| such that i 6= j.

We will denote the space of all coalition structures over A by PA. Also, given
a coalition structure CS = {C1, . . . ,C|CS|} ∈ PA, we will say that a vector x =
(x1, . . . ,xn) is a payoff vector for CS, where xi specifies the payoff of ai in CS, if

• xi ≥ 0 for all i = 1, . . . ,n, and

• ∑i:ai∈C j xi = v(C j) for any j = 1, . . . , |CS|.

Definition 8.2 Given a characteristic function game G = (A,v), an outcome of G
is a pair (CS,x), where CS ∈ PA and x is a payoff vector for CS.

A payoff vector x for a coalition structure CS∈PA is said to be an imputation if
it satisfies the individual rationality condition, i.e., xi ≥ v({ai}) for each ai ∈ A. If
a payoff vector is an imputation, each player weakly prefers being in the coalition
structure to being on its own. Now, of course, players may still find it profitable to
deviate as a group; we will discuss the issue of stability against group deviations
in Section 3. However, before we do that, let us consider a few important classes
of characteristic function games, and discuss the relationship among them.

2.2 Subclasses of Characteristic Function Games
We will now define four important subclasses of coalitional games: monotone
games, superadditive games, convex games, and simple games.

2.2.1 Monotone Games

Usually, adding an agent to an existing coalition can only increase the overall pro-
ductivity of this coalition; games with this property are called monotone games.

Definition 8.3 A characteristic function game G = (A,v) is said to be monotone
if v(C′)≤ v(C′′) for every pair of coalitions C′,C′′ ⊆ A such that C′ ⊆C′′.

2.2.2 Superadditive Games

A stronger property, which is also enjoyed by many practically useful games, is
superadditivity: in a superadditive game, it is always profitable for two groups of
players to join forces.

Definition 8.4 A characteristic function game G = (A,v) is said to be superaddi-
tive if v(C′∪C′′)≥ v(C′)+ v(C′′) for every pair of disjoint coalitions C′,C′′ ⊆ A.

334 Chapter 8

Since we have assumed that the value of each coalition is non-negative, su-
peradditivity implies monotonicity: if a game G = (A,v) is superadditive, and
C′ ⊆C′′, then v(C′) ≤ v(C′′)− v(C′′ \C′) ≤ v(C′′). However, the converse is not
necessarily true: consider, for instance, a game where the value of the character-
istic function grows logarithmically with the coalition size, i.e., v(C′) = log |C′|.

In superadditive games, there is no compelling reason for agents to form a
coalition structure consisting of multiple coalitions: the agents can earn at least
as much profit by forming the grand coalition, i.e., the coalition that contains all
agents. Therefore, for superadditive games it is usually assumed that the agents
form the grand coalition, i.e., the outcome of a superadditive game is of the form
({A},x) where x satisfies ∑

n
i=1 xi = v(A). Conventionally, {A} is omitted from

the notation, i.e., an outcome of a superadditive game is identified with a payoff
vector for the grand coalition.

2.2.3 Convex Games

The superadditivity property places a restriction on the behavior of the charac-
teristic function v on disjoint coalitions. By placing a similar restriction on v’s
behavior on non-disjoint coalitions, we obtain the class of convex games.

Definition 8.5 A characteristic function game G = (A,v) is said to be convex if
v(C∪C′)+ v(C∩C′)≥ v(C)+ v(C′) for every pair of coalitions C,C′ ⊆ A.

Convex games have a very intuitive characterization in terms of players’
marginal contributions: in a convex game, a player is more useful when it joins a
bigger coalition.

Proposition 8.1 A characteristic function game G = (A,v) is convex if and only
if for every pair of coalitions C′,C′′ such that C′ ⊂C′′ and every player ai ∈ A\C′′

it holds that v(C′′∪{ai})− v(C′′)≥ v(C′∪{ai})− v(C′).

Proof. For the “only if” direction, assume that G = (A,v) is convex, and consider
two coalitions C′,C′′ such that C′ ⊂C′′ ⊂ A and a player ai ∈ A \C′′. By setting
X =C′′, Y =C′∪{ai}, we obtain

v(C′′∪{ai})−v(C′′) = v(X ∪y)−v(X)≥ v(Y)−v(X ∩Y) = v(C′∪{ai})−v(C′),

which is exactly what we need to prove.
The “if” direction can be proved by induction on the size of X \Y ; we leave

the proof as an exercise for the reader.

Any convex game is necessarily superadditive: if a game G = (A,v) is convex,
and C′ and C′′ are two disjoint subsets of A, then we have v(C′ ∪C′′) ≥ v(C′)+

Chapter 8 335

v(C′′)− v(C′∩C′′) = v(C′)+ v(C′′) (here we use our assumption that v(/0) = 0).
To see that the converse is not always true, consider a game G = (A,v), where
A = {a1,a2,a3}, and v(C) = 1 if |C| ≥ 2 and v(C) = 0 otherwise. It is easy to
check that this game is superadditive. On the other hand, for C′ = {a1,a2} and
C′′ = {a2,a3}, we have v(C′) = v(C′′) = 1, v(C′∪C′′) = 1, v(C′∩C′′) = 0.

2.2.4 Simple Games

Another well-studied class of coalitional games is that of simple games: a game
G = (A,v) is said to be a simple game if it is monotone and the characteristic func-
tion only takes values 0 and 1, i.e., v(C) ∈ {0,1} for every C ⊆ A. For instance,
the game in Example 8.3 becomes a simple game if we rescale the payoffs so that
they become 0 and 1 (instead of 0 and 109). In a simple game, coalitions of value 1
are said to be winning, and coalitions of value 0 are said to be losing. Such games
model situations where there is a task to be completed: a coalition is labeled as
winning if and only if it can complete the task.

Note that simple games are superadditive if and only if the complement of
each winning coalition is losing. Clearly, there exist simple games that are not
superadditive. Nevertheless, it is usually assumed that the outcome of a simple
game is a payoff vector for the grand coalition, just as in superadditive games.

3 Solution Concepts
Any partition of agents into coalitions and any payoff vector that respects this par-
tition correspond to an outcome of a characteristic function game. However, not
all outcomes are equally desirable. For instance, if all agents contribute equally
to the value of a coalition, a payoff vector that allocates the entire payoff to one
of the agents is less appealing than the one that shares the profits equally among
all agents. Similarly, an outcome that incentivizes all agents to work together is
preferable to an outcome that some of the agents want to deviate from.

More broadly, one can evaluate the outcomes according to two sets of criteria:
(1) fairness, i.e., how well each agent’s payoff reflects its contribution, and (2) sta-
bility, i.e., what the incentives are for the agents to stay in the coalition structure.
These two sets of criteria give rise to two families of payoff division schemes, or
solution concepts. We will now discuss each of them in turn.

3.1 Shapley Value
The best-known solution concept that aims to capture the notion of fairness in
characteristic function games is the Shapley value [64]. The Shapley value is

336 Chapter 8

usually defined for superadditive games. As argued above, for such games an
outcome can be identified with a payoff vector for the grand coalition, i.e., the
Shapley value prescribes how to share the value of the grand coalition in a fair
way.

To present the formal definition of the Shapley value, we need some additional
notation. Given a characteristic function game G = (A,v), let ΠA denote the set of
all permutations of A, i.e., one-to-one mappings from A to itself. Given a permuta-
tion π ∈ΠA, we denote by Cπ(ai) the coalition that consists of all predecessors of
ai in π, i.e., we set Cπ(ai) = {a j ∈ A | π(a j)< π(ai)}. The marginal contribution
of an agent ai with respect to a permutation π in a game G = (A,v) is denoted by
∆G

π (ai) and is given by

∆
G
π (ai) = v(Cπ(ai)∪{ai})− v(Cπ(ai));

this quantity measures by how much ai increases the value of the coalition con-
sisting of its predecessors in π when it joins them. Informally, the Shapley value
of a player ai is its average marginal contribution, where the average is taken over
all permutations of A. More formally, we have the following definition.

Definition 8.6 Given a characteristic function game G=(A,v), the Shapley value
of a player ai ∈ A is denoted by ϕi(G) and is given by

ϕi(G) =
1
n! ∑

π∈ΠA

∆
G
π (ai).

The Shapley value has many attractive properties. In what follows, we list four
of them; the proofs of Propositions 8.2–8.5 are left as an exercise for the reader.

First, the Shapley value is efficient, i.e., it distributes the value of the grand
coalition among all agents.

Proposition 8.2 For any characteristic function game G = (A,v), we have
∑

n
i=1 ϕi(G) = v(A).

Second, the Shapley value does not allocate any payoffs to players who do
not contribute to any coalition. Formally, given a characteristic function game
G = (A,v), a player ai ∈ A is said to be a dummy if v(C) = v(C∪{ai}) for every
C ⊆ A. It is not hard to see that the Shapley value of a dummy player is 0.

Proposition 8.3 If a player ai ∈ A is a dummy in a characteristic function game
G, then ϕi(G) = 0.

Third, if two players contribute equally to each coalition, then their Shapley
values are equal. Formally, given a characteristic function game G = (A,v), we

Chapter 8 337

say that players ai and a j are symmetric in G if v(C∪{ai}) = v(C∪{a j}) for every
coalition C ⊆ A\{ai,a j}. It turns out that symmetric players have equal Shapley
values.

Proposition 8.4 If players ai and a j are symmetric in a characteristic function
game G, then ϕi(G) = ϕ j(G).

Finally, consider a group of players A that is involved in two coalitional games
G′ and G′′, i.e., G′ = (A,v′), G′′ = (A,v′′). The sum of G′ and G′′ is a coalitional
game G+ = G′+G′′ given by G+ = (A,v+), where for every coalition C ⊆ A we
have v+(C) = v′(C) + v′′(C). It can easily be seen that the Shapley value of a
player ai in G+ is the sum of its Shapley values in G′ and G′′.

Proposition 8.5 Consider two characteristic function games G′ = (A,v) and
G′′ = (A,v) over the same set of players A. Then for any player ai ∈ A we have
ϕi(G′+G′′) = ϕi(G′)+ϕi(G′′).

To summarize, we have argued that the Shapley value possesses four desirable
properties:

(1) Efficiency: all the profit earned by the agents in the grand coalitions is dis-
tributed among them;

(2) Null player: players with zero marginal contributions to all coalitions re-
ceive zero payoff;

(3) Symmetry: all players that have the same marginal contribution to all coali-
tions receive the same payoff;

(4) Additivity: ϕi(G′+G′′) = ϕi(G′)+ϕi(G′′) for all ai ∈ A.

Interestingly, the Shapley value is the only payoff division scheme that has these
four properties simultaneously [64]. In other words, if we view properties (1)–(4)
as axioms, then these axioms characterize the Shapley value.

3.2 Banzhaf Index
Another solution concept that is motivated by fairness considerations is the
Banzhaf index [7]. The difference between the Shapley value and the Banzhaf
index can be described in terms of the underlying coalition formation model: the
Shapley value measures the agent’s expected marginal contribution if agents join
the coalition one by one in a random order, whereas the Banzhaf index measures
the agent’s expected marginal contribution if each agent decides whether to join
the coalition independently with probability 1/2. This intuition is formally cap-
tured by the following definition.

338 Chapter 8

Definition 8.7 Given a characteristic function game G = (A,v), the Banzhaf in-
dex of a player i ∈ A is denoted by βi(G) and is given by

βi(G) =
1

2n−1 ∑
C⊆A\{ai}

[v(C∪{ai})− v(C)].

It is not hard to verify that the Banzhaf index satisfies properties (2), (3), and (4)
in the list above. However, it does not satisfy property (1), i.e., efficiency.

Example 8.4 Consider a characteristic function game G=(A,v), where v(A)= 1
and v(C) = 0 for every C ⊂ A. We have ϕi(G) = 1

n , βi(G) = 1
2n−1 for each ai ∈ A.

Since efficiency is a very desirable property of a payoff distribution scheme, some
researchers also consider the normalized Banzhaf index ηi(G), which is defined
as

ηi(G) =
βi(G)

∑i∈A βi(G)
.

While this version of the Banzhaf index satisfies efficiency, it loses the additivity
property.

3.3 Core
We have introduced two solution concepts that attempt to measure the agents’
marginal contribution. In contrast, the solution concepts considered in this and
subsequent sections are defined in terms of coalitional stability.

Consider a characteristic function game G = (A,v) and an outcome (CS,x) of
this game. Let x(C) denote the total payoff of a coalition C under a payoff vector x,
i.e., x(C) = ∑i:ai∈C xi. Now, if x(C)< v(C), then the agents in C have an incentive
to deviate since they could do better by abandoning CS and forming a coalition of
their own. For example, if the agents were to share the extra profit equally among
themselves, every agent ai ∈C would receive a payoff of xi +

v(C)−x(C)
|C| instead of

xi. An outcome where no subset of agents has an incentive to deviate is called
stable, and the set of all such outcomes is called the core of G [29].

Definition 8.8 The core of a characteristic function game G = (A,v) is the set of
all outcomes (CS,x) such that x(C)≥ v(C) for any C ⊆ A.

In a superadditive game, the outcomes are payoff vectors for the grand coali-
tion, so for such games the core can be defined as the set of all vectors x that
satisfy: (1) xi ≥ 0 for all ai ∈ A, (2) x(A) = v(A), and (3) x(C) ≥ v(C) for all
C ⊆ A.

The outcomes in the core are stable and therefore they are more likely to arise
when a coalitional game is played. However, some games have empty cores.

Chapter 8 339

Example 8.5 Consider the game G = (A,v), where A = {a1,a2,a3}, v(C) = 1
if |C| ≥ 2 and v(C) = 0 otherwise. We claim that this game has an empty core.
Indeed, suppose that the core of G is non-empty. Since G is superadditive, its core
contains a vector x = (x1,x2,x3), where x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, and x1 + x2 +
x3 = 1. The latter constraint implies that xi ≥ 1

3 for some ai ∈ A. But then for
C = A\{ai} we have v(C) = 1, x(C)≤ 2/3, which means that (x1,x2,x3) is not in
the core. This contradiction shows that the core of G is empty.

