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Abstract

This paper reports on the design of a novel two-stage mechanism, based on strictly proper scoring rules,
that allows a centre to acquire a costly forecast of a future event (such as a meteorological phenomenon) or
a probabilistic estimate of a specific parameter (such as the quality of an expected service), with a speci-
fied minimum precision, from one or more agents. In the first stage, the centre elicits the agents’ true costs
and identifies the agent that can provide an estimate of the specified precision at the lowest cost. Then,
in the second stage, the centre uses an appropriately scaled strictly proper scoring rule to incentivise this
agent to generate the estimate with the required precision, and to truthfully report it. In particular, this is
the first mechanism that can be applied to settings in which the centre has no knowledge about the actual
costs involved in the generation an agents’ estimates and also has no external means of evaluating the
quality and accuracy of the estimates it receives. En route to this mechanism, we first consider a setting
in which any single agent can provide an estimate of the required precision, and the centre can evaluate
this estimate by comparing it with the outcome which is observed at a later stage. This mechanism is then
extended, so that it can be applied in a setting where the agents’ different capabilities are reflected in the
maximum precision of the estimates that they can provide, potentially requiring the centre to select mul-
tiple agents and combine their individual results in order to obtain an estimate of the required precision.
For all three mechanisms (the original and the two extensions), we prove their economic properties (i.e.
incentive compatibility and individual rationality) and then perform a number of numerical simulations.
For the single agent mechanism we compare the quadratic, spherical and logarithmic scoring rules with
a parametric family of scoring rules. We show that although the logarithmic scoring rule minimises both
the mean and variance of the centre’s total payments, using this rule means that an agent may face an un-
bounded penalty if it provides an estimate of extremely poor quality. We show that this is not the case for
the parametric family, and thus, we suggest that the parametric scoring rule is the best candidate in our set-
ting. Furthermore, we show that the ‘multiple agent’ extension describes a family of possible approaches
to select agents in the first stage of our mechanism, and we show empirically and prove analytically that
there is one approach that dominates all others. Finally, we compare our mechanism to the peer prediction
mechanism introduced by Miller et al. (2007b) and show that the centre’s total expected payment is the
same in both mechanisms (and is equal to total expected payment in the case that the estimates can be
compared to the actual outcome), while the variance in these payments is significantly reduced within our
mechanism.
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1. Introduction

Real-time information about the state of the world is increasingly being made available through
distributed on-line systems that are owned by different stakeholders and accessed by multiple
users. In such systems, it is important to develop processes that can evaluate the information
provided to users and provide some guarantees to its quality. This is particularly so in cases
where the information in question is an imprecise probabilistic estimate or forecast whose gener-
ation involves some cost. Examples include forecasts of future events such as weather conditions
(Xue et al., 2004), where the costs are those of running a large scale weather prediction model,
or probabilistic estimates of the quality of service within a reputation system (Jgsang et al.,
2007) where such costs represent the computational task of accessing and evaluating previous
interactions records. In such settings, it is reasonable to assume that the providers of such infor-
mation are rational self-interested agents, and as such, may have an incentive to misreport their
estimates, or to allocate less costly resources to their generation, if they can increase their own
utility by doing so (e.g. by being rewarded for a more precise estimate than is actually provided
or by claiming to expend more resources than was actually done)'. Thus, an information buyer
must present the providers with a payment scheme that incentives the agents to commit resources
to generating their estimates, and to truthfully report them.

A number of researchers have proposed the use of strictly proper scoring rules to address
these challenges (Matheson and Winkler, 1976; Savage, 1971). Mechanisms using these rules
reward accurate estimates or forecasts by making a payment to agents based on the difference
between an event’s predicted and actual outcome (observed at some later stage). Such mech-
anisms have been shown to incentivise agents to truthfully report their estimates in order to
maximise their expected payment (Selten, 1998). This principle can be demonstrated through a
meteorological scenario, which uses a logarithmic scoring rule. Specifically, we consider that a
risk-neutral agent is asked to provide a probabilistic prediction of whether it will rain or not the
following day. The agent’s true estimate of the probability of rain tomorrow is denoted by p, and
the prediction that it actually reports to the centre is denoted by p.

We first consider the perfectly plausible sounding rule that the agent should be rewarded in
proportion to how confidently it predicted the actual outcome. That is:

S(plx=rain)=p and S(p|x=norain)=1-p (1)

where x is the actual outcome verified the next day. In this case, the agent’s expected utility is
given by:

U(p,p)=pp+(1—-p)(1-p) )
Now, for any particular true belief, p, the agent will seek to report a value of p which will max-
imise its expected utility. In this case, we note that oU (p, p)/dp = 2p — 1, which is independent
of p. Thus, we must consider the boundary conditions and find that if p < 1/2, then the agent
maximises its expected reward by reporting p = 0, and if p > 1/2, then the agent maximises its
expected reward by reporting p = 1. Clearly, under this scoring rule the agent will misreport
its true beliefs, and thus, the centre will not receive a true estimate of the probability of rain
tomorrow.

INote that problems of this type are often categorised as principal-agent problems (Grossman and Hart, 1983;
Rogerson, 1985) since there is an asymmetry of information between the contractor and contractee.
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In contrast, consider the case when the logarithmic scoring rule is used such that the agent is
now rewarded in proportion to the logarithm of the probability with which it predicted the actual
outcome; that is:

S(plx=rain) =Inp and S(p|x =no rain) = In(1 — p) 3)
In this case, the agent’s expected utility is given by:

U(p,p) = plnp+ (1 —p)In(1 —p) “4)

and its derivative is given by:
W(p,p) _ p=p
ap p(1-p)
Now, solving dU(p,p)/dp = 0 gives p = p, and thus, the agent will truthfully report its true
belief regarding the probability of the outcome.

Due to the attractive property outlined above, strictly proper scoring rules have recently been
used in computer science to promote the honest exchange of beliefs between agents (Zohar and
Rosenschein, 2008), and within reputation systems to promote truthful reporting of feedback
regarding the quality of a service experienced (Jurca and Faltings, 2005, 2006, 2007). Further-
more, Miller et al. (2007b,a) have exploited the fact that any affine transform of a strictly proper
scoring rule is also a strictly proper scoring rule, and have shown how an appropriately scaled
strictly proper scoring rule can be used induce agents to commit costly resources to generate
their estimates?.