Observe that the set of all outcomes in the core of a superadditive game can
be characterized by the following linear feasibility program (LFP):

xi ≥ 0 for each ai ∈ A

∑
i:ai∈A

xi = v(A) (8.1)

∑
i:ai∈C

xi ≥ v(C) for each C ⊆ A

This LFP has 2n + n+ 1 constraints. Therefore, if we want to convert it into an
algorithm for checking non-emptiness of the core which runs in time polynomial
in n, we need an efficient separation oracle for this LFP. Recall that a separation
oracle for a linear (feasibility) program is a procedure that, given a candidate solu-
tion (x1, . . . ,xn), determines whether it is feasible, and, if not, outputs the violated
constraint. It is well-known that if a linear program over n variables admits a sep-
aration oracle that runs in time poly(n), then an optimal feasible solution can be
found in time poly(n) [62].

Now, the first n+1 constraints in our LFP are straightforward to check. There-
fore, the problem of checking non-emptiness of the core for superadditive games
can be reduced to checking whether a candidate solution satisfies the last 2n con-
straints, i.e., verifying whether a given outcome is in the core (and, if not, com-
puting the coalition that has an incentive to deviate). In general, checking whether
a given outcome is in the core and/or deciding whether the core is non-empty is
not easy: in Section 4, we will see examples of classes of coalitional games for
which these problems are NP-hard. However, we will now see that for some of the
classes of games discussed in Section 2.2, these problems are efficiently solvable.

3.3.1 The Core of Simple Games

Recall that for simple games it is standard to assume that the grand coalition
forms, even if the game is not superadditive. Under this assumption, it is easy
to characterize the outcomes in the core, and provide a simple criterion for check-
ing whether the game has a non-empty core.

340 Chapter 8

A player ai in a simple game G = (A,v) is said to be a veto player if v(C) =
0 for any C ⊆ A \ {ai}; since simple games are monotone, this is equivalent to
requiring that v(A \ {ai}) = 0. Observe that a game may have more than one
veto player: for instance, in the unanimity game, where v(A) = 1, v(C) = 0 for
any C ⊂ A, all players are veto players. We will now show that the only way to
achieve stability is to share the payoff among the veto players, if they exist.

Theorem 8.1 A simple game G = (A,v) has a non-empty core if and only if it has
a veto player. Moreover, an outcome (x1, . . . ,xn) is in the core of G if and only if
xi = 0 for any player ai who is not a veto player in G.

Proof. Suppose G has a veto player ai. Then the outcome x with xi = 1, x j = 0
for j 6= i is in the core: any coalition C that contains ai satisfies x(C) = 1≥ v(C),
whereas any coalition C′ that does not contain ai satisfies v(C′) = 0≤ x(C′).

Conversely, suppose that G does not have a veto player. Suppose for the sake
of contradiction that G has a non-empty core, and let x be an outcome in the core
of G. Since x(A) = 1, we have xi > 0 for some ai ∈ A, and hence x(A \ {ai}) =
1− xi < 1. However, since ai is not a veto player, we have v(A \ {ai}) = 1 >
x(A\{ai}), a contradiction with x being in the core.

The second statement of the theorem can be proved similarly.

The characterization of the outcomes in the core provided by Theorem 8.1
suggests a simple algorithm for checking if an outcome is in the core or deciding
non-emptiness of the core: it suffices to determine, for each player ai, whether it
is a veto player, i.e., to compute v(A\{ai}). Thus, if the characteristic function of
a simple game is efficiently computable, we can answer the core-related questions
in polynomial time.

We remark that if the simple game is not superadditive, and we use the more
general definition of an outcome, i.e., allow the players to form coalition struc-
tures, Theorem 8.1 no longer holds. Moreover, deciding whether an outcome is
in the core becomes computationally hard even for fairly simple representation
formalisms (see Section 4.1).

3.3.2 The Core of Convex Games

Convex games always have a non-empty core. We will now present a constructive
proof of this fact, i.e., show how to obtain an outcome in the core of a convex
game.

Theorem 8.2 If G = (A,v) is a convex game, then G has a non-empty core.

Chapter 8 341

Proof. Fix an arbitrary permutation π ∈ ΠA, and set xi = ∆G
π (ai). We claim that

(x1, . . . ,xn) is in the core of G.
Indeed, observe first that any convex game is monotone, so xi≥ 0 for all ai ∈A.

Moreover, we have ∑
n
i=1 xi = ∆G

π (a1) + · · ·+ ∆G
π (an) = v(A). Finally, suppose

for the sake of contradiction that we have v(C) > x(C) for some coalition C =
{ai1 ,ais}. We can assume without loss of generality that π(ai1)≤ ·· · ≤ π(ais),
i.e., the members of C appear in π ordered as ai1 , . . . ,ais . We can write v(C) as

v(C) = v({ai1})− v(/0)+ v({ai1,ai2})− v({ai1})+ · · ·+ v(C)− v(C \{ais}).

Now, for each j = 1, . . . ,s, the supermodularity of v implies

v({ai1 , . . . ,ai j})− v({ai1, . . . ,ai j−1})≤ v({a1, . . . ,ai j})− v({a1, . . . ,ai j−1}) = xi j .

By adding up these inequalities, we obtain v(C)≤ x(C), i.e., coalition C does not
have an incentive to deviate, which is a contradiction.

Observe that the construction used in the proof of Theorem 8.2 immediately im-
plies that in a convex game the Shapley value is in the core: indeed, the Shapley
value is a convex combination of outcomes constructed in the proof of Theo-
rem 8.2, and the core can be shown to be a convex set. However, Theorem 8.2
does not, in general, enable us to check whether a given outcome of a convex
game is in the core of that game.

3.4 The Least Core

When a given game has an empty core, we may still be interested in finding “the
most stable” outcome. In this section, we explore solution concepts that are mo-
tivated by this idea. In what follows, we focus on superadditive games; however,
many of our definitions also apply to general characteristic function games.

In many situations, a coalition would prefer not to deviate if its gain from a
deviation is positive, but tiny. Therefore, we may view outcomes in which no
coalition can improve its welfare significantly as stable. This motivates the fol-
lowing definition.

Definition 8.9 An outcome x is said to be in the ε-core of a superadditive game
G for some ε ∈ R if x(C)≥ v(C)− ε for each C ⊆ A.

Of course, in practice we are usually interested in finding the smallest value of
ε such that the ε-core is non-empty. The corresponding ε-core is called the least
core of G [39]. More formally, we have the following definition.

342 Chapter 8

Definition 8.10 Given a superadditive game G, let

ε
∗(G) = inf{ε | ε-core of G is non-empty}.

The least core of G is its ε∗(G)-core. The quantity ε∗(G) is called the value of the
least core of G.

To see that the least core is always non-empty, observe that we can modify the
linear feasibility program (8.1) so as to obtain a linear program for the value of
the least core as well as a payoff vector in the least core. Specifically, we have

min ε subject to:
xi ≥ 0 for each ai ∈ A

∑
i:ai∈A

xi = v(I) (8.2)

∑
i:ai∈C

xi ≥ v(C)− ε for each C ⊆ A.

Clearly, if (ε,x1, . . . ,xn) is an optimal solution to this linear program, then ε is the
value of the least core and (x1, . . . ,xn) is an outcome in the least core. This shows
that we can compute the value of the least core of a superadditive game G as long
as we have an algorithm for checking if a given outcome is in the core of G (and,
if not, finding the deviating coalition).

Observe that if G has a non-empty core, it may happen that ε∗(G) < 0, in
which case the least core is a subset of the core. We remark, however, that some
authors require the value of the least core to be non-negative, i.e., they define the
least core as the smallest non-negative value of ε for which the ε-core is non-
empty. Under this definition, to compute the value of the least core we need to
add the constraint ε≥ 0 to the linear program (8.2).

3.5 Other Solution Concepts
Besides the Shapley value, the Banzhaf index, the core, and the least core, there
are several other solution concepts for characteristic function games. The most
prominent among them are the nucleolus, the kernel, and the bargaining set. We
will not be able to discuss them in full detail in this chapter due to space con-
straints; instead, we will provide a brief intuitive description of each of these
concepts. For a more comprehensive treatment, the interested reader is referred
to [47, 48].

The nucleolus [61] can be thought of as a refinement of the least core. Specif-
ically, the least core can be defined as the set of all payoff vectors that minimize
the maximum deficit d1 = max{v(C)− x(C) | C ⊆ A}. Now, among all payoff

Chapter 8 343

vectors in the least core, we can pick the ones that minimize the second highest
deficit d2 = max{v(C)− x(C) | C ⊆ A,v(C)− x(C) < d1}, and remove all other
payoff vectors. We can continue this procedure until the set of the surviving pay-
off vectors stabilizes. The resulting set can be shown to consist of a single payoff
vector: this payoff vector is known as the pre-nucleolus. If, at each step, we only
consider imputations (rather than arbitrary payoff vectors), we obtain the nucle-
olus. The nucleolus is an attractive solution concept, as it arguably identifies the
most stable outcome of a game. However, its formal definition involves an expo-
nentially long vector, and therefore the nucleolus is not easy to compute from the
first principles. However, some classes of games defined on combinatorial struc-
tures (see Section 4) admit efficient algorithms for computing the nucleolus: see,
e.g., [19, 26, 36].

The kernel [17] consists of all outcomes where no player can credibly demand
a fraction of another player’s payoff. Formally, for any player ai we define its
surplus over the player a j with respect to a payoff vector x as the quantity

suri, j(x) = max{v(C)− x(C) |C ⊆ A,ai ∈C,a j 6∈C}.

Intuitively, this is the amount that ai can earn without the cooperation of a j, by
asking a set C \ {ai} to join it in a deviation, and paying each player in C \ {ai}
what it used to be paid under x. Now, if suri, j(x) > sur j,i(x), player ai should
be able to demand a fraction of player a j’s payoff – unless player a j already
receives the smallest payment that satisfies the individual rationality condition,
i.e., v({a j}). Following this intuition, we say that an imputation x is in the
kernel of a superadditive game G if for any pair of players (ai,a j) we have ei-
ther: (1) suri, j(x) = sur j,i(x), or (2) suri, j(x)> sur j,i(x) and x j = v({a j}), or (3)
suri, j(x)< sur j,i(x) and xi = v({ai}).

The bargaining set [38] is defined similarly to the core. However, in contrast
to the definition of the core, we only take into account coalitional deviations that
are themselves stable, i.e., do not admit a counterdeviation. Consequently, the
bargaining set contains the core, and the containment is sometimes strict. In fact,
the bargaining set can be shown to contain the least core [22], which implies that
the bargaining set is guaranteed to be non-empty.

4 Representation Formalisms
It would be desirable to have a representation language that allows us to encode
all coalitional games so that the description size of each game is polynomial in
the number of agents n. However, a simple counting argument shows that no
representation formalism can encode each coalitional game using poly(n) bits;
this is true even if we restrict ourselves to simple games. Therefore, one needs

344 Chapter 8

to decide on a trade-off between expressiveness, i.e., the formalism’s ability to
encode many different games, and succinctness, i.e., the resulting description size.
For instance, one option is to choose a formalism that can only represent games
in a certain subclass of coalitional games, but guarantees that each game in this
class has a succinct encoding. Alternatively, one can choose a formalism that
can represent any coalitional game, but is only guaranteed to produce succinct
representation for games that have certain special properties.

In this chapter, we will discuss several formalisms for characteristic function
games. We start with restricted representation languages, i.e., formalisms that are
always succinct, but not fully expressive.

4.1 Weighted Voting Games
In a weighted voting game, each player has a certain weight, which encodes the
amount of resources available to this player. Further, there is a task that can be
accomplished by any coalition that has sufficient resources. If a coalition can ac-
complish the task, it earns a fixed payoff, which can be normalized to 1; otherwise,
it earns nothing. Formally, weighted voting games are defined as follows.

Definition 8.11 A weighted voting game G is given by a triple (A,w,q), where A
is the set of players, |A| = n, w = (w1, . . . ,wn) ∈ Rn is a vector of weights, and
q ∈R is a quota. The characteristic function v of a game G = (A,w,q) is given by
v(C) = 1 if ∑i:ai∈C wi ≥ q and v(C) = 0 otherwise.

It is usually assumed that all weights and the quota are integers given in binary; it
can be shown that this assumption can be made without loss of generality. Further,
most of the work on weighted voting games assumes that all weights are non-
negative; observe that in this case weighted voting games are simple games.

Weighted voting games are used to model decision making in voting bodies;
for instance, the game described in Example 8.3 is a weighted voting game with
quota q = 51 and weights 40, 22, 30, 9 for players L, M, C, G, respectively.
Indeed, the Shapley value and the Banzhaf index in such games are often viewed
as measures of a party’s voting power in a parliament and have therefore received
significant attention from political scientists. In such settings it is usually assumed
that the quota q is at least half of the players’ total weight; however, in general
task execution scenarios the quota q can take any value between 0 and ∑

n
i=1 wi.

It is important to note that a player’s power in a weighted voting game is not
necessarily proportional to its weight. Indeed, in Example 8.3, the Liberal party
and the Moderate party have the same Shapley value (namely, 1/3), even though
their weights differ by almost a factor of 2. Moreover, the Green party is a dummy
and thus its Shapley value is 0, even though it has a non-zero weight. Observe also

Chapter 8 345

that if we changed the quota to, say, q′ = 60, the balance of power would change:
for instance, we would have v({M,C}) = 0, but v({M,C,G}) = 1, so G would no
longer be a dummy.

4.1.1 Computational Issues

The complexity of computing fair and stable outcomes in weighted voting games
has received significant attention in the literature.

For instance, the complexity of determining the players’ Shapley values has
been analyzed by a variety of authors [21, 41, 50]. An easy reduction from the
SUBSET SUM problem shows that deciding whether a player is a dummy is coNP-
complete; this implies that deciding whether a player’s Shapley value is equal to
0 is coNP-complete as well. In fact, one can strengthen this result to show that
computing the Shapley value is #P-complete.