While these approaches are effective in the specific cases that they consider, they all rely on
the fact that the cost of the agent providing the estimate or forecast is known by the centre. This
is not the case in our scenario where these costs represent private information known only to each
individual agent (since they are dependent on the specific computational resources available to
the agent). In this paper, we use techniques from mechanism design (Mas-Colell et al., 1995),
and specifically auction theory (Krishna, 2002), to address this challenge. In particular, through
the use of an auction protocol that uses strictly proper scoring rules to determine the payments to
the agents, we incentivise the agents to truthfully reveal their costs to the centre and to generate
and truthfully report an estimate at a required precision. In more detail, we introduce a novel
two-stage mechanism. In the first stage, the centre elicits the agents’ true costs and identifies
the agent that can provide an estimate of the specified precision at the lowest cost. Then, in the
second stage, the centre uses an appropriately scaled strictly proper scoring rule to incentivise
this agent to generate the estimate with the required precision, and to truthfully report it.

We then go on to extend this mechanism in two ways. First, we relax the assumption that
the selected agent can always provide an estimate as precise as the centre requires. Although
this assumption is made in all the aforementioned work in this area, we believe it is unrealis-
tic as often agents may have to deal with restrictions such as the lack of previous records for
the reputation systems or the physical limits of making probabilistic predictions of real-world
events, which subsequently enforce limitations on the precisions of the estimates they can pro-
vide. Hence, we extend the mechanism to consider the case where multiple suppliers can provide

®)

2We shall describe their approach in detail in Section 3 since our results build upon their setting.
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estimates, but due to their limited precisions, the centre may have to combine several of them in
order to obtain the desired degree of accuracy. In doing so, we provide a non trivial extension of
the initial mechanism in which a centre in the first stage asks N agents to report their costs and
then pre-selects M of them, while in the second stage it asks those pre-selected agents to reveal
their maximum precision and then to generate an estimate at that precision until it achieves its
required precision.

Second, we relax the assumption that the centre has knowledge of the actual outcome of the
event some time in the future after it receives the agents’ estimates (in order that it can calculate
the payments to the agents). Whilst this assumption is common in the strictly proper scoring
rule literature, it is restrictive since in practice the centre may not always be able to observe the
outcome. This may happen when reputation models are unable to monitor the constant changes
in dynamic systems, such as markets, and hence the quality of a provided service cannot be
verified, or when the agents’ estimates relate to physical measurement from sensors deployed in
hostile environment (such as floods (Zhou and Roure, 2007), glaciers (Hart and Martinez, 2006)
or volcanoes (Werner-Allen et al., 2005)), where it is impossible to ascertain the ‘ground truth’
through external means. Mechanisms that operate under this regime are termed self-verifying by
Goel et al. (2009)%, and thus, we provide a third mechanism in which the centre uses the pre-
selected agents’ fused reported estimates, instead of the outcome, when calculating the payments.
Now, Miller et al. (2007b) address this issue by evaluating an agent directly against each one of
the other agents in turn, and hence, calculate the average payment due to each agent. However,
we show that under their mechanism the payment that any agent receives is highly dependent
on the accuracy of the other agents’ reports. This results in an increase in both the variance in
the payments received by each agent, and the variance in the total payment made by the centre.
Thus, both the agents and the centre are more uncertain about the payments that they expect to
receive and make. In contrast, our approach, which uses the fused estimates of all other agents,
results in much lower variance in these payments.

In summing up, in this paper we contribute to the state of the art in the following ways:

e We introduce the first mechanism that elicits both effort and honest reporting of a single
agent’s estimate, in a setting where the centre has no information about the agents’ costs
involved in the generation of that estimate. We empirically evaluate our mechanism by
comparing the standard quadratic, spherical and logarithmic scoring rules with a paramet-
ric family of scoring rules, and show that for certain values of the parameter, the resulting
payment is similar to the logarithmic (optimal scoring rule) but also has finite lower bounds
(as opposed to the logarithmic rule, which is potentially unbounded).

o In extending our initial mechanism, we present the first class of mechanisms that elicit
estimates from multiple agents in a setting where the centre may have to combine sev-
eral estimates of low precision due to agents’ restrictions in the quality of the estimates

3Note that Goel et al. (2009) present a self-verifying mechanism which incentivises agents to truthfully reveal
their subjective expectations regarding a physical parameter by scoring each individual agent’s report against those
of the other agents. Our approach is similar in that we score each agent against the fused reports of the other agents.
However, Goel et al.’s mechanism operates in a very different setting in which the agents do not have to strategise
over the precision of the measurement that they make, there is a common prior known to all agents, and there is no
notion of a required minimum precision or a cost. Rather, the goal is to find the budget-balanced payments to be
exchanged between the agents in order to ensure that they all truthful report.
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they provide. We empirically compare several approaches to perform the pre-selection,
hence the class of mechanisms, and identify one that minimises the centre’s expected total
payment.

e In extending the above mechanism we introduce a novel mechanism, in which the cen-
tre does not rely on knowledge of the realised outcome when calculating payments to the
agents reporting their estimates. Furthermore, we modify strictly proper scoring rules ac-
cordingly so they can motivate agents to truthfully report their estimates, under the knowl-
edge that they will be evaluated based on the other agents’ reports.

e We compare the two extensions with the peer prediction mechanism (Miller et al., 2007b)
and identify the differences between fusion and peer prediction. We show that the agents
derive the same payment in all three mechanisms, hence the centre derives no additional
penalty as a result of the lack of knowledge. However, we also note that the fusion mech-
anism results in payments of significantly smaller variance than the peer prediction, there-
fore it has more reliable and robust payments.

o We show that all three mechanisms are incentive compatible, in both costs and estimates
revealed, and individually rational.

The rest of this paper is organised as follows: In Section 2 we present our problem formal-
isation, and in Section 3 we provide some necessary background on scoring rules. Based on
this, in Section 4, we describe and analyse the single agent two-stage mechanism with unknown
costs. In Section 5 we extend our mechanism so multiple agents can provide estimates of limited
precisions, while in Section 6 we further extend our mechanism so the centre does not have to
rely on knowledge of the actual outcome when calculating payments. Finally, we discuss related
work in Section 7 and we conclude and discuss future work in Section 8.