Fortunately, the situation is considerably less bleak if we can assume that all
weights are at most polynomial in the number of players n, or, equivalently, are
given in unary. Under this assumption, we would be satisfied with algorithms
whose running time is polynomial in n and the maximum weight, i.e., maxi:ai∈A wi.
It is not too hard to show that such algorithms do exist: a dynamic programming-
based approach has been described by Matsui and Matsui [40].

The same easiness and hardness results hold for the Banzhaf index: it is
#P-complete to compute when weights are given in binary, but admits an efficient
dynamic programming-based algorithm for small weights.

The core-related questions are easy to answer if we make the standard as-
sumption that the grand coalition always forms: indeed, since weighted voting
games are simple games, there is a stable way of dividing the payoffs of the grand
coalition if and only if the game has veto players. Now, determining if a player
ai is a veto player in a weighted voting game G = (A,w,q) is easy: it suffices to
check whether ∑ j:a j 6=ai w j ≥ q. This implies that there are polynomial-time algo-
rithms for checking if an outcome is in the core or determining whether the core
is non-empty.

However, if q < ∑
n
i=1 wi/2, then forming the grand coalition may be ineffi-

cient, and therefore there may exist stable outcomes in which the agents form
a non-trivial coalition structure. Indeed, consider the weighted voting game
G =

(
{a1,a2,a3,a4},(2,2,2,2),4

)
. This game does not have a veto player, and

therefore any outcome in which the grand coalition forms is not stable. On the
other hand, it is easy to see that the outcome ({{a1,a2},{a3,a4}},(1

2 ,
1
2 ,

1
2 ,

1
2)) is

stable: any winning coalition contains at least two players, and therefore its payoff
is at least 1.

Now, when arbitrary coalition structures are allowed, checking whether a sta-
ble outcome exists, or even whether a given outcome is stable, becomes difficult.

346 Chapter 8

Specifically, Elkind et al. [23] showed that that former problem is NP-hard, while
the latter problem is coNP-complete. On the positive side, they also showed that if
all weights are polynomially bounded, one can check in polynomial time whether
an outcome is in the core. It is currently open whether a similar easiness result
holds for the problem of checking the non-emptiness of the core; although it is
conjectured that this problem remains hard even for small weights [23].

Elkind et al. analyze the complexity of computing the value of the least core
and the nucleolus [24, 26]. Again, a familiar picture emerges: both problems
are hard when weights are given in binary, but easy when weights are given in
unary. Moreover, even for large weights, the value of the least core admits a fully
polynomial-time approximation scheme (FPTAS), i.e., an algorithm that, given a
weighted voting game G = (A,w,q) and a parameter δ, outputs a value ε′ that
satisfies ε≤ ε′ ≤ (1+δ)ε, where ε is the true value of the least core of G, and runs
in time that is polynomial in the number of players n, the maximum weight, and
1/δ.

4.1.2 Expressivity and Vector Weighted Voting Games

When all weights are non-negative, weighted voting games are simple games.
However, one may wonder if the converse is also true, i.e., whether given a
simple game G = (A,v) with |A| = n we can always find a vector of weights
w = {w1, . . . ,wn} and a quota q such that G is equivalent to the game (A,w,q),
i.e., for every C ⊆ A it holds that v(C) = 1 if and only if ∑i:ai∈C wi ≥ q.

It is not hard to show that the answer to this question is “no.” Indeed, consider
a simple game G = (A,v) with A = {a1,a2,a3,a4}, where a coalition is winning
if it contains both an even-numbered agent and an odd-numbered agent, or, in
symbols, v(C) = 1 if and only if C∩{a1,a3} 6= /0 and C∩{a2,a4} 6= /0. Suppose
that this game can be represented as a weighted voting game (A,w,q) for some
real weights and quota (note that we do not assume that the weights are positive or
rational). Since {a1,a2} and {a3,a4} are winning coalitions, we have w1+w2≥ q,
w3 +w4 ≥ q, and hence w1 +w2 +w3 +w4 ≥ 2q. On the other hand, {a1,a3} and
{a2,a4} are losing coalitions, so we have w1 +w3 < q, w2 +w4 < q, and hence
w1 +w2 +w3 +w4 < 2q. This contradiction shows that G is not equivalent to any
weighted voting game.

Interestingly, the game G discussed in the previous paragraph can be viewed
as an intersection of two weighted voting games: to win the first game, the coali-
tion must contain an odd-numbered player (this corresponds to the weighted vot-
ing game

(
A,(1,0,1,0),1

)
, whereas to win the second game, the coalition must

contain an even-numbered player (this corresponds to the weighted voting game(
A,(0,1,0,0),1

)
. To win the overall game, the coalition must win both of the

component games. Such games are known as vector weighted voting games, or

Chapter 8 347

k-weighted voting games, where k is the number of component games.

Definition 8.12 A game G = (A,v) with |A|= n is said to be a k-weighted voting
game for some k ∈ N if there exists a collection of k weighted voting games G1 =(
A,(w1

1, . . . ,w
1
n),q

1), . . . ,Gk =
(
A,(wk

1, . . . ,w
k
n),q

k) over the set of players A such
that v(C) = 1 if and only if ∑i:ai∈C w j

i ≥ q j for every j = 1, . . . ,k. The games
G1, . . . ,Gk are called the component games of G; we will write G = G1∧ . . .∧Gk.

Vector weighted voting games are widely used in practice: for instance, the
European Union decision-making system is a 27-player 3-weighted voting game,
where the three component games correspond to the commissioners, countries,
and population [9].

From the computational perspective, vector weighted voting games are similar
to the ordinary weighted voting games if k is bounded by a constant, but become
harder to deal with if k is viewed as part of the input: for instance, Elkind et
al. [27] show that deciding whether a player is a dummy in a k-weighted voting
game is coNP-complete even if all weights are in {0,1} (recall that, in contrast,
for weighted voting games this problem is easy as long as all weights are polyno-
mially bounded).

Now, we have seen that vector weighted voting games are more expressive
than weighted voting games; but are they fully expressive? We will now show
that the answer is “yes,” i.e., any simple game can be represented as a k-weighted
voting game for a suitable value of k; this holds even if all weights are required to
be in {0,1}.

Theorem 8.3 Any simple game G = (A,v) with |A| = n can be represented as
a k-weighted voting game G1 ∧ . . .∧Gk, where k ≤ 2n and all weights in each
component game are either 0 or 1.

Proof. Let C1, . . . ,Ck be the list of all losing coalitions in G. For each coalition
C j in this list, we construct a weighted voting game G j =

(
A,(w j

1, . . . ,w
j
n),q j

)
,

where q j = 1 and w j
i = 1 if ai 6∈C j, w j

i = 0 if ai ∈C j. Observe that a coalition C
is a winning coalition in G j if and only if it contains some agent ai ∈ A\C j.

We claim that G is equivalent to G′ = G1 ∧ . . .∧Gk. Indeed, if C ⊆ A is a
losing coalition in G, then C =C j for some j = 1, . . . ,k, and therefore C loses in
the corresponding component game and hence in G′. On the other hand, if C ⊆ A
is a winning coalition in G, then, by monotonicity, C is not contained in any losing
coalition, i.e., for any coalition C j in our list we have C \C j 6= /0 and hence C is
a winning coalition in C j. Since this holds for any j = 1, . . . ,k, C is a winning
coalition in G′. To complete the proof, it remains to observe that k ≤ 2n.

348 Chapter 8

The minimum number of component games in the representation of a given
simple game G as a weighted voting game is called the dimension of G. Theo-
rem 8.3 shows that the dimension of any simple n-player game G does not exceed
2n; on the other hand, there are explicit constructions of simple games whose di-
mension is exponential in the number of players [69]. Thus, vector weighted vot-
ing games are universally expressive for the class of all simple games, but are only
succinct for some of the games in this class (namely, the games with polynomi-
ally small dimension, which includes all weighted voting games). This situation is
typical of the universally expressive representation formalisms; we will see some
further examples in Section 4.3.

4.2 Combinatorial Optimization Games

Several classes of cooperative games that have been studied in the operations
research and theoretical computer science community are defined via a combi-
natorial structure, such as, for example, a graph. The value of each coalition
is obtained by solving a combinatorial optimization problem on the substructure
that corresponds to this coalition. We will refer to such games as combinatorial
optimization games. Just like weighted voting games, such representations are
succinct, but not complete. An excellent (though somewhat outdated) survey of
combinatorial optimization games can be found in [10]. In this section, we give
several examples of the games in this family.

4.2.1 Induced Subgraph Games

In induced subgraph games [21], players are vertices of a weighted graph, and
the value of a coalition is the total weight of its internal edges. It can be checked
that if all weights are non-negative, this game is convex and therefore has a non-
empty core. However, if we allow negative weights, the core may be empty, and,
moreover, checking whether an outcome is in the core becomes coNP-complete.
In contrast, the Shapley value in this game is easy to compute even if the weights
can be negative: the Shapley value of a vertex x is half of the total weight of the
edges that are incident to x.

4.2.2 Network Flow Games

In network flow games [33, 34], the players are edges of a network with a source
and a sink. Each edge has a positive integer capacity, indicating how much flow it
can carry. The value of a coalition C is the maximum amount of flow that can be
sent from the source to the sink using the edges in C only. Various stability-related

Chapter 8 349

solution concepts for this class of games were studied in [31] and subsequently
in [19].

One can also consider a variant of network flow games where the value of a
coalition is 1 if it can carry at least k units of flow from the source to the sink, and
0 otherwise. Such games are called threshold network flow games, and have been
studied in [6] and subsequently in [2].

4.2.3 Matching and Assignment Games

In assignment games [65], agents are vertices of a weighted bipartite graph. The
value of each coalition is the size of its maximum-weight induced matching.
Matching games [20] are a generalization of assignment games, where the graph
is not required to be bipartite. The complexity of the core, the least core, and the
nucleolus in these games has been studied in [36, 68].

4.3 Complete Representation Languages
In this section, we will discuss four representation formalisms for coalitional
games that are complete, i.e., can be used to describe any coalitional game.

4.3.1 Marginal Contribution Nets

Marginal contribution nets, or MC-nets [32], is a rule-based representation; it
describes a game with a set of players A = {a1, · · · ,an} by a collection of rules
R. Each rule r ∈ R is of the form Br → ϑr, where Br is a Boolean formula
over a set of variables {b1, . . . ,bn} and ϑr is a real value. We say that a rule
r ∈R is applicable to a coalition C if Br is satisfied by the truth assignment given
by bi = > if ai ∈ C and bi = ⊥ if ai /∈ C. Let RC denote the set of rules that
are applicable to C. Then, the characteristic function of the game described by
R= {B1→ ϑ1, . . . ,Bk→ ϑk} is computed as follows:

v(C) = ∑
r∈RC

ϑr.

Example 8.6 The MC-net that consists of the rules R = {b1∧ b2→ 5,b2→ 2},
corresponds to a coalitional game G = (A,v), where A = {a1,a2}, v({a1}) = 0,
v({a2}) = 2, v({a1,a2}) = 7.

An MC-net is said to be basic if the left-hand side of any rule is a conjunction
of literals, i.e., variables and their negations. In this case, we can write a rule
r ∈ R as (Pr,Nr)→ ϑr, where Pr and Nr are the sets of agents that correspond to
positive and negative literals in Br, respectively. Thus, r is applicable to coalition

350 Chapter 8

C if C contains every agent in Pr and none of the agents in Nr. It is not hard to see
that any coalitional game G = (A,v) with |A| = n can be represented by a basic
MC-net with 2n−1 rules: for each non-empty coalition C ⊆ A we create a rule

(∧i:ai∈Cbi)
∧

(∧i:ai 6∈C¬bi)→ v(C).

However, many interesting games admit a more succinct representation, especially
if we allow MC-nets that are not basic.

For basic MC-nets, the players’ Shapley values can be computed efficiently.
The algorithm proceeds by decomposing a game given by k rules into k games –
one for each rule; in a game described by a single basic rule, the Shapley value
of each player is given by a closed-form expression. This argument extends to
read-once MC-nets, where in each rule each literal appears at most once [25].
However, if the formulas in the rules can be arbitrary, the Shapley value becomes
hard to compute. On the other hand, the core-related questions are NP-hard even
for basic MC-nets [32].

4.3.2 Synergy Coalition Groups

Synergy Coalition Group (SCG) Representation [14] is a complete language for
superadditive games that is obtained by trimming down the naive representation,
i.e., one that lists all coalitions together with their values. It is based on the follow-
ing idea. Suppose that a game G = (A,v) is superadditive, and consider a coalition
C ⊆ A. Then we have

v(C)≥ max
CS∈PC\{C} ∑

C′∈CS
v(C′). (8.3)

Now, if the inequality (8.3) holds with equality, then there is no need to store the
value of C as it can be computed from the values of the smaller coalitions. There-
fore, we can represent G by listing the values of all coalitions of size 1 as well as
the values of the coalitions for which there is a synergy, i.e., the inequality (8.3) is
strict.

By construction, the SCG representation is complete. Moreover, it is succinct
when there are only a few groups of agents that can collaborate productively. Fur-
ther, it allows for an efficient procedure for checking whether an outcome is in the
core: it can be shown that if an outcome is not in the core, then there is a “syn-
ergetic” coalition, i.e., one whose value is given explicitly in our representation,
which can profitably deviate. However, the SCG representation has a major draw-
back: computing the value of a coalition may involve finding an optimal partition
of the players into subcoalitions, and is therefore NP-hard.

Chapter 8 351

4.3.3 Skill-Based Representations

In many settings, the value of a coalition can be defined in terms of the skills
possessed by the agents. A simple representation formalism that is based on this
idea has been proposed in [46]: there is a set of skills S, each agent ai ∈ A has a
subset of the skills Sai ⊆ S, and there is a function u : 2S → R, which for every
subset of skills S′ ⊆ S specifies the payoff that can be obtained by a coalition that
collectively possesses all the skills in S′. The value of a coalition C ⊆ A is then

v(C) = u(∪i:ai∈CSai).

Clearly, this representation is complete, as we can identify each agent ai with a
unique skill sai and set u(S′) = v({ai | sai ∈ S′}) for any subset S′ of the skill set.
It is succinct when the performance of each coalition can be expressed in terms
of a small number of skills possessed by the members of the coalition. Ohta et
al. [46] discuss such representations in the context of anonymous environments,
where agents can hide skills or split them among multiple identifiers.

A more structured representation was proposed in [5], where coalition values
are expressed in terms of skills and tasks. Specifically, in addition to the set of
skills S, there is a set of tasks Γ, and every task τ ∈ Γ has a skill requirement
Sτ ⊆ S and a payoff. As before, each agent ai ∈ A has a set of skills Sai ⊆ S. A
coalition C ⊆ A achieves a task τ if it has all skills that are required for τ, i.e., if
Sτ ⊆∪i:ai∈CSai . Finally, there is a task value function F : 2Γ→R, which for every
subset Γ′ ⊆ Γ of tasks specifies the payoff that can be obtained by a coalition
that achieves all tasks in Γ′. A coalitional skill game [4] is then defined as the
coalitional game 〈A,v〉 where:

v(C) = F({τ | Sτ ⊆ ∪i:ai∈CSai}).

This representation is more compact than that of [46] when the number of skills
is large (so that the domain of the function u is very large), but the game can be
described in terms of a small number of tasks, or if the function F can be encoded
succinctly.

4.3.4 Agent-Type Representation

Shrot et al. [67] and Ueda et al. [71] study coalition formation scenarios where
agents can be classified into a small number of types so that the agents of the
same type are symmetric, i.e., make the same contribution to any coalition they
belong to. In such settings, the characteristic function can often be specified more
succinctly.

More formally, suppose that the set of agents A admits a partition {A1, . . . ,AT}
such that for every i = 1, . . . ,T , every a j,ak ∈ Ai and every coalition C such

352 Chapter 8

that a j,ak /∈ C it holds that v(C∪{a j}) = v(C∪{ak}). We will refer to the sets
A1, . . . ,AT as agent types. Then the value of any coalition depends solely on how
many agents of each type it contains. More precisely, given a coalition C ⊆ A, we
define the coalition-type of C as a vector ψ= 〈n1, . . . ,nT 〉, where ni = |C∩Ai|. It is
immediate that two coalitions of the same coalition-type have the same value. This
means that the conventional characteristic function v : 2A → R can be replaced
with the more concise type-based characteristic function, vt : Ψ→ R, which is
defined on the set

Ψ = {〈n1, . . . ,nT 〉 | 0≤ ni ≤
∣∣Ai∣∣}

of all possible coalition-types. To represent this function, we only need to store
O(nT) coalitional values, since |Ψ| = (

∣∣A1
∣∣+ 1)× ·· ·× (

∣∣AT
∣∣+ 1) < nT . Thus,

for small values of T , this representation is significantly more succinct than the
standard one. On the other hand, it is obviously complete: in the worst case, all
agents have different types and vt coincides with v.

5 Coalition Structure Generation
While the focus so far has been on how to distribute the gains from cooperation, in
this section we focus on how to maximize those gains. To state our computational
problem formally, we need some additional notation. Recall that PA denotes the
space of all coalition structures over the set of agents A; we extend this notation
to subsets of A, and write PC to denote the space of all coalition structures over
a set C ⊆ A. Given a set C ⊆ A and a coalition structure CS ∈ PC, let V (CS)
denote the value of CS, which is calculated as follows: V (CS) = ∑C′∈CS v(C′).
The coalition structure generation problem is then to find an optimal coalition
structure CS∗ ∈ PA, i.e., an (arbitrary) element of the set

argmaxCS∈PAV (CS).

This problem is computationally hard. It resists brute-force search, as the number
of possible coalition structures over n players, which is known as the Bell number
Bn [8], satisfies αnn/2≤ Bn≤ nn for some positive constant α (see, e.g., Sandholm
et al. [60] for proofs of these bounds and de Bruijn [18] for an asymptotically tight
bound). Moreover, it is NP-hard to find an optimal coalition structure given oracle
access to the characteristic function [60]. To date, therefore, a number of algo-
rithms have been developed to try and combat this complexity. In what follows,
we will present these algorithms and discuss their relative strengths and weak-
nesses. However, before we do that, we will present the two main representations
of the space of the possible coalition structures as they will provide insight into
the way some of these algorithms work.

Chapter 8 353

5.1 Space Representation

To date, there are two main representations of the space of possible coalition struc-
tures. The first, proposed by Sandholm et al. [60], is called the coalition structure
graph. In this undirected graph, every node represents a coalition structure. These
nodes are categorized into levels PA

1 , . . . ,P
A
n , where level PA

i contains the nodes
that represent all coalition structures containing exactly i coalitions. An edge con-
nects two coalition structures if and only if: (1) they belong to two consecutive
levels PA

i and PA
i−1, and (2) the coalition structure in PA

i−1 can be obtained from
the one in PA

i by merging two coalitions into one. A four-agent example can be
seen in Figure 8.1.

Figure 8.1: The coalition structure graph for four agents.

While the above representation categorizes the coalition structures according
to the number of coalitions they contain, a different representation was proposed
by Rahwan et al. [56] to categorize them based on the sizes of the coalitions they
contain. More specifically, this representation divides the space of coalition struc-
tures into disjoint subspaces that are each represented by an integer partition of
n. Recall that an integer partition of n is a multiset of positive integers, or parts,
whose sum (with multiplicities) equals to n [1]. For instance, n = 4 has five dis-
tinct integer partitions, namely, {4}, {1,3}, {2,2}, {1,1,2}, and {1,1,1,1}. Each
of these partitions corresponds to the subspace of P{a1,a2,a3,a4}, which consists of
all the coalition structures within which the coalition sizes match the parts of the
integer partition. We denote by In the set of integer partitions of n, and by PA

I

the subspace that corresponds to I ∈ In. For instance, P{a1,a2,a3,a4}
{1,1,2} is the subspace

containing all the coalition structures consisting of two coalitions of size 1 and
one coalition of size 2. This representation can be encoded by an integer partition

354 Chapter 8

graph [52]. This is an undirected graph, where every subspace is represented by
a node, and two nodes representing I, I′ ∈ In are connected by an edge if and only
if there exist two parts i, j ∈ I such that I′ = (I \{i, j})]{i+ j} (here] denotes
the multiset union operation). For example, Figure 8.2 shows the integer partition
graph for four agents, as well as the subspaces that correspond to every node in
the graph.

Figure 8.2: The integer partition-based representation for four agents.

Having described the main representations of the search space, in the remain-
ing subsections we will present different approaches to the coalition structure gen-
eration problem, some of which are built upon those representations.

5.2 Dynamic Programming Algorithms
The first dynamic programming algorithm, called DP, was proposed by Yeh [72].
This algorithm is based on the following theorem.

Theorem 8.4 Given a coalition C ⊆ A, let f (C) be the value of an optimal parti-
tion of C, i.e., f (C) = maxP∈PC V (P). Then

f (C) =

{
v(C) if |C|= 1

max
{

v(C) , max{C′,C′′}∈PC
(

f (C′)+ f (C′′)
)}

otherwise.
(8.4)

Proof. The proof is trivial when |C| = 1. Thus, for the remainder of the proof
we will assume that |C| > 1. Let opt(C) be some optimal partition of C, i.e.,
opt(C) ∈ argmaxP∈PCV (P). We will make use of the following lemma.

Lemma 8.1 For any coalition C ⊆ A, if P∗ = {P1, . . . ,Pk} is an optimal partition
of C and k > 1, then for any j = 1, . . . ,k it holds that P′ = {P1, . . . ,Pj} is an

Chapter 8 355

optimal partition of C′ = ∪P′, and P′′ = {Pj+1, . . . ,Pk} is an optimal partition of
C′′ = ∪P′′.

Proof of Lemma 8.1 To prove the lemma, observe that P∗=P′∪P′′ and V (P∗) =
V (P′) +V (P′′). Suppose for the sake of contradiction that P′ was not an op-
timal partition of C′. Then there exists another partition P̂′ ∈ PC′ such that
V (P̂′)>V (P′). However, since P̂′∪P′′ is a partition of C, and since V (P̂′∪P′′) =
V (P̂′)+V (P′′) > V (P∗), it follows that P∗ cannot be an optimal partition of C, a
contradiction. Assuming that P′′ is not an optimal partition of C′′ leads to a contra-
diction as well, by a similar argument. Thus, the proof of the lemma is complete.

Lemma 8.1 shows that if |opt(C)| > 1, then there exists a coalition struc-
ture {C′,C′′} ∈ PC such that opt(C) = opt(C′)∪ opt(C′′). On the other hand, if
|opt(C)| = 1, then surely we would have opt(C) = {C} and V (opt(C)) = v(C).
Equation (8.4) covers both possibilities by taking the maximum over v(C) and
max{C′,C′′}∈PC

(
f (C′)+ f (C′′)

)
.

The way DP works is by iterating over all the coalitions of size 1, and then over
all those of size 2, and then size 3, and so on until size n: for every such coalition
C, it computes f (C) using equation (8.4). As can be seen, whenever |C| > 1, the
equation requires comparing v(C) with max{C′,C′′}∈PC

(
f (C′)+ f (C′′)

)
. The result

of this comparison is stored in a table, t, which has an entry for every coalition.
In particular, if v(C) was greater, then the algorithm sets t[C] = C, so that it can
later on remember that it is not beneficial to split C into two coalitions. Other-
wise, it sets t[C] = argmax{C′,C′′}∈PC

(
f (C′)+ f (C′′)

)
to remember the best way of

splitting C into two coalitions. By the end of this process, f (A) will be computed,
which is by definition equal to V (CS∗). It remains to compute CS∗ itself. This
is done recursively using the table t. The running time of this algorithm can be
shown to be O(3n).

The execution of the algorithm is illustrated by the following example.

Example 8.7 Given A = {a1,a2,a3,a4}, suppose that t[A] = {{a1,a2},{a3,a4}},
i.e., it is most beneficial to split A into {a1,a2} and {a3,a4}. Moreover, suppose
that t[{a1,a2}] = {{a1},{a2}}, while t[{a3,a4}] = {a3,a4}, i.e., it is most bene-
ficial to split {a1,a2} into {a1} and {a2}, but it is not beneficial to split {a3,a4}.
In this case, CS∗ = {{a1},{a2},{a3,a4}}.

Although DP is guaranteed to find an optimal coalition structure, Rahwan and
Jennings [53] showed that many of its operations are in fact redundant. Based
on this, they developed an improved dynamic programming algorithm (IDP) that
avoids all redundant operations. To date, IDP is the fastest algorithm that can

356 Chapter 8

find an optimal solution in O(3n) time. This is significantly less than ω(nn/2) –
the time required to exhaustively enumerate all coalition structures. However, the
disadvantage is that IDP provides no interim solution before completion, meaning
that it is not possible to trade computation time for solution quality.

5.3 Anytime Algorithms
Generally speaking, an anytime algorithm is one whose solution quality improves
gradually as computation time increases [73]. In our case, this is particularly
desirable as the agents might not always have sufficient time to run the algorithm
to completion due to the exponential size of the search space. Moreover, being
anytime makes the algorithm robust against failure; if the execution is stopped
before the algorithm would normally have terminated, then it can still return a
solution that is better than the initial – or any intermediate – one.

In this subsection, we will focus on anytime algorithms that return optimal so-
lutions, or at least provide worst-case guarantees on the quality of their solutions.

5.3.1 Identifying Subspaces with Worst-Case Guarantees

A number of researchers have attempted to answer the following question:

If the solution space is too large to be fully searched, can we search through
only a subset of this space, and be guaranteed to find a solution CS∗∗ that
is within a certain bound β from optimum, that is, V (CS∗)

V (CS∗∗) ≤ β?

This problem can be approached by (1) dividing the space into subsets, and (2)
identifying a sequence in which these subsets are searched so that the worst-case
bound on solution quality is guaranteed to improve after each subset. The first
such algorithm was developed by Sandholm et al. [60], and is mainly based on the
following theorem.

Theorem 8.5 To establish a worst-case bound β, it is sufficient to search the low-
est two levels of the coalition structure graph, i.e., PA

1 and PA
2 . With this search,

the bound is β = n, and the number of searched coalition structures is 2n−1. Fur-
thermore, no algorithm can establish any bound by searching a different set of at
most 2n−1 coalition structures.

Proof. For a partial search to establish a bound on solution quality, every coalition
C ⊆ A must appear in at least one of the searched coalition structures. This is due
to the possibility of having a single coalition whose value is arbitrarily greater
than the values of other coalitions. Now, since the grand coalition appears in
PA

1 , and every other coalition C ⊂ A appears in {C,A\C} ∈ PA
2 , the value of the

Chapter 8 357

best coalition structure in PA
1 ∪PA

2 is at least maxC⊆A v(C). On the other hand,
since CS∗ can include at most n coalitions, its value cannot be greater than n×
maxC⊆A v(C). This means V (CS∗)

maxCS∈PA
1∪P

A
2

V (CS∗) ≤ n.

As for the number of searched coalition structures, the reader can check that∣∣PA
1 ∪PA

2

∣∣ = 2n−1. What remains is to show that no bound can be established
by searching a different set of at most 2n−1 coalition structures. This is done by
proving that PA

1 ∪PA
2 is the unique subset of PA of size at most 2n−1 in which

every coalition appears in some coalition structure. We leave this as an exercise
for the reader.