2. The Information Elicitation Problem

We now describe in detail the information elicitation problem outlined in the introduction. We
consider the case of a centre that wants to acquire a probabilistic forecast or estimate of some
event characterised by a continuously valued parameter (e.g. a forecast of tomorrow’s temper-
ature, or a prediction of the latency of some online computational service), the unknown true
value of which is denoted by xg. The centre requires this estimate to have a minimum precision,
denoted by 0. It derives no utility from an estimate whose precision is less than 8y, and derives
no additional benefit if the estimate is of precision greater than 6. We assume that the the centre
is capable of paying an unbounded amount for this estimate, but it would clearly prefer to acquire
an estimate of at least the minimum precision, at the minimum cost possible.

There are N > 2 rational, risk neutral agents, that can potentially provide the centre with
this estimate. Each of these agents is capable of committing a variable amount of some costly
resource in order to generate an independent noisy estimate of the parameter in question. As
is common within the data fusion literature (see for example Gregory (2005) and DeGroot and
Schervish (2002)), we model the estimates of the agents as Gaussian distributions with mean, x;
and precision 0;, and we assume that these estimates are unbiased such that x; is a random sample
from the Gaussian distribution represented by A/(xo, 1/6;). Note that this assumption does not
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actually constrain the results such that they are only valid for Gaussian distributions. If we only
know the mean and variance of a distribution, and nothing more, then the least constraining
assumption to work with is that it is a Gaussian distribution (i.e. within the Bayesian framework,
for any specific value of mean and variance, the Gaussian distribution is the distribution that
exhibits the greatest Shannon entropy). It would be possible to extend the model to other general
distributions (for example, using a beta distribution if the parameter is constrained to lie between
0 and 1, or a gamma distribution if it were just constrained to be positive). However, in general,
working with Gaussian distributions is both widely applicable and also analytically tractable
(since both the fusion and summation of two Gaussian distributions results in another Gaussian
distribution).

We assume that the greater the resources committed by the agent, the greater the precision,
0;, of the estimate that it generates and the greater the cost that it incurs. These costs are private
to the agent and are described by the function ¢;(0;). We assume that this cost function is double
differentiable and convex (i.e. ¢/ (8) > 0), and note that this is a realistic assumption in all cases
where there are diminishing returns as more resources are committed. Finally, we do not assume
that all agents use the same cost function, but we do demand that the costs of different agents
and their derivatives do not cross (i.e. the ordering of the agents’ costs and their derivatives is
the same over all precisions) in order to prove incentive compatibility and individual rationality
of the mechanisms that we derive*. In the examples that we provide in this paper we shall
assume that that cost functions are in fact linear, such that ¢;(8;) = ¢;0;, and we note that this
corresponds to the continuous limit of the case where an agent make n independent estimates
with fixed precision, AB; and cost Ac;, and forms its final estimate by fusing these together such

that 6; = nA®; and ¢;(8;) = (42 ) 0:.

Given this setting, our challenge is then to design a mechanism that enables the centre to
identify the agent that can provide the required estimate at the lowest cost, and to provide a
payment to this agent such that it is incentivised to generate an estimate with a precision at least
equal to that required and to report it truthfully. This payment is conditioned on the true value
of the parameter, xy, which is revealed to both the centre and the agents at some time after the
estimate is required.

We then extend this initial setting to consider the case that the precision of the estimates that
any agent can generate is constrained such that 8; < 67. As before, the maximum precision that
any agent can generate, ¢, is the private information of the individual agent. Finally, we also
relax the constraint that the value of xg is revealed to the centre and agents before the payments
must be made. Thus, the centre can now only condition the payment to any agent on the estimates
that were received from the other agents (and not from the true parameter value).

3. Strictly Proper Scoring Rules

Given the problem setting described above, we now describe the use of strictly proper scoring
rules to incentivise the agents to make and truthfully report their estimates to the centre in the
conventional case where the costs of the agents are assumed to be known.

4In Corollary 1 and Lemma 1, we prove that these assumptions regarding the cost functions and their derivatives
are necessary.
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Table 1: Comparison of quadratic, spherical, logarithmic and parametric scoring rules.

Scoring Rule: Quadratic Spherical
1
~ A ~ N ) 4 o n
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/ 1 [} 1 260
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Where N((x0:,0) = \/gexp (6(;_%)2)

3.1. Background

As seen in the introduction, scoring rules incentivise a risk neutral forecaster to truthfully report
its forecast by maximising its expected reward. As such, this approach has been widely used as
a statistical tool for eliciting personal beliefs and expectations regarding a future event (Brier,
1950; Hendrickson and Buehler, 1971; Savage, 1971). In particular, if an agent actually has
an estimate represented by the probability density function Q(x), but reports an estimate to the
centre denoted by R(x) and then receives a payment conditioned on this reported estimate and the
true value revealed sometime later, S(xo|R(x)), then the agent’s expected score will be denoted
as follows:

SR0) = [ QWS(IR())dx ©®)

A scoring rule is defined as strictly proper if the agent’s expected score is maximised when it
reports the truthi.e. R =0 < S(Q,0) > S(R, Q). In this case the agent has an incentive to report
the truth in order to maximise its expected utility.
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Against this background, much of the literature on strictly proper scoring rules concerns three
specific rules (quadratic, spherical and logarithmic) and a parametric family of rules known as
the power rule family or k-power scoring rules (Selten, 1998). These four strictly proper scoring
rules are defined in the following way:

1. Quadratic: S(x0,R(x)) =2R(xp) / R(x)%dx

2. Spherical: S(x0,R(x)) = R(x0)/ x)2dx

3. Logarithmic: S(x0,R(x)) = logR(xo)

4. Parametric: S(x0,R(x)) = kR (x0) k= / R(x)*dx

where k € (1,3), and when k = 2 the parametric rule takes the form of the quadratic rule.

Given that in our setting we are considering estimates in the form of Gaussian distributions,
we can re-derive these scoring rules for this specific case’. Table 1 shows each of the four strictly
proper scoring rules, S(xo;)?,ﬁ), in the case that the agent reports its estimate as a Gaussian
distribution with mean X and precision 0. By integrating over this expression, we can also derive
the score that the agent expects to derive, S(0), given that it has generated and truthfully reported
(as it is incentivised to do) an estimate of precision 6.