Based on this theorem, the algorithm starts by searching the bottom two levels.
After that, if additional time is available, the algorithm searches the remaining
levels one by one, starting from the top level and moving downward. Sandholm
et al. proved that the bound improves with this search. In particular, once the
algorithm completes searching level PA

i , the bound becomes β= bn/hc, where h=
b(n− i)/2c+2. The only exception is when n≡ h−1(mod h) and n≡ i(mod 2),
in which case the bound becomes β = dn/he. Importantly, this means that after
searching the bottom two levels and establishing the bound β = n, one can very
easily drop (i.e., improve) the bound to β = dn/2e by searching the top level,
which only contains one coalition structure.

A different approach was proposed by Dang and Jennings [16]. Their algo-
rithm starts by searching the bottom two levels, as well as the top one (as Sand-
holm et al.’s algorithm does). After that, however, instead of searching the re-
maining levels one by one (as Sandholm et al. do), the algorithm searches through
certain subsets of all remaining levels. Specifically, it searches the coalition struc-
tures that have at least one coalition of size at least dn(d−1)/de (with d running
from b(n+1)/4c down to 2). Dang and Jennings proved that, for any given value
of d, the algorithm establishes a bound of 2d−1.

So far, we have seen how certain bounds can be established by searching
certain subsets of the search space. However, with the exception of β = n and
β = dn/2e, we still do not know the minimum subset that must be searched in
order to establish a desired bound. To this end, let us introduce the following no-
tation. For any integer partition I ∈ In, let PI denote the set of possible partitions
of I. For instance, P{1,1,2} consists of the following four partitions: {{1,1,2}},
{{1,1},{2}}, {{1,2},{1}}, and {{1},{1},{2}}. Moreover, for any set of integer
partitions I′ ⊆ In, let S(I′) be the set that consists of every non-empty subset of
every integer partition in I′, i.e.,

S(I′) =
⋃
I∈I′

⋃
J⊆I,J 6= /0

{J}.

358 Chapter 8

For example, given I′ = {{1,1,2},{1,3}}, the set S(I′) consists of the following
subsets: {{1}}, {{2}}, {{3}}, {{1,1}}, {{1,2}}, {{1,3}}, {{1,1,2}}. Finally,
for any integer partition I ∈ In and any set of integer partitions I′ ⊆ In, let η(I′, I)
denote the minimum number of subsets in S(I′) that are required to construct a
partition in PI . Formally,

η(I,I′) =


minS⊆S(I′):S∈PI |S| if ∃S⊆ S(I′) : S ∈ PI

+∞ otherwise.

For example, given I = {1,1,1,3} and I′ = {{1,1,2},{1,3}}, the minimum num-
ber of subsets in S(I′) that are required to construct a partition of I is 2, and those
subsets are {1,1} and {1,3}. Therefore, we have η(I′, I) = 2. Rahwan et al. [55]
showed that this definition is crucial when determining the minimum subset that
must be searched in order to establish a certain bound. Specifically, they prove the
following theorem.

Theorem 8.6 For any real value b, 1≤ b≤ n, and for any I′ ⊆ In, we can estab-
lish a bound β = b by searching ∪I∈I′PA

I if and only if the following holds:

∀I ∈ In,η(I′, I)≤ b. (8.5)

Furthermore, the minimum set of coalition structures that must be searched in or-
der to establish a bound β = b is ∪I∈In(b)P

A
I , where In(b) is defined as follows:

In(b) ∈ argmin
I′⊆In:∀I∈In,η(I′,I)≤b

∣∣∣∪I∈I′P
A
I

∣∣∣ .
In other words, to establish a bound β = b, all we need to do is to find a set of
integer partitions I′ ⊆ In such that, if we take every possible subset of every I ∈ I′,
then with these subsets we can partition every I ∈ In into at most b parts. One can
optimize this by looking for the set of integer partitions that minimizes

∣∣∪I∈I′PA
I

∣∣.
We omit the proof of Theorem 8.6 due to space constraints. However, the

intuition is similar to the proof of Theorem 8.5, where we proved that a bound
β = n can be established by searching PA

1 ∪PA
2 . This was done by showing that

CS∗ contains at most n coalitions, and that every possible coalition appears in
some CS ∈ PA

1 ∪PA
2 . The proof of Theorem 8.6 generalizes this idea by replacing

“coalitions” with “combinations of coalitions”. More specifically, equation (8.5)
means that CS∗ contains at most b combinations, and that every one of those
combinations appears in some CS ∈ ∪I∈I′PA

I .
Theorem 8.6 enables us to describe the set to be searched when establishing

a given bound in terms of subspaces that are represented by integer partitions.

Chapter 8 359

Therefore, it would be useful to have an algorithm that can efficiently search those
subspaces. In what follows, we present an algorithm that does exactly that.

5.3.2 Integer Partition-Based Search

An anytime algorithm, called IP, was developed by Rahwan et al. [58] based on
the integer partition-based representation from Section 5.1. In particular, it uses
the observation that, for any subspace PA

I , it is possible to compute upper and
lower bounds on the value of the best coalition structure in that subspace. More
formally, let MaxA

s and AvgA
s be the maximum and average values of all coalitions

of size s, respectively. It turns out that one can compute the average value of the
coalition structures in PA

I without inspecting these coalition structures [58].

Theorem 8.7 For any I ∈ In, let I(i) be the multiplicity of i in I. Then:

∑CS∈PA
I

V (CS)∣∣PA
I

∣∣ = ∑
i∈I

I(i) ·AvgA
i . (8.6)

Proof. For any C ⊆ A, the number of coalition structures in PA
I that contain C

depends solely on the size of C. In other words, this number is equal for any two
coalitions that are of the same size. Let us denote this number by N

|C|
I . Formally,

for every C ⊆ A we set N|C|I =
∣∣{CS ∈ PA

I |C ∈ CS}
∣∣. Then we have

∑
CS∈PA

I

V (CS) = ∑
i∈I

∑
C:|C|=i

Ni
I · v(C) = ∑

i∈I
Ni

I ∑
C:|C|=i

v(C) = ∑
i∈I

Ni
I ·
(

n
i

)
·AvgA

i ,

where
(n

i

)
is the binomial coefficient (i.e., the number of possible coalitions of

size i). Thus, to prove (8.6) it suffices to prove that

∑i∈I N
i
I ·
(n

i

)
·AvgA

i∣∣PA
I

∣∣ = ∑
i∈I

I(i) ·AvgA
i .

This can be done by proving that the following holds for all i ∈ I:

Ni
I ·
(

n
i

)
= I(i) ·

∣∣∣PA
I

∣∣∣ . (8.7)

Observe that every CS ∈ PA
I contains exactly I(i) coalitions of size i. Thus:

∑
C:|C|=i

N
|C|
I = ∑

C:|C|=i
∑

CS∈PA
I :C∈CS

1 = ∑
CS∈PA

I

∑
C∈CS:|C|=i

1 = ∑
CS∈PA

I

I(i) = |PA
I | · I(i).

360 Chapter 8

We have shown that ∑C:|C|=iN
|C|
I = |PA

I | · I(i). On the other hand, since N
|C|
I

is equal for all coalitions of size |C|, we obtain ∑C:|C|=iN
|C|
I =

(n
i

)
·Ni

I . Thus,
equation (8.7) holds.

Based on this theorem, for every I ∈ In, it is possible to compute a lower
bound LBI on the value of the best coalition structure in PA

I as follows: LBI =

∑s∈I I(s)AvgA
s . This is simply because the best value is always greater than, or

equal to, the average one. Similarly, it is possible to compute an upper bound
UBI on the value of the best coalition structure in PA

I as UBI = ∑s∈I I(s)MaxA
s .

Using these bounds, the algorithm computes an upper bound UB∗ = maxI∈In UBI
and a lower bound LB∗ = maxI∈In LBI on the value of the optimal coalition struc-
ture CS∗. Computing UB∗ allows for establishing a bound on the quality of the
best coalition structure found at any point in time, denoted CS∗∗; this bound is
β = UB∗/V (CS∗∗). On the other hand, computing LB∗ allows for identifying sub-
spaces that have no potential of containing an optimal coalition structure, which
are PA

I : UBI < LB∗. These subspaces are pruned from the search space. As for the
remaining subspaces, the algorithm searches them one at a time, unless a coali-
tion structure is found that has a value greater than, or equal to, the upper bound
of some subspace, in which case that subspace no longer needs to be searched.
Searching a subspace is done using an efficient process that applies a branch-and-
bound technique to avoid examining every coalition structure in that subspace
whenever possible. A distributed version of IP has also been developed, see [43]
for more details.

The IP algorithm can, in the worst case, end up searching the entire space, i.e.,
it runs in O(nn) time. In practice, however, IP has been shown to be significantly
faster than IDP given popular coalition-value distributions, and the bound that it
generates, i.e., β = UB∗/V (CS∗∗), has been shown to be significantly better than
those obtained by searching particular subsets as per the previous subsection.

An extended version of IP, called IDP-IP, was developed by Rahwan and Jen-
nings [52]. As the name suggests, this algorithm is a combination of IDP and IP;
it is based on the observation that IDP, even if not run to completion, can still pro-
vide useful information. Thus, the basic idea is to partially run IDP, and then use a
modified version of IP that can continue the search from where IDP has stopped.
This results in a hybrid performance that can be controlled by simply setting the
point at which IDP stops. In so doing, one can control the trade-off between the
desired features of both IDP and IP. For more details, see [52].

5.3.3 Integer Programming

A different anytime approach, compared to what we have discussed so far, is to
formulate the coalition structure generation problem as an integer program. More

Chapter 8 361

specifically, let C1,C2, . . . ,C2n denote the possible coalitions. Let z be an n× 2n

binary matrix, where every row represents an agent and every column represents
a coalition, so that zi, j = 1 if and only if ai ∈C j. Finally, let us have 2n decision
variables, x1,x2, . . . ,x2n , where x j = 1 corresponds to C j being selected in the
solution. The coalition structure generation problem can then be modeled as:

max ∑
j=1,...,2n

v(C j) · x j subject to:

∑
j=1,...,2n

zi, j · x j = 1 for i = 1,2, . . . ,n

x j ∈ {1,0} for j = 1,2, . . . ,2n

With this formulation, it is possible to apply any integer programming solver.
However, this approach has been shown to be inefficient, e.g., even an industrial-
strength solver such as ILOG’s CPLEX was shown to be significantly slower than
both IDP and IP, and quickly runs out of memory as the number of agents in-
creases [57].

5.4 Metaheuristic Algorithms
In all the algorithms that were presented so far, the focus was on finding an opti-
mal solution, or a solution that is within a bound from optimum. However, as the
number of agents increases, the problem becomes too hard, and the only practical
option would be to use metaheuristic algorithms. Such algorithms do not guaran-
tee that an optimal solution is ever found, nor do they provide any guarantees on
the quality of their solutions. However, they can usually be applied for very large
problems. Next, we outline some of these algorithms.

Sen and Dutta [63] developed a genetic algorithm for coalition structure gen-
eration. This algorithm starts with an initial, randomly generated set of coalition
structures, called a population. After that, the algorithm repeats the following
three steps: (1) evaluation, (2) selection, and (3) recombination. More specif-
ically, the algorithm evaluates every member of the current population, selects
members based on the outcome of the evaluation, and constructs new members
from the selected ones by exchanging and/or modifying their contents.

Keinänen [35] proposed an algorithm based on Simulated Annealing – a
generic stochastic local search technique. At each iteration, the algorithm moves
from the current coalition structure to a coalition structure in its neighborhood,
where neighborhoods can be defined using a variety of criteria. More specifically,
the algorithm starts by generating a random coalition structure CS. Then, at ev-
ery iteration, it samples a random coalition structure CS′ in the neighborhood of
CS. If CS′ is better than CS, then the algorithm sets CS = CS′. Otherwise, it sets

362 Chapter 8

CS = CS′ with a probability e
V (CS′)−V (CS)

τ , where τ is the temperature parameter that
decreases after each iteration according to an annealing schedule τ = ατ, where
0 < α < 1.

A decentralized, greedy algorithm was proposed by Shehory and Kraus [66].
This algorithm ignores coalitions containing more than a certain number of agents.
It returns a coalition structure CS that is constructed iteratively in a greedy manner;
at every iteration, the best of all candidate coalitions is added to CS, where a
candidate coalition is one that does not overlap with any of the coalitions that were
added to CS in previous iterations. The search for the best candidate coalition is
done in a distributed fashion; the agents negotiate over which one of them searches
which coalitions. A significantly improved distribution mechanism was later on
proposed in [51].

Another greedy algorithm, which was put forward by Di Mauro et al. [42], is
based on GRASP – a general purpose greedy algorithm, which after each iteration
performs a quick local search to try and improve its solution [28]. In the coalition
structure generation version of GRASP, a coalition structure CS is constructed it-
eratively. Every iteration consists of two steps. The first step is to add the best
candidate coalition to CS, resulting in a set of pairwise disjoint, but not necessar-
ily exhaustive, coalitions, i.e., ∪CS ⊆ A. The second step is to explore different
neighborhoods of CS. These two steps are repeated until ∪CS = A. Furthermore,
the whole process of constructing CS is repeated over and over to try and find
better solutions. This algorithm has been shown to work particularly well, with
empirical results suggesting that it is the best metaheuristic algorithm for coalition
structure generation to date.

5.5 Coalition Structure Generation under Compact Represen-
tations

So far, we focused on the coalition structure generation problem under the char-
acteristic function representation (where the input consists of a value for every
possible coalition). In what follows, we briefly discuss several papers that con-
sider alternative, often more concise, representations.

5.5.1 Distributed Constraint Optimization

The Distributed Constraint Optimization Problem (DCOP) framework has re-
cently become a popular approach for modeling cooperative agents [44]. In this
framework: (1) each agent has a choice of actions, (2) reward is determined by the
combination of actions, and (3) the goal is for every agent to choose an action so
as to maximize the sum of the rewards. Ueda et al. [70] considered the coalition

Chapter 8 363

structure generation problem where the multiagent system is represented as one
big DCOP, and every coalition’s value is computed as the optimal solution of the
DCOP among the agents of that coalition.