3.2. Eliciting Effort when Costs are Known

Now, although eliciting truthful reports (incentive compatibility) is one very desirable property of
the strictly proper scoring rules, it is certainly not the only one. In our setting, agents may decide
to commit less than the required resources into the generation of the probabilistic estimate if they
expect to increase their utility functions by doing so. To combat this, Miller et al. (2007b) elicit
effort through the use of appropriate scaling parameters, noting that any affine transformation of a
strictly proper scoring rule does not affect its incentive compatibility property. Given knowledge
of an agent’s costs, they show that it is possible to induce an agent to make and truthfully report
an estimate with a specified precision, 8g. In this case, the payment that an agent expects to
receive, P(0), is given by:

P(0) =aS(8)+pB (7)
where a and B are the scaling parameters, and the expected utility of the agent is given by:
U(6) = as(6) +B—c(6) ®)

The centre can now choose the value of o such that the agent’s utility (its payment minus its costs)
is maximised when it produces and truthfully reports an estimate of the required precision, 6.

dU
To do so, it solves o, =0 to give:

€))

5Note that although we provide analytical results for the specific case of Gaussian distributions, equivalent results
could be derived for any continuous distribution used.
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In Table 1 we present this result, and the derivative of the expected score, E’(G), that is required
to calculate it, for each of the four strictly proper scoring rules presented earlier.

Having defined the o parameter of the affine transformation that elicits effort and honest
reporting, we calculate parameter B which motivates agents to participate in the mechanism by
ensuring that their expected utility is always positive. In more detail, we now note that in order
for a self-interested agent to incur the cost of producing a forecast, it must expect to derive
positive utility from doing so. Thus, the centre can use the constant  to ensure that it makes
the minimum payment to the agent, hence ensuring that the mechanism is individually rational.
When costs are known, the centre can do so by making the agents indifferent between producing
the forecast or not, by setting U (8y) = 0, thus giving:

_ (o) S (80)
B=c(8o) E/(GO>S(90) (10)

Again, cells 3 in Table 1 show this result for each of the four scoring rules.

Finally, it should be noted that the expected score of the quadratic, spherical and logarithmic
scoring rules, as a function of the precision 0 (expressed as S(0) in Table 1) is strictly concave,
strictly increasing and twice differentiable. While we will show that this property of the expected
scores is important to guarantee certain economic properties of the mechanism, it does not hold
for all strictly proper scoring rules. For example, in the parametric scoring rule for k > 3 the
second derivative of the expected score (denoted by Equation 11) becomes positive and therefore
the expected score convex, which in turn, as we will show in the following section, results in a
payment that fails to incentivise an agent to produce an estimate at the required precision, 6.

1k

o)

Therefore, and in order to guarantee the concavity of the expected score we will restrict the
parameter k to the space (1,3).

4. A Mechanism for Dealing with Unknown Costs

We now consider the setting where the costs involved in the generation of a probabilistic estimate
are unknown to the centre, and the centre wants to select a single agent to procure the estimate
of the required precision at the lowest cost. As described in Section 2, we assume that there
are multiple agents, all of which are capable of producing an estimate of at least the required
precision (we shall relax this assumption in Section 5 where we consider agents that have a
limitation on the maximum precision of the estimate they produce).

4.1. The Mechanism

We address the above mentioned challenges by designing a two-stage mechanism (Mechanism
1). In the first stage, the centre elicits the agents’ true costs and identifies the agent that can
provide an estimate of the specified precision at the lowest cost. Then, in the second stage, the
centre uses an appropriately scaled strictly proper scoring rule in order to incentivise this agent
to generate the estimate with the required precision, and to truthfully report it. At first glance it

might seem that this mechanism is akin to a reverse second-price or Vickrey auction (Vickrey,
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Mechanism 1 The mechanism for dealing with unknown costs:

1. First Stage

1.1 The centre announces that it needs an estimate of required precision 6y, and asks all agents
i€{l,...,N}, where N > 2, to report their cost functions ¢;(8)°.

1.2 The centre assigns the estimate to the agent who reported the lowest cost at the required
precision, i.e., agent i such that ¢;(60) = mingc(y,. n1Ck(60).

2. Second Stage

2.1 The centre announces a scoring rule oS (xp;X, @) + B, where:
(i) S(xo3x, 6) is a strictly proper scoring rule,
(i) S(8) is strictly concave as a function of precision 8,7 and
(iii) o and B are determined using equations 9 and 10 respectively, but now based on the
second-lowest reported cost functions (i.e. ¢;(0) such that ¢;(8¢) = miny.;ick(60)).
2.2 The agent selected in the first stage produces an estimate with mean x and precision 0, and
reports X and 9 to the centre.
2.3 Once the actual outcome has been observed, the centre then gives the following payment

to the agent: R R
P(x0;x,0) = oS(x0;x,0) + B (12)

1961), where the agents’ rewards are equal to the second-lowest reported costs. This is indeed
the case, however here the selected agent’s reward in the second stage is determined by scaling
the scoring rule using the second lowest cost identified in the first stage (rather than using the
selected agent’s reported costs).

4.2. Economic Properties of the Mechanism

Having detailed the mechanism, in the next section we identify and prove its economic proper-
ties. Specifically, in this section we show that:

1. The mechanism outlined above is incentive compatible in the first stage regarding the
costs. In particularly, truthful revelation of the agents’ cost functions is a weakly dominant
strategy.

2. The mechanism is incentive compatible regarding the selected agent’s reported measure-
ment and precision in the second stage.

3. There can be no incentive compatible mechanism regarding the agents’ cost functions
revealed when the cost functions overlap.

4. The mechanism is individually rational.

5We note that in practice the centre only requires ¢i(8o) and ¢}(8y), and not the entire functions. However, for
notational convenience we request the agents to reveal their entire cost function.
7We note that the quadratic, spherical, logarithmic and parametric scoring rules satisfy both of these properties
(see row 2 of Table 1).
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5. The centre motivates the selected agent to make an estimate with a precision which is at
least as high as 0y, the precision required by the centre. We refer to the actual precision
produced as the ‘optimal precision’ (from the perspective of the agent) 6, since for this
precision the expected payment is maximised.