At first glance, this might seem too computationally expensive since there are
2n possible coalitions. Thus, to find the optimal coalition structure, one might
need to solve 2n instances of the NP-hard DCOP problem. Interestingly, how-
ever, Ueda et al. showed that the process of finding an optimal, or near optimal,
coalition structure does not have to be divided into two independent stages: (1)
computing all coalition values, and (2) finding an optimal combination of disjoint
and exhaustive coalitions. Instead, the big DCOP that represents the multiagent
system can be modified so that those two stages are merged. This means the de-
sired coalition structure can be obtained by solving a single, modified DCOP.

The modification is controlled by a single parameter, called σ, which speci-
fies the maximum number of coalitions that are allowed to contain more than one
agent. We will call these multiagent coalitions. The basic idea behind the mod-
ification is to change every agent’s domain, i.e., set of possible actions. Specifi-
cally, every action d j in the original domain is replaced by σ actions, d j,1, . . . ,d j,σ,
where d j,i means that the agent performs action d j while joining the ith multiagent
coalition. The new domain also contains an action called “independent”, which
means that the agent acts independently. The modified DCOP can be solved using
any existing algorithm that can obtain an optimal solution, e.g., ADOPT [44] or
DPOP [49]. Assuming that the original number of possible actions per agent is d,
the search space size for the original DCOP is dn, while for the modified DCOP
it is (σd + 1)n. The following theorem implies that the optimal solution of the
modified DCOP is within a bound β =

⌊n
2

⌋
/σ from optimum.

Theorem 8.8 Let In
k ⊆ In be a set in which every integer partition contains at most

k integers that are greater than 1. Then, the best coalition structure in ∪I∈In
k
PA

I is
within a bound β =

⌊n
2

⌋
/k from optimum.

Proof. Assume that CS∗ contains ` multiagent coalitions, where ` > k. Let
C1, . . . ,C`−k be the `− k coalitions with the smallest values in CS∗. Let us split
each coalition Ci, i = 1, . . . , `−k, into single-agent coalitions; denote the resulting
coalition structure by CS′k. Clearly, CS′k ∈ ∪I∈In

k
PA

I . Furthermore, the total value
of C1, . . . ,C`−k is at most `−k

` V (CS∗), and the values of the single-agent coalitions
are non-negative. Hence, we have V (CS′k)≥ k

`V (CS∗). It remains to observe that
`≤

⌊n
2

⌋
.

364 Chapter 8

5.5.2 Marginal Contribution Nets

Ohta et al. [45] studied the coalition structure generation problem under the basic
MC-net representation (see Section 4.3.1). Recall that a basic MC-net rule can
be written as (Pr,Nr)→ ϑr: the interpretation is that a coalition that contains
all agents in Pr and none of the agents in Nr can earn a profit of ϑr. Ohta et
al. consider a restricted class of basic MC-nets, where for each r we have Pr 6= /0

and ϑr > 0; it can be shown that any characteristic function can be represented
by such a restricted MC-net. They define a set of rules R′ ⊆ R to be feasible if
all the rules in R′ are applicable at the same time to some coalition structure. In
other words, R′ is feasible if there exists a coalition structure CS such that every
rule r ∈ R′ is applicable to some C ∈ CS. The problem of finding an optimal
coalition structure is then equivalent to the problem of finding a feasible set of
rules R′ such that ∑r∈R′ ϑr is maximized. While this problem is NP-hard, Ohta et
al. showed that it admits a mixed integer programming (MIP) formulation. Their
MIP is based on the observation that, for any two rules r,r′, the possible relations
between r and r′ can be classified into the following four cases:

• Compatible on different coalitions (CD): This is when Pr ∩ Pr′ = /0

and (Pr ∩Nr′ 6= /0 or Pr′ ∩Nr 6= /0). For example, ({a1,a2}, /0)→ ϑ1 and
({a3,a4},{a1})→ ϑ2 are applicable at the same time in some CS as long as
a1,a2 appear in a coalition C ∈ CS and a3,a4 appear in a different coalition
C′ ∈ CS.

• Incompatible (IC): This is when Pr∩Pr′ 6= /0 and (Pr∩Nr′ 6= /0 or Pr′∩Nr 6=
/0). For example, ({a1,a2}, /0)→ϑ1 and ({a2,a3},{a1})→ϑ2 are not appli-
cable at the same time, because the first requires a1 and a2 to appear together
in a coalition, while the second requires a2 and a3 to appear together in a
coalition that does not contain a1.

• Compatible on the same coalition (CS): This is when Pr∩Pr′ 6= /0 and Pr∩
Nr′ = Pr′ ∩Nr = /0. For example, ({a1,a2}, /0)→ ϑ1 and ({a2,a3},{a4})→
ϑ2 are applicable at the same time to some coalition structure CS as long as
there exists C ∈ CS such that {a1,a2,a3} ⊆ C and a4 /∈ C. Note that both
rules apply to the same coalition.

• Independent (ID): This is when Pr∩Pr′ = Pr∩Nr′ = Pr′ ∩Nr = /0.

Consider a graphical representation of an MC-net in which every node is a rule,
and between any two nodes there exists an edge whose type is one of the four
cases described above. Then, the following holds:

Chapter 8 365

Theorem 8.9 A set of rules R′ is feasible if and only if (1) it includes no pair of
rules that are connected by an edge of type IC, and (2) for any two rules in R′

that are connected by an edge of type CD, it is not possible to reach one from the
other via a series of edges of type CS.

To understand the intuition behind the proof, consider an example of three rules,
r1,r2,r3. Suppose that for i = 1,2,3 we have ri = (Pi,Ni) → ϑi, where P1 =
{a1,a2}, N1 = /0, P2 = {a2,a3}, N2 = /0, and P3 = {a3,a4}, N3 = {a1}. Here,
r1 and r2 are connected by an edge of type CS. Thus, they must be applicable to
a single coalition in CS, say C′, such that P1∪P2 ⊆C′. Similarly, an edge of type
CS connects r2 and r3, and so they must be applicable to a single coalition in CS,
say C′′, such that P2∪P3 ⊆C′′. Now, since P1∪P2 overlaps with P2∪P3, and since
the coalitions in CS are pairwise disjoint, we must have C′ =C′′. This means that
r1,r2,r3 must all be applicable to the same coalition, i.e., the edge between r1 and
r3 must not be of the type IC or CD. However, in our example, we happen to have
an edge of type CD between r1 and r3. Therefore, any rule set containing r1,r2,r3
is not feasible.

Based on Theorem 8.9, Ohta et al. proposed the following MIP formulation.

max ∑
r∈R

ϑr · xr subject to:

xri + xr j ≤ 1 for each edge (ri,r j) of type IC (8.8)
ye

ri
= 0 for each edge e = (ri,r j) of type CD with j > i (8.9)

ye
r j
≥ 1 for each edge e = (ri,r j) of type CD with j > i (8.10)

ye
rk
≤ ye

r` +(1− xrk)+(1− xr`)

for each edge (rk,r`) of type CS (8.11)
ye

r` ≤ ye
rk
+(1− xrk)+(1− xr`)

for each edge (rk,r`) of type CS (8.12)
xr ∈ {0,1} for each r ∈ R

Here, we have a binary variable xr for every rule r, where xr = 1 means that r
is selected in the solution. Thus, condition (1) of Theorem 8.9 is enforced by the
constraint (8.8), which ensures that two rules connected by an edge of type IC are
never selected at the same time. Moreover, for every edge e of type CD or CS and
every rule r that is adjacent to this edge we define a variable ye

r . These variables
are used in constraints (8.9)–(8.12) to enforce condition (2) of Theorem 8.9. In
more detail, for every edge e = (ri,r j) of type CD with j > i constraints (8.9)
and (8.10) ensure that ye

ri
6= ye

r j
. Furthermore, for every edge (rk,r`) of type CS

the constraints (8.10) and (8.11) ensure that, if both rk and r` are selected, then
ye

rk
= ye

rl
. Thus, by enforcing both conditions of Theorem 8.9, we guarantee that

every solution to this MIP is a feasible rule set.

366 Chapter 8

5.5.3 Coalitional Skill Games

Bachrach et al. [4] considered the coalition structure generation problem in coali-
tional skill games (see Section 4.3.3). While this problem is, in general, very hard
computationally, Bachrach et al. showed that it admits an efficient algorithm as
long as the number of tasks m and the treewidth of a certain associated hyper-
graph are small. To describe their algorithm, we need a few additional definitions.

Given a skill game with a skill set S, its skill graph is a hypergraph g= 〈V,E〉 in
which every agent corresponds to a vertex, and every skill si ∈ S is represented as a
hyperedge esi ∈E that connects all agents that possess this skill. The “complexity”
of a hypergraph can be measured using the notion of treewidth. The following
definition is reproduced from [30] (an illustration is provided in Figure 8.3).

Definition 8.13 Given a hypergraph g = 〈V,E〉, a tree decomposition of g is a
tuple (Q,B), where B is a family of subsets of V (each such subset Bi ∈B is called
a bag), and Q is a tree whose node set is B such that: (1) for each e ∈ E there is a
bag Bi ∈ B such that e ∈ Bi ; (2) for each v j ∈V the set {Bi ∈ B | v j ∈ Bi} is non-
empty and connected in Q. The width of (Q,B) is maxBi∈B |Bi|−1. The treewidth
of g is the minimum width of (Q,B) over all possible tree decompositions (Q,B)
of g.

Figure 8.3: A skill graph and its tree decomposition with width 2.

Let CSG(m,w) be the class of all coalitional skill games where the number of
tasks is at most m and the treewidth of the corresponding skill graph is at most
w. We will now show that, for fixed m and w, the coalition structure generation
problem for a game in CSG(m,w) can be solved in time polynomial in the number
of agents n and the number of skills k (but exponential in m and w).

To start, observe that a single task can be performed multiple times by a single
coalition structure CS. To be more precise, a task that requires a skill which only
x agents share can be performed at most x times (this is when each one of those

Chapter 8 367

x agents appears in a different coalition in CS). Let d denote the largest number
of agents sharing a single skill; note that d ≤ w+ 1. Then a coalition structure
can accomplish at most dm tasks. Based on this, we will define a candidate task
solution as a set {Γi}h

i=1 where each Γi is a subset of Γ, and h ≤ dm. For every
coalition structure CS = {Ci}h

i=1, we say that CS accomplishes {Γi}h
i=1 if Ci ac-

complishes all tasks in Γi, for i = 1, . . . ,h. We say that {Γi}h
i=1 is feasible if there

exists at least one coalition structure that accomplishes it. Clearly, the total value
obtained by accomplishing these tasks is ∑

h
i=1 F(Γi). The problem of finding an

optimal coalition structure is thus equivalent to the problem of finding a feasible
set of task subsets that maximizes ∑

h
i=1 F(Γi). To solve this problem, it is suffi-

cient to iterate over all possible choices of {Γi}h
i=1: for each such choice we find

the coalition structure that accomplishes it, or determine that it is not feasible.
Next, we show how this can be done for a fixed set {Γi}h

i=1 in time polynomial in
n and k; the bound on the running time follows as the number of candidate task
solutions is bounded by (2m)dm ≤ (2m)(w+1)m.

To this end, observe that every coalition structure can be viewed as a coloring
of the agents, where all agents with the same color form a coalition. Based on
this, for each choice of {Γi}h

i=1, let us define a constraint satisfaction problem2

whose underlying graph is the skill graph g, where:

• the variables correspond to the agents;

• the domain (i.e., the possible values) of each variable (i.e., agent) consists
of the possible colors (i.e., the possible coalitions that the agent can join);

• For each skill s, we have the following constraint: For each i = 1, . . . ,h, if
some task in Γi requires s, then at least one agent in Ci possesses s.

To solve this “primal” constraint satisfaction problem, we first check if the
treewidth of g is bounded by w, and if so return a tree decomposition (this can
be done in time polynomial in n and k, see [30]). Then, to solve the primal prob-
lem, we define a “dual” problem. This is another constraint satisfaction problem
whose underlying graph is the tree decomposition of g and

• the variables correspond to the bags in the tree decomposition;

• the domain of every bag consists of the possible colorings of the agents
in the bag. The size of this domain is O(hw+1) = O(((w+ 1)m)w+1) since
every bag contains at most w+ 1 agents, and every agent has h possible
colors;

2For more details on constraint satisfaction problems, see [59].

368 Chapter 8

• the constraints are of two types. The first prevents an agent from getting
different colors in two neighboring bags. This, in turn, ensures that every
agent gets the same color in all bags (due to the structure of the tree decom-
position). The second type of constraints is exactly the same as the one in
the primal problem (i.e., if a skill is required for at least one task in Γi, then
at least one agent in Ci possesses that skill).

Note that a solution to the dual problem is in fact a valid solution to the primal
problem. Since the underlying graph of the dual problem is a tree, it can be solved
in time polynomial in n and k [4, 59].

5.5.4 Agent-Type Representation

Aziz and de Keijzer [3] and Ueda et al. [71] studied the coalition structure gener-
ation problem under the agent-type representation (see Section 4.3.4). Recall that
under this representation the game is given by a partition of the set of agents A
into T types A1, . . . ,AT and a type-based characteristic function vt : Ψ→R, where
Ψ = {〈n1, . . . ,nT 〉 | 0≤ ni ≤

∣∣Ai
∣∣}. Thus, a coalition structure can be viewed as a

partition of 〈
∣∣A1
∣∣ , . . . , ∣∣AT

∣∣〉. Formally, we have the following definition.

Definition 8.14 A type-partition of a coalition-type ψ = 〈n1, . . . ,nT 〉 is a set of
coalition-types λ = {〈n1

i , . . . ,n
T
i 〉}`i=1 such that 〈∑`

i=1 n1
i , . . . ,∑

`
i=1 nT

i 〉 = ψ. The
value of λ is computed as V t(λ) = ∑

`
i=1 vt(〈n1

i , . . . ,n
T
i 〉).

For example, {〈0,1,2〉,〈4,3,2〉} is one of the possible type-partitions of 〈4,4,4〉,
and V t({〈0,1,2〉,〈4,3,2〉}) = vt(〈0,1,2〉)+ vt(〈4,3,2〉).