In this section, with prove the economic properties of the mechanism. Initially, we derive two
lemmas which are then used in the proofs of the theorems that follow. The first of these lemmas
shows that if the true costs of the agent performing the estimate are greater than the costs which
are used to scale the scoring rule, then the agent’s utility will always be negative, regardless of
the precision.

Lemma 1. [f ¢,(0) and c4(0) are convex functions with ¢,(0) > ¢4(0), ¢;(0) > ¢,(0) and ¢;(0) =
cs(0) =0, where ¢,(0) is the agent’s true cost function, c4(0) is the cost function used to scale
the scoring function and c;(0) and c,(0) their respective derivatives, then U(0) < 0 for any 6.

Proof. Concavity of the expected score S(8) implies:

5'(80)(6—80) > 5(6) —S(8o) (13)
Similarly, convexity of the cost function cs(0) gives:

¢(80)(8—60) < ¢;(8) —¢5(80) (14)

Given that by definition S(8) and c,(0) are strictly increasing (as stated in the model descrip-
tion in Section 2), dividing with S (8) and c’.(6) maintains the sign in inequalities 13 and 14.
Therefore, from:

o 5(6)—5(60)
(9 90) > 3/(90)
and (8) — c.(80)
Cg — Cs\ 90
Y

it follows that: _ _
5(8) —5(80) _ ¢s(8) —¢s5(6o)
S) ()

c5(6o)

5'(80)

Now, the expected utility, is given by U(8) = a.S(0) + B — ¢(0) (Equation 8), with the scaling
/

(S(8) —8(80)) +c5(80) —cs(0) <0 (15)

0
parameters o and [ already defined using Equations 9 and 10 as o0 = ¢ (60 and B = ¢(8y) —

5 (0o
c'(8o)

e )3(60). Therefore, an agent’s expected utility is given by:
0

U(6) = ——(5(8) —5(60)) + (c5(60) — ¢ (8)) (16)
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Therefore, since ¢;(0) > ¢4(0), for any 0 the following holds:

522‘3 (5(6) —~ 5(680)) + ¢,(80) — ,(6) <0 =
;E:z; (S(8) — 5(60)) + ¢5(60) — ¢, (6) < 0 =
N 7(0) = ) 516) _5(09)) + 4(60) — 1 (8) < 0
5(80) ’

O]

The next lemma shows that if the true costs of the agent performing the estimate are less than
the costs used to scale the scoring rule, then the optimal precision 6* will be greater than 6.

Lemma 2. [f ¢,(0) and c5(8) are convex functions with ¢,(8) < ¢5(8), ¢;(0) < ci(0) and ¢,(0) =
cs(0) = 0, where ¢,;(8) is the agent’s true cost function, c5(0) is the cost function used to scale
the scoring function and c,(0) and c(0) their respective derivatives, then 6* > 8.

Proof. The agent’s optimal precision, 8%, which maximises its expected utility is formally de-
noted by 0* = argmax,U(0), with U’(G*) = 0. Now, the agent’s expected utility is already
defined by Equation 16 as:

U(8) = Z-—(S(8) —5(80)) + (c5(B0) — c(6))

Given that the optimal precision, 0%, maximises the expected score, we have U’(G*) =0, and
hence, after replacing 6 with 6" and calculating the derivative of the expected utility (Equation
16):
/ < (a* ! (%

?fi")s’(e*)—c;(e*) :o@i(e ) _al®) (17)

S'(80) NCHEACH
Let £(6) =5 (8)/S (6) and g(0) = ¢/(8)/c.(6). Now, since S(8) is (strictly) concave, strictly
increasing and twice differentiable, then f/(0) < 0 for all 8. Furthermore, since we also assume
that the cost functions, and their derivatives, maintain the same ordering, without overlapping for
all 0, then since ¢;(6) > 0 (due to the convexity of the cost) and c/,(6) > 0 (since cost functions
are strictly increasing), then g’(0) > 0 for all 0, and since ¢} (0) < c}(0) for all 6, then g(8y) < 1.
Finally, since g(0) is strictly increasing and f(6p) = 1, then f(0) and g(6) must cross (i.e.
f(0") =g(6%)) at6* > 0 . O

Based on these two key lemmas, we now proceed to prove the four economic properties of
our mechanism.

Theorem 1. Truthful revelation of the agents’ cost functions in the first stage of the mechanism
is a weakly dominant strategy.

12



Proof. We prove this by contradiction. Let ¢,;(8) and ¢(0) denote an agent’s true and reported
cost functions respectively. Furthermore, let c,(8) denote the cost function used to scale the
scoring function if the agent wins (i.e. if ¢(8p) < ¢5(69)).

First, suppose that the agent misreports, but this does not affect whether it wins or not. In
this case, since the costs are based on the second-lowest costs, this does not affect the scoring
rule if the agent wins. Moreover, if the agent loses, the payoff is always zero. Therefore, there is
no incentive to misreport.

Second, suppose that the agent’s misreporting affects whether that agent is pre-selected or
not. There are now two cases:

1. The agent wins by misreporting, but would have lost when truthful.
2. The agent loses by misreporting, but would have won when truthful.

In this context:

e Case (1) can be formally denoted as ¢;(89) > ¢5(69) and ¢c(8g) < ¢5(8g). Now, since the
true cost ¢;(09) > c4(0y), it follows directly from Lemma 1 that the expected utility U (0) is
strictly negative, irrespective of 6. Therefore, the agent could do strictly better by reporting
truthfully in which case the expected utility is zero.

e Case (2) can be formally denoted as ¢;(0g) < ¢5(8p) and ¢(6g) > ¢5(6p). In this case the
agent would have won by being truthful, but now receives a utility of zero. To show that
this type of misreporting is suboptimal, we need to show that, when ¢,(6¢) < ¢,(6p), an
agent benefits from being selected and generating the (optimal) estimate (i.e. U(6*) > 0
when ¢;(09) < ¢5(09)). Now, since 8* is optimal by definition, then U (6*) > U (6). From
the expected utility in equation 16, we have U(8p) = ¢5(80) — ¢;(89) > 0 when ¢;(8g) <
¢s(80), and hence U (6*) > 0 at true costs reporting.

O]

Corollary 1. Incentive compatibility with respect to agents’ reported costs and precisions does
not hold if the agents’ cost functions cross at ©'.

Proof. The proof regarding the agents’ reported costs comes directly from the above theorem, as
we need to show only one example where an agent is incentivised to misreport its cost function.
Following the same notation as above, let ¢;(0) and ¢(0) denote an agent’s true and reported cost
functions respectively, while ¢;(0) denotes the cost function used to scale the scoring function
and 0’ is the point where two cost functions (suppose cs(0) and ¢;(0)) intersect. In this context,
we intend to show that an agent can do better by misreporting and losing, rather than by reporting
truthfully and winning. In more detail, since ¢4(8) and ¢, (0) overlap at &/, ¢(0) < ¢;(8), for every
0 > 0’. Therefore, according to Lemma 1, the expected utility will be strictly negative. If the
agent misreports its cost function so it is not selected, its utility will be zero. Therefore, the
mechanism is no longer incentive compatible with respect to reported cost functions.

Now, regarding the agent’s reported precision, if at 8’ ¢;(0) and ¢,(0) intersect then ¢;(0') >
c5(8') and therefore U(0') < 0. Given that this agent is the cheapest one, at least for 8 < @' it is
in its best interest to report a precision lower that 8 even if it makes an estimate with precision
greater than @, in order to maintain positive utility. That is, 8 < 6/, while 6 > ©’. Therefore, the

mechanism is no longer incentive compatible with respect to reported precision. O
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Theorem 2. The mechanism is incentive compatible regarding the agent’s reported forecast and
precision in the second stage.

Proof. The proof for this theorem follows directly from the definition of the strictly proper scor-
ing rules (see Section 3). ]

Theorem 3. The two-stage mechanism is individually rational.

Proof. Having shown in Theorem 1 that the true reporting of cost functions in the first stage is a
weakly dominant strategy, we only have to examine whether the selected agent is incentivised to
participate into the the second stage of the mechanism and report its estimate and its precision to
the centre. Since agents that do not win in the first stage receive zero utility, we only consider the
case of the selected agent. For that agent, its true cost function is less than or equal to the cost
function used for the scaling of the expected score (i.e. ¢;(8) < ¢4(0)). Given that the selected

agent’s expected utility, U(8), is: i‘i,ﬂ(ﬁ(e) —8(09)) +¢5(89) — ¢/(8) (equation 16), it follows

S'(80)
that U(80) = ¢5(89) — ¢/(80) > 0. In Lemma 2, we have shown that the agent will produce an
estimate 8% > 9. By definition, U (6*) > U(8y), and thus, U (6*) > 0. O

Theorem 4. For the agent selected in the first stage of the mechanism, it is optimal to produce
an estimate with a precision equal to or higher than the precision required by the centre, i.e.,
0" > 0.

Proof. This proof follows directly from Lemma 2 where we show that there is an optimal
precision, 6%, such that 6* > 0 if ¢,(0) and ¢4(0) are convex functions with ¢;(8) < ¢4(8),
c,(8) < c4(0) and ¢;(0) = ¢,(0) = 0. Given that the mechanism is incentive compatible in costs,
then all these conditions hold, and thus, 6* > 0. O

Note that these proofs indicate that the two stages of the mechanism are inextricably linked
and cannot be considered in isolation of one another. Indeed, apparently small changes to the
second stage of the mechanism can destroy the incentive compatibility property of the first stage.
For example, it is important to note that our mechanism is more precisely known as interim
individually rational (Mas-Colell et al., 1995), since the utility is positive in expectation. In any
specific instance, the payment could actually be negative if the prediction turns out to be far from
the actual outcome. An alternative choice for the second stage of the mechanism would be to set
BB such that the payments are always positive, thus making the mechanism ex-post individually
rational. However, this would then violate the incentive-compatibility property since the agents
could then receive positive pay-offs by misreporting their cost functions. Likewise, it might be
tempting to imagine that the centre could use the revealed costs of the agents in order to request
a lower precision, confident in the knowledge that the selected agent will actually produce an
estimate of the required precision. However, by effectively using the lowest revealed cost within
the payment rule in this way, the incentive-compatibility property of the mechanism would again
be destroyed.

4.3. Numerical Simulations

Having proven the economic properties of the mechanism in the general case with any convex
cost function, we now consider a specific scenario in which costs are linear functions, given by

14



¢i(0) = ¢;0, where the value of ¢; is drawn from a uniform distribution ¢; ~ U(1,2) and 8y = 1.
Note that while we can derive analytical expressions for the expected payment that the centre will
make in any specific instance of this case (i.e. when the lowest and second-lowest cost functions
are known), we cannot do so in the general case where these cost functions are drawn from some
distribution since this requires that we integrate over the joint probability distribution of the first
and second agent’s costs, and the mean and variance of the estimate that the agent with the lowest
cost actually generates. Performing this integration numerically is also problematic as expressing
this joint probability distributions becomes increasingly complex as the mechanisms described in
this paper become more complex. Thus, instead we effectively draw independent samples from
this joint probability distribution by actually simulating the processes of the mechanism (i.e. the
revelation of the agents’ costs, the selection of the agent with the lowest cost in the first stage
of the mechanism, the choice of precision that this agent makes given the scoring rule presented
to it, its generation of an estimate, and finally the score that it receives after the true unknown
value is revealed). To this end, for a range from 2 to 20 agents participating in the first stage, we
simulate the mechanism 10° times and, for each iteration, record the payment made to the agent
that provided the forecast and the precision of this forecast. Due to the number of iterations that
we perform, the standard error in the mean values plotted are much smaller than the symbol size
shown in the plot, and thus for clarity, we omit them.

The payment the agent expects to derive, P, and its actual precision, 0*, for every value of
N € [2,20] are shown in Figure 1. As expected, as the number of agents increases, the mean
payment, shown in Figure 1a, decreases toward the lower limit of the uniform distribution from
which the costs were drawn. Furthermore, note that there is a fixed ordering over the entire
range, with the payment resulting from the quadratic scoring rule being the highest, and that
of the logarithmic scoring rule being the lowest. The reason for this can be seen in Figure 1(b)
where the precision of the forecasts that were actually made are shown. Note that the logarithmic
scoring rule induces agents to produce forecasts closer to the required precision than both the
spherical and the quadratic scoring rules.