Thus, while we typically deal with “coalitions” and “coalition structures,” in
an agent-type representation we deal with “coalition-types” and “type-partitions.”
The problem of finding an optimal coalition structure is then equivalent to that of
finding an optimal type-partition of 〈|A1|, . . . , |AT |〉. For example, if we have four
types and five agents of each type, we need to find an optimal type-partition of
〈5,5,5,5〉. Two dynamic programming algorithms were proposed for this prob-
lem; both run in O(n2T) time [3, 71]. We will present the one given in [3], since
it is easier to describe.

For any coalition-type ψ ∈Ψ, let us denote by f t(ψ) the value of the optimal
type-partition of ψ. Then, we can compute f t(ψ) recursively as follows [3]:

f t(ψ) =


0 if ni = 0 for i = 1, . . . ,T
max{ f t(〈n1− x1, . . . ,nT − xT 〉)+ vt(〈x1, . . . ,xT 〉)

| xi ≤ ni for i = 1, . . . ,T} otherwise.
(8.13)

Chapter 8 369

Based on this recursive formula, we can compute the optimal type-partition
by dynamic programming. Specifically, the algorithm works by filling two ta-
bles, namely R and Q, each with an entry for every coalition-type. Entry
R[〈n1, . . . ,nT 〉] of table R stores an optimal type-partition of 〈n1, . . . ,nT 〉, whereas
entry Q[〈n1, . . . ,nT 〉] of table Q stores the value of this type-partition. The algo-
rithm fills out these tables using (8.13), where “lower” entries are filled in first, i.e.,
if mi ≤ ni for all i = 1, . . . ,T , then 〈m1, . . . ,mT 〉 is dealt with before 〈n1, . . . ,nT 〉.
For each 〈n1, . . . ,nT 〉, the algorithm finds a coalition type 〈x1, . . . ,xT 〉 that maxi-
mizes the max-expression of (8.13), and then sets

Q[〈n1, . . . ,nT 〉] = Q[〈n1− x1, . . . ,nT − xT 〉]+ vt(〈x1, . . . ,xT 〉),
R[〈n1, . . . ,nT 〉] = R[〈n1− x1, . . . ,nT − xT 〉],〈x1, . . . ,xT 〉.

By the end of this process, we compute Q[〈|A1|, . . . , |AT |〉] and R[〈|A1|, . . . , |AT |〉],
which provide the solution to the coalition structure generation problem. Filling
out each cell of R and Q requires O(nT) operations, and the size of each table is
|Ψ|< nT . Hence, the algorithm runs in time O(n2T).

5.6 Constrained Coalition Formation
So far, we assumed that agents can split into teams in any way they like. How-
ever, in practice some coalition structures may be inadmissible. To deal with this
issue, Rahwan et al. [54] proposed the constrained coalition formation (CCF)
framework, which allows one to impose constraints on the coalition structures
that can be formed. Formally, a CCF game is a tuple 〈A,CS,v〉, where A is the
set of agents, CS is the set of coalition structures that are feasible (i.e., allowed
to form), and v is the characteristic function that assigns a real value to every
coalition that appears in some feasible coalition structure. Note that, in the gen-
eral case, the notion of feasibility is defined for coalition structures rather than
coalitions. For instance, if A = {a1,a2,a3,a4} and we define CS as the set of all
coalition structures in which all coalitions have the same size, then the coalition
structure {{a1},{a2},{a3,a4}} is not feasible, even though each of its component
coalitions may be a part of a feasible coalition structure.

There are, however, many settings of interest where the constraints implied by
CS can be reduced to constraints on individual coalitions. More formally, a CCF
game G = 〈A,CS,v〉 is locally constrained if there exists a set of coalitions C⊆ 2A

such that CS= {CS∈PA |CS⊆ C}. We will refer to the coalitions in C as feasible
coalitions.

To represent the constraints succinctly, the authors propose the use of propo-
sitional logic. More formally, let BA = {bi | ai ∈ A} be a set of Boolean variables,
and let ϕ be a propositional formula over BA, constructed using the usual classical

370 Chapter 8

connectives (∧,∨,¬,→, . . .). A coalition C satisfies ϕ if ϕ is satisfied under the
truth assignment that sets all bi with ai ∈C to true and all bi with ai 6∈C to false.
For example, any coalition containing a1 and a2 satisfies ϕ = b1∧b2. It has been
shown that this language can represent any locally constrained CCF game, and
that it can be extended so as to represent any CCF game [54].

Rahwan et al. then define a natural subclass of locally constrained CCF games,
which they call basic CCF games. Intuitively, the constraints in a basic CCF game
are expressed in the form of (1) sizes of coalitions that are allowed to form, and
(2) subsets of agents whose presence in any coalition is viewed as desirable/pro-
hibited. The constraints of the former type are called size constraints, denoted as
S⊆ {1, . . . ,n}. As for the latter type of constraints, the desirable subsets of agents
are called positive constraints, denoted as P⊆ 2A, while the prohibited subsets are
called negative constraints, denoted as N ⊆ 2A. Thus, a coalition C is feasible if
(1) its size is permitted, i.e., |C| ∈ S, and (2) it contains at least one of the desirable
subsets and none of the prohibited ones, i.e., ∃P ∈ P : P⊆C and ∀N ∈N,N 6⊆C.
We will denote the set of all such feasible coalitions as c(A,P,N,S).

The set of constraints in a basic CCF game can be transformed into another,
isomorphic set so as to facilitate both the process of identifying feasible coalitions
and the process of searching for an optimal feasible coalition structure [54]. This
transformation is based on the observation that, for any agent ai ∈ A, the coalitions
in c(A,P,N,S) can be divided into:

• coalitions that contain ai. For those, any constraint P ∈ P : ai ∈ P has the
same effect as P\{ai}. Similarly, any constraint N ∈N : ai ∈N has the same
effect as N\{ai}. Thus, every such P or N can be replaced with P\{ai} or
N\{ai}, respectively;

• coalitions that do not contain ai. For those, every positive or negative con-
straint that contains ai has no effect, and so can be removed.

Thus, the problem of dealing with c(A,P,N,S) is replaced with two simpler
problems; we can then apply the same procedure recursively. This process can be
visualized as a tree, where the root is c(A,P,N,S), and each node has two outgo-
ing edges: one leads to a subtree containing some agent a j and the other leads to a
subtree that does not contain a j. As we move down the tree, the problems become
simpler and simpler, until one of the following two cases is reached: (1) a case
where one can easily generate the feasible coalitions, which is called a base case,
or (2) a case where one can easily verify that there are no feasible coalitions (i.e.,
the constraints cannot be satisfied), which we call an impossible case (see [54] for
more details). This is illustrated in Figure 8.4 (A), where the edge labels ai and
ai indicate whether the branch contains, or does not contain, ai, respectively. By

Chapter 8 371

Figure 8.4: Feasible coalitions and coalition structures: given a basic CCF, (A)
shows how to generate feasible coalitions, while (B) shows how to generate feasi-
ble coalition structures.

generating the feasible coalitions in all base cases, one ends up with the feasible
coalitions in c(A,P,N,S).

The tree structure described above also facilitates the search for an optimal
feasible coalition structure. Indeed, observe that every such tree contains exactly
one path that (1) starts with the root, (2) ends with a leaf, and (3) consists of
edges that are each labeled with ai for some ai ∈ A. In Figure 8.4, for example,
this path is the one connecting c(A,P,N,S) to baseCase15. Now, let us denote by
A∗ the sequence of agents that appear in the labels of this path. For instance, in
Figure 8.4, we have A∗ = 〈a5,a2,a1,a8〉. Finally, let us denote by a∗i the ith agent
in A∗.

With these definitions in place, we can now present the coalition structure
generation algorithm in [54]; we will call this algorithm DC as it uses a divide-
and-conquer technique. The basic idea is to create lists, L∗1, · · · ,L∗|A∗|+1, where
L∗1 consists of the base cases that contain a∗1, each L∗i , i = 1, . . . , |A∗|, consists of
the base cases that contain a∗i but not a∗1, . . . ,a

∗
i−1, and L∗|A∗|+1 consists of the base

cases that do not contain a∗1, . . . ,a
∗
|A∗|. This is illustrated in Figure 8.4 (B). Impor-

tantly, by constructing the lists in this way, we ensure that every feasible coalition
structure contains exactly one coalition from L∗1, and at most one coalition from

372 Chapter 8

each L∗i , i > 1. Thus, the algorithm picks a coalition, say C1, from some base case
in L∗1, and checks whether {C1} is a feasible coalition structure. If not, then the
agents in C1 are added to the negative constraints of all base cases in L∗2. This
places further constraints on the coalitions in those base cases, so as to ensure
that they do not overlap with C1. Next, the algorithm picks a coalition, say C2,
from some base case in L∗2, and checks whether {C1,C2} is a feasible coalition
structure, and so on. Eventually, all feasible coalition structures are examined. To
speed up the search, the algorithm applies a branch-and-bound technique (see [54]
for more details). This algorithm was compared to the integer programming for-
mulation in Section 5.3.3, where z contains a column for every feasible coalition,
instead of a column for every possible coalition. This comparison showed that DC
outperforms the integer programming approach by orders of magnitude.

6 Conclusions

We gave a brief overview of basic notions of cooperative game theory, followed
by a discussion of a number of representation formalisms for coalitional games
that have been proposed in the literature. We then presented several algorithms
for finding an optimal coalition structure, both under the standard representation,
and under the more succinct encodings discussed earlier in the chapter. There are
several other approaches to the optimal coalition structure generation problem,
which we were unable to cover due to space constraints; this problem continues
to attract a lot of attention from the multiagent research community due to its
challenging nature and numerous applications.

We would like to conclude this chapter by giving a few pointers to the lit-
erature. Most standard game theory textbooks provide some coverage of coop-
erative game theory; the well-known text of Osborne and Rubinstein [47] is a
good example. There are also several books that focus exclusively on cooperative
games [11, 15, 48]. A very recent book by Chalkiadakis et al. [13] treats the topics
covered in the first part of this chapter in considerably more detail than we do, and
also discusses coalition formation under uncertainty. However, its coverage of the
coalition structure generation problem is much less comprehensive than ours.

7 Exercises

1. Level 1 Compute the Shapley values of all players in the two variants of the
ice cream game described in Example 8.2. Do these games have non-empty
cores?

Chapter 8 373

2. Level 1 Argue that any n-player induced subgraph game can be represented
as a basic MC-net with O(n2) rules.

3. Level 1 Given the characteristic function shown in Table 8.1, where the
value of the grand coalition is 165, identify the optimal coalition structure
using the same steps as those of the integer partition-based (IP) algorithm.

4. Level 1 Write the pseudo-code of the dynamic programming (DP) algo-
rithm for coalition structure generation.

5. Level 2 Prove Propositions 8.2–8.5.

6. Level 2 Construct a non-monotone game in which some player’s Shapley
value is 0, even though this player is not a dummy.

C:|C|=1 v(C) C:|C|=2 v(C) C:|C|=3 v(C) C:|C|=4 v(C)

{a1} 20 {a1,a2} 40 {a1,a2,a3} 70 {a1,a2,a3,a4} 110
{a2} 10 {a1,a3} 30 {a1,a2,a4} 70 {a1,a2,a3,a5} 140
{a3} 30 {a1,a4} 30 {a1,a2,a5} 60 {a1,a2,a4,a5} 100
{a4} 30 {a1,a5} 40 {a1,a3,a4} 60 {a1,a3,a4,a5} 150
{a5} 10 {a2,a3} 40 {a1,a3,a5} 40 {a2,a3,a4,a5} 100

{a2,a4} 20 {a1,a4,a5} 80
{a2,a5} 30 {a2,a3,a4} 70
{a3,a4} 20 {a2,a3,a5} 50
{a3,a5} 65 {a2,a4,a5} 75
{a4,a5} 35 {a3,a4,a5} 75

Table 8.1: Sample characteristic function given five agents.

7. Level 2 Consider two simple games G1 = (A,v1) and G2 = (A,v2) with the
same set of players A. Suppose that a player i ∈ A is not a dummy in both
games. Can we conclude that i is not a dummy in the game G∩ = (A,v∩),
with the characteristic function v∩ given by v∩(C) = min{v1(C),v2(C)}?
What about the game G∪ = (A,v∪), where v∪ is given by v∪(C) =
max{v1(C),v2(C)}?

8. Level 2 Prove that any outcome in the core maximizes the social welfare,
i.e., for any coalitional game G it holds that if (CS,x) is in the core of G,
then CS ∈ argmaxCS∈PAV (CS).

374 Chapter 8

9. Level 2 Argue that the problem of finding an optimal coalition structure in
a weighted voting game is NP-hard.

10. Level 2 Prove that the running time of the dynamic programming algorithm
described in Section 5.2 is O(3n).

11. Level 2 Provide a formal proof of Theorem 8.6.

12. Level 3 For every pair (L1,L2) of complete representation languages con-
sidered in Section 4.3, find a family of games that can be compactly repre-
sented in L1, but not in L2, or prove that any game that admits a succinct
encoding in L1 also admits a succinct encoding in L2.

13. Level 3 Write an implementation of the different metaheuristic algorithms
outlined in Section 5.4, and run experiments to compare those algorithms
and identify their relative strengths and weaknesses. Are there other meta-
heuristic algorithms that can be used for coalition structure generation?

14. Level 3 All the algorithms in Section 5 were developed for settings where
(1) overlapping coalitions are prohibited, and (2) every coalition’s value is
not influenced by the coalition structure to which it belongs (unlike in a
partition function game, where a coalition’s value in one coalition can be
different than that in another). Extend one of those algorithms so as to deal
with settings where the aforementioned assumptions do not hold.

15. Level 4 Elkind et al. [24] show that the problem of computing the least core
of a weighted voting game admits a pseudopolynomial algorithm as well as
an FPTAS. The pseudopolynomial algorithm extends to the nucleolus [26];
however, it is not known if the problem of computing the nucleolus admits
an FPTAS. Develop an FPTAS for this problem, or prove that this is not
possible (under a suitable complexity assumption).