Figure 1a also shows the mean of the lowest and second lowest costs evaluated at the required
precision 6y (denoted by ¢,0¢ and ¢,0¢ respectively). The first cost represents the minimum
payment that could have been made if the costs of the agents were known to the centre. The
second represents the payment that would have been made, had the agent produced a forecast of
the required precision 0 rather than its own optimal precision 6*. The gap between c¢;0y and
20y is the extra amount that must be paid as a result of the costs being unknown and is the same
regardless the scoring rule used. On the other hand, the gap between ¢,0( and the mean payment
of any particular scoring rule, depends on the choice of the scoring rule as it represents the loss
that the centre has to cover, as a result of the agent producing an estimate at its optimal precision,
0* (rather than one at the minimum precision required, 8p). The goal in selecting scoring rules
is clearly to minimise this gap, and it can be seen that the logarithmic scoring rule is closest to
achieving this goal.

We also derive the analytical expressions of the expected payment, P, and the optimal pre-
cision, 0%, as a function of the required precision, 0y, for a single run of the mechanism in
this specific setting where cost functions are represented by linear functions, and the costs of
the cheapest and second cheapest agents (denoted by c; and ¢;) are known. These results are
represented in the first two rows of Table 2, and show that the pattern observed in the empiri-

cal evaluation (where we effectively average over the distribution of the first and second lowest
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Figure 1: Selected agent’s expected payment and optimal precision.

costs) is shown in the individual analytical results. That is, when the payment is based on the
logarithmic scoring rule, the agent’s expected payment is less than the other two scoring rules,
and the precision that the agent actually reports is closest to that requested.

Furthermore, in Figure 2 we also apply the parametric scoring rule to the case where N = 10,
and compare it to the three fixed scoring rules. Note that in the case of the parametric scoring
rule, as k — 1, the expected payment of the centre, and its variance, is asymptotically equal to
that of the logarithmic scoring rule. Likewise, for k = 2, the parametric scoring rule is exactly
the quadratic scoring rule (since it takes the same mathematical form). For k = 1.5, the expected
payment of the parametric scoring rule is equal to that of the spherical rule, but the variance in
the payments is not. From these plots, it would appear that the logarithmic scoring rule would
be the optimum choice for the centre since it will minimise the amount that must be paid to the
agents. It also displays the minimum variance in this payment which is an important criteria
since it reflects the uncertainty in the payment that the agent is expecting to receive. However,
further analysis in the next section indicates that the parametric scoring rule has a significant
advantage over the logarithmic; that is, the existence of a finite lower bound on the payment.

4.4. Analysis of Payment Lower Bound

In more detail, row 3 of Table 2 shows the analytically calculated lower bound of the scaled
payment, P, based on the principle that the lower bound is derived from the scoring rule
S(xo;)?,ﬁ), when the value of the probability density function describing the actual outcome is
0 (i.e. N(xp3x,1 /6) = 0). Note that the logarithmic scoring rule does not have a finite lower
bound. Thus, if the agent’s estimate is far from the actual outcome, then a payment based on
the logarithmic scoring rule will go to —eoo, and the agent will actually be required to pay an
unbounded penalty to the centre. Likewise, in the limit as kK — 1, the payment based on the
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Table 2: Analytical calculation of the expected payment, optimal precision and lower bound on
the payment for quadratic, spherical, logarithmic and parametric scoring rules with linear cost
functions for an instance of the mechanism.

SR: Quadratic Spherical Logarithmic Parametric

1 k—1

P(6y) 200 {2% - } €200 {4 (%) o 3} 200 [1 +log (%)} ]:2_9(1 [2 <Z) N +k—3
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Costs are given by linear functions, ¢(8) = ¢6, and ¢ and ¢, are the lowest and second lowest costs.

scaled parametric scoring rule also has no finite lower bound®. However, for values of k # 1, the
parametric scoring rule is bounded, and the appropriate choice of the parameter, &, allows the
overall performance of the scoring rule (in terms of the expected total payment of the centre and
the variance in this payment) to be traded-off against the value of this bound.

In Figure 3 we plot the lower bound of the payments based on the quadratic, spherical and
parametric scoring rules (we omit the logarithmic scoring rule as it goes to —eo); noting that the
lower bound occurs when ¢; = 1 and ¢, = 2 (the lower and upper support of the cost function
distribution). Note that for some values of &, the lower bound of the parametric scoring rule is
greater than that of the quadratic rule, but it is always less than that of the spherical rule. Based
on this result, we select k to be equal to 1.2 in our future experiments. This value results in an
expected payment and variance that is close to the logarithmic scoring rule, whilst not penalising
the agent excessively in the worst case. The choice of parameter value here is is somewhat
arbitrary, and in practice, it will depend on the details of the particular application domain.

4.5. Discussion

In this section we introduced a two-stage mechanism based on strictly proper scoring rules that
motivates self-interested rational agents to make a costly forecast of a specified precision and
report it truthfully to a centre. The mechanism was applied in a setting in which a centre is
faced with multiple agents but has no knowledge about the costs involved in the generation of
the probabilistic estimates. We first proved that the mechanism was incentive compatible and in-
dividually rational. Then we empirically evaluated the mechanism by comparing the quadratic,
spherical, logarithmic and parametric scoring rules, and showed that the logarithmic and the
parametric (for k — 1) rules minimise the centre’s expected payment, the variance in this pay-
ment, and the selected agent’s optimal precision. However, given that payments derived from
the logarithmic scoring rule payment have no finite lower bound, the parametric scoring rule is

81n this case, this is due to the scaling parameters being unbounded. The score has a finite lower bound for all
values of k.
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Figure 2: The mean and variance of the centre’s payment.

a more appropriate choice for a centre that does not want to severely punish agents that inadver-
tently provide inaccurate observations. Hence, we will be using it for the numerical evaluations
of the mechanisms we develop in the remainder of this paper.