References
[1] George E. Andrews and Kimmo Eriksson. Integer Partitions. Cambridge University

Press, Cambridge, UK, 2004.

[2] Haris Aziz, Felix Brandt, and Paul Harrenstein. Monotone cooperative games and
their threshold versions. In AAMAS’10: Ninth International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 1107–1114, 2010.

[3] Haris Aziz and Bart de Keijzer. Complexity of coalition structure generation. In
AAMAS’11: Tenth International Joint Conference on Autonomous Agents and Multi-
Agent Systems, pages 191–198, 2011.

Chapter 8 375

[4] Yoram Bachrach, Reshef Meir, Kyomin Jung, and Pushmeet Kohli. Coalitional
structure generation in skill games. In AAAI’10: Twenty-Fourth AAAI Conference
on Artificial Intelligence, pages 703–708, 2010.

[5] Yoram Bachrach and Jeffrey S. Rosenschein. Coalitional skill games. In AAMAS’08:
Seventh International Conference on Autonomous Agents and Multi-Agent Systems,
pages 1023–1030, 2008.

[6] Yoram Bachrach and Jeffrey S. Rosenschein. Power in threshold network flow
games. Autonomous Agents and Multi-Agent Systems, 18(1):106–132, 2009.

[7] John F. Banzhaf. Weighted voting doesn’t work: A mathematical analysis. Rutgers
Law Review, 19:317–343, 1965.

[8] Eric T. Bell. Exponential numbers. American Mathematical Monthly, 41:411–419,
1934.

[9] J. M. Bilbao, J. R. Fernández, N. Jiminéz, and J. J. López. Voting power in the
European Union enlargement. European Journal of Operational Research, 143:181–
196, 2002.

[10] Peter Borm, Herbert Hamers, and Ruud Hendrickx. Operations research games: A
survey. TOP, 9:139–199, 2001.

[11] Rodica Brânzei, Dinko Dimitrov, and Stef Tijs. Models in Cooperative Game The-
ory. Springer, 2005.

[12] Georgios Chalkiadakis, Edith Elkind, Evangelos Markakis, Maria Polukarov, and
Nicholas R. Jennings. Cooperative games with overlapping coalitions. Journal of
Artificial Intelligence Research (JAIR), 39:179–216, 2010.

[13] Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge. Computational As-
pects of Cooperative Game Theory. Morgan and Claypool, 2011.

[14] Vincent Conitzer and Tuomas Sandhom. Complexity of constructing solutions in
the core based on synergies among coalitions. Artificial Intelligence, 170(6–7):607–
619, 2006.

[15] Imma Curiel. Cooperative Game Theory and Applications. Kluwer, 1997.

[16] Viet D. Dang and Nicholas R. Jennings. Generating coalition structures with fi-
nite bound from the optimal guarantees. In AAMAS’04: Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems, pages 564–571, 2004.

[17] Morton Davis and Michael Maschler. The kernel of a cooperative game. Naval
Research Logistics Quarterly, 12(3):223–259, 1965.

376 Chapter 8

[18] Nicolaas G. de Bruijn. Asymptotic Methods in Analysis. Dover, 1981.

[19] Xiaotie Deng, Qizhi Fang, and Xiaoxun Sun. Finding nucleolus of flow game. In
SODA’06: 17th ACM-SIAM Symposium on Discrete Algorithms, pages 124–131,
2006.

[20] Xiaotie Deng, Toshihide Ibaraki, and Hiroshi Nagamochi. Algorithmic aspects of
the core of combinatorial optimization games. Mathematics of Operations Research,
24(3):751–766, 1999.

[21] Xiaotie Deng and Christos Papadimitriou. On the complexity of cooperative solution
concepts. Mathematics of Operations Research, 19(2):257–266, 1994.

[22] Ezra Einy, Ron Holzman, and Dov Monderer. On the least core and the Mas-Colell
bargaining set. Games and Economic Behavior, 28:181–188, 1999.

[23] Edith Elkind, Georgios Chalkiadakis, and Nicholas R. Jennings. Coalition struc-
tures in weighted voting games. In ECAI’08: Eighteenth European Conference on
Artificial Intelligence, pages 393–397, 2008.

[24] Edith Elkind, Leslie Ann Goldberg, Paul Goldberg, and Michael Wooldridge. On
the computational complexity of weighted voting games. Annals of Mathematics
and Artificial Intelligence, 56(2):109–131, 2009.

[25] Edith Elkind, Leslie Ann Goldberg, Paul Goldberg, and Michael Wooldridge. A
tractable and expressive class of marginal contribution nets and its applications.
Mathematical Logic Quarterly, 55(4):362–376, 2009.

[26] Edith Elkind and Dmitrii Pasechnik. Computing the nucleolus of weighted voting
games. In SODA’09: 20th ACM-SIAM Symposium on Discrete Algorithms, 2009.

[27] Piotr Faliszewski, Edith Elkind, and Michael Wooldridge. Boolean combinations
of weighted voting games. In AAMAS’09: 8th International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 185–192, 2009.

[28] Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6:109–133, 1995.

[29] Donald B. Gillies. Solutions to general non-zero-sum games. In H. W. Kuhn, A. W.
Tucker, and L. D. Luce, editors, Contributions to the Theory of Games, volume IV,
pages 47–85. Princeton University Press, 1959.

[30] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions:
A survey. In MFCS’01: 26th International Symposium on Mathematical Founda-
tions of Computer Science, pages 37–57, 2001.

Chapter 8 377

[31] Daniel Granot and Frieda Granot. On some network flow games. Mathematics of
Operations Research, 17(4):792–841, 1992.

[32] Samuel Ieong and Yoav Shoham. Marginal contribution nets: a compact repre-
sentation scheme for coalitional games. In ACM EC’05: 6th ACM Conference on
Electronic Commerce, pages 193–202, 2005.

[33] Ehud Kalai and Eitan Zemel. Generalized network problems yielding totally bal-
anced games. Operations Research, 30(5):998–1008, 1982.

[34] Ehud Kalai and Eitan Zemel. Totally balanced games and games of flow. Mathe-
matics of Operations Research, 7(3):476–478, 1982.

[35] Helena Keinänen. Simulated annealing for multi-agent coalition formation. In KES-
AMSTA’09: Third KES International Symposium on Agent and Multi-Agent Sys-
tems: Technologies and Applications, pages 30–39, 2009.

[36] Walter Kern and Daniël Paulusma. Matching games: the least core and the nucleo-
lus. Mathematics of Operations Research, 28(2):294–308, 2003.

[37] William Lucas and Robert Thrall. n-person games in partition function form. Naval
Research Logistic Quarterly, pages 281–298, 1963.

[38] Andreu Mas-Colell. An equivalence theorem for a bargaining set. Journal of Math-
ematical Economics, 18:129–139, 1989.

[39] Michael Maschler, Bezalel Peleg, and Lloyd S. Shapley. Geometric properties of
the kernel, nucleolus, and related solution concepts. Mathematics of Operations
Research, 4:303–338, 1979.

[40] Tomomi Matsui and Yasuko Matsui. A survey of algorithms for calculating power
indices of weighted majority games. Journal of the Operations Research Society of
Japan, 43(1):71–86, 2000.

[41] Yasuko Matsui and Tomomi Matsui. NP-completeness for calculating power in-
dices of weighted majority games. Theoretical Computer Science, 263(1-2):305–
310, 2001.

[42] Nicola Di Mauro, Teresa M. A. Basile, Stefano Ferilli, and Floriana Esposito. Coali-
tion structure generation with GRASP. In AIMSA’10: Fourteenth International Con-
ference on Artificial Intelligence: Methodology, Systems, and Applications, pages
111–120, 2010.

[43] Tomasz Michalak, Jacek Sroka, Talal Rahwan, Michael Wooldridge, Peter McBur-
ney, and Nicholas R. Jennings. A distributed algorithm for anytime coalition
structure generation. In AAMAS’10: Ninth International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 1007–1014, 2010.

378 Chapter 8

[44] Pragnesh Jay Modi. Distributed Constraint Optimization for Multiagent Systems.
PhD thesis, University of Southern California, Los Angeles, CA, USA, 2003.

[45] Naoki Ohta, Vincent Conitzer, Ryo Ichimura, Yuko Sakurai, Atsushi Iwasaki, and
Makoto Yokoo. Coalition structure generation utilizing compact characteristic func-
tion representations. In CP’09: Fifteenth International Conference on Principles
and Practice of Constraint Programming, pages 623–638, 2009.

[46] Naoki Ohta, Atsushi Iwasaki, Makoto Yokoo, Kohki Maruono, Vincent Conitzer,
and Tuomas Sandholm. A compact representation scheme for coalitional games in
open anonymous environments. In AAAI’06: Twenty-First National Conference on
Artificial Intelligence, pages 697–702, 2006.

[47] Martin Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994.

[48] David Peleg and Peter Sudhölter. Introduction to the Theory of Cooperative Games.
Springer, 2007.

[49] Adrian Petcu and Boi Faltings. A scalable method for multiagent constraint op-
timization. In IJCAI’05: Nineteenth International Joint Conference on Artificial
Intelligence, pages 266–271, 2005.

[50] Kislaya Prasad and Jerry S. Kelly. NP-completeness of some problems concerning
voting games. International Journal of Game Theory, 19(1):1–9, 1990.

[51] Talal Rahwan and Nicholas R. Jennings. An algorithm for distributing coalitional
value calculations among cooperative agents. Artificial Intelligence, 171(8–9):535–
567, 2007.

[52] Talal Rahwan and Nicholas R. Jennings. Coalition structure generation: Dynamic
programming meets anytime optimisation. In AAAI’08: Twenty-Third AAAI Confer-
ence on Artificial Intelligence, pages 156–161, 2008.

[53] Talal Rahwan and Nicholas R. Jennings. An improved dynamic programming algo-
rithm for coalition structure generation. In AAMAS’08: Seventh International Con-
ference on Autonomous Agents and Multi-Agent Systems, pages 1417–1420, 2008.

[54] Talal Rahwan, Tomasz P. Michalak, Edith Elkind, Piotr Faliszewski, Jacek Sroka,
Michael Wooldridge, and Nicholas R. Jennings. Constrained coalition formation. In
AAAI’11: Twenty-Fifth AAAI Conference on Artificial Intelligence, pages 719–725,
2011.

[55] Talal Rahwan, Tomasz P. Michalak, and Nicholas R. Jennings. Minimum search
to establish worst-case guarantees in coalition structure generation. In IJCAI’11:
Twenty-Second International Joint Conference on Artificial Intelligence, pages 338–
343, 2011.

Chapter 8 379

[56] Talal Rahwan, Sarvapali D. Ramchurn, Viet D. Dang, and Nicholas R. Jennings.
Near-optimal anytime coalition structure generation. In IJCAI’07: Twentieth Inter-
national Joint Conference on Artificial Intelligence, pages 2365–2371, 2007.

[57] Talal Rahwan, Sarvapali D. Ramchurn, Andrea Giovannucci, Viet D. Dang, and
Nicholas R. Jennings. Anytime optimal coalition structure generation. In AAAI’07:
Twenty-Second Conference on Artificial Intelligence, pages 1184–1190, 2007.

[58] Talal Rahwan, Sarvapali D. Ramchurn, Andrea Giovannucci, and Nicholas R. Jen-
nings. An anytime algorithm for optimal coalition structure generation. Journal of
Artificial Intelligence Research (JAIR), 34:521–567, 2009.

[59] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, N.J., 2nd edition, 2003.

[60] Tuomas Sandholm, Kate Larson, Martin Andersson, Onn Shehory, and Fernando
Tohmé. Coalition structure generation with worst-case guarantees. Artificial Intelli-
gence, 111(1–2):209–238, 1999.

[61] David Schmeidler. The nucleolus of a characteristic function game. SIAM Journal
on Applied Mathematics, 17:1163–1170, 1969.

[62] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency.
Springer, 2003.

[63] Sandip Sen and Partha Dutta. Searching for optimal coalition structures. In IC-
MAS’00: Sixth International Conference on Multi-Agent Systems, pages 286–292,
2000.

[64] Lloyd S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker,
editors, Contributions to the Theory of Games, volume II, pages 307–317. Princeton
University Press, 1953.

[65] Lloyd S. Shapley and Martin Shubik. The assignment game I: The core. Interna-
tional Journal of Game Theory, 1:111–130, 1972.

[66] Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition for-
mation. Artificial Intelligence, 101(1–2):165–200, 1998.

[67] Tammar Shrot, Yonatan Aumann, and Sarit Kraus. On agent types in coalition
formation problems. In AAMAS’10: Ninth International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 757–764, 2010.

[68] Tamas Solymosi and T. E. S. Raghavan. An algorithm for finding the nucleolus of
assignment games. International Journal of Game Theory, 23:119–143, 1994.

380 Chapter 8

[69] Alan D. Taylor and William S. Zwicker. Simple Games. Princeton University Press,
1999.

[70] Suguru Ueda, Atsushi Iwasaki, Makoto Yokoo, Marius Calin Silaghi, Katsutoshi
Hirayama, and Toshihiro Matsui. Coalition structure generation based on distributed
constraint optimization. In AAAI’10: Twenty-Fourth AAAI Conference on Artificial
Intelligence, pages 197–203, 2010.

[71] Suguru Ueda, Makoto Kitaki, Atsushi Iwasaki, and Makoto Yokoo. Concise char-
acteristic function representations in coalitional games based on agent types. In
IJCAI’11: Twenty-Second International Joint Conference on Artificial Intelligence,
pages 393–399, 2011.

[72] D. Yun Yeh. A dynamic programming approach to the complete set partitioning
problem. BIT Numerical Mathematics, 26(4):467–474, 1986.

[73] Shlomo Zilberstein. Using anytime algorithms in intelligent systems. AI Magazine,
17(3):73–83, 1996.