5. A Mechanism for Dealing with Multiple Agents that have a Limited Degree of Precision

In the previous section we considered the case where any single agent is able to generate an
estimate of the required precision. Now, as already mentioned in Section 1, this may not always
be the case in situations where agents have limited resources with which to produce these esti-
mates, and thus, the centre may have to procure estimates from multiple agents and fuse them
together in order to achieve a sufficiently high precision. To this end, we revise the mechanism
in the previous section by relaxing the assumption that any single agent is capable of producing
the required estimate. In doing so, we propose a parametrised iterative mechanism (Mechanism
2), which is similar to the previous mechanism (i.e. two stages, first stage to elicit costs, second
to calculate payments), but that uses a significantly different process to elicit those costs and
calculate the payments. In more detail, in the first stage the centre pre-selects M from N agents
through a series of selection steps which elicits their costs. In the second stage, it elicits the
pre-selected agents’ probabilistic estimates, after sequentially approaching them in a random or-
der. As with the previous mechanism, we formally prove that this novel mechanism is incentive
compatible regarding the costs, maximum precisions and estimates, and that it is individually
rational. Finally, we introduce a family of processes by which the centre may pre-select M from
N agents and show both empirically and analytically that the centre will minimise its expected
payments by forming a single group of agents in the first stage of the mechanism.

5.1. Eliciting Information from Multiple Sources

As described in Section 2, we consider the same model as in the previous section, however we

additionally assume that there is a limit in the maximum precisions of the agents’ estimates,
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denoted by 65. Thus, agents can produce estimates of any precision up to and including this
maximum value (i.e. 0 <0; < 0f). Given this limit, the centre may not be able to rely on a
single agent to achieve its required precision, and may have to combine estimates from multiple
agents, in order to achieve the desired degree of accuracy, and thus, must fuse k conditionally
independent and unbiased probabilistic estimates, {X,...,x;} of possibly different precisions
{@1, .. ,§k}, into a single estimate with mean & and precision 8. To do so, the centre uses the
standard result (see DeGroot and Schervish (2002)) for fusing independent Gaussian distribu-

tions such that: .
#®=Y)%6 ad 8=)8 (18)

' i=1

Il
_

By fusing the agents’ precisions, the centre manages to acquire an estimate of higher precision
than the precision of any of the individual agents. Indeed, it can be seen that 6 > 6, for any agent
i. Note that for this fusion to be appropriate, agents must be incentivised to truthfully report both
the means and precisions of their estimates. Now, given this model, the challenge is to design
a mechanism in which the centre will be able to initially identify those agents that can provide
their estimates at the lowest cost, then motivate these agents to truthfully report their maximum
precisions and finally generate and truthfully report their estimates with precisions equal to their
reported maximum precisions.

5.2. The Mechanism

In Mechanism 2 we extend the mechanism discussed in the previous section by relaxing the as-
sumption that the centre can select a single agent that can provide the estimate at the required
precisions. The centre can now elicit estimates from multiple agents which have limited pre-
cisions in the estimates they can provide. In order to address this issue, the centre in the first
stage, iteratively pre-selects M of the N available agents based on their reported costs. There
are a number of ways in which this may be done; most generally, by dividing all the available

agents, NV, into groups of n < N agents and then by sequentially asking the agents of each group
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to reveal their costs. The centre then selects the m cheapest agents, with m < n. We shall shortly
show that one combination of #» and m dominates all others.

In the second stage, the centre then sequentially asks the M pre-selected agents to reveal their
private maximum precision, in a random order that is independent of their reported costs, until it
achieves its required precision, 8y, at which point it discards the remaining pre-selected agents.
Then, those that are not discarded are provided with a payment rule that incentivises them to
generate estimates at their reported maximum precisions and to truthfully report these estimates
to the centre.

We now proceed to prove that this mechanism leads the agents to truthfully reveal their costs
in the first stage (so that those which can produce the estimate at the lowest cost can be iden-
tified), and that the M pre-selected agents are incentivised to truthfully report their maximum
precisions to the centre and subsequently make and truthfully report estimates of these preci-
sions in the second stage. These properties are not obvious, and as in the single agent section,
they depend rather subtly on the details of the mechanism. For example, we note that if after
asking all M agents for their maximum precisions, the centre does not achieve its required pre-
cision, the mechanism must proceed to the payment phase (step 5 in second stage). That is, the
centre must commit to paying all pre-selected agents for their estimates at their reported maxi-
mum precisions, even if it does not acquire its required precision. Failure to observe this policy
would lead agents to over-report their maximum precision, in order that some payment was re-
ceived, and thus, the mechanism would no longer be incentive compatible in terms of maximum
precisions.

Furthermore, note that in step 2 of the first stage, the centre chooses the m agents with
the lowest reported costs, and discards the remaining n — m agents. If these agents were not
discarded, but were placed back into the pool of available agents, then the mechanism would no
longer be incentive compatible in terms of costs; agents would have an incentive to over-report
their costs, such that when they are eventually pre-selected, their payment rule will be calculated
using a higher cost. Finally, in step 2 of the second stage, the centre must randomly ask the pre-
selected agents to report their maximum precisions using an ordering which is independent of
their reported costs. Failing to do so will undermine incentive compatibility in terms of costs of
the first stage of the mechanism, thereby illustrating how the two stages interact. Even in the case
where only one agent participates in the second stage, as a result of the available agents being
two (N = 2) or the number of the pre-selected agents being set to one by the centre (M = 1), the
incentive compatibility is maintained. In this case, the agent with the higher reported cost will
not be asked for its precision in the second stage since, since the N — M agents are discarded in
the first stage.

5.3. Economic Properties of the Mechanism

Having detailed the mechanism, we now identify and provide its economic properties. Specifi-
cally, we show that:

1. The mechanism is incentive compatible with respect to the pre-selected agents’ reported
maximum precisions and reported estimates.

2. The mechanism is incentive compatible with respect to the agents’ reported costs.
3. The mechanism is individually rational.
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Mechanism 2 The mechanism for dealing with multiple agents that can provide estimates
of a limited precision:

1. First Stage

1.1 The centre selects n > 2 agents from the available N and asks them to report their cost
functions ¢;(0) with i € {1,...,n}.

1.2 The centre selects the m, (1 < m < n), agents with the lowest costs, associates the (m+ 1)”’
cost with these agents and discards the remaining n — m agents.

1.3 The centre repeats the above two steps until it has asked all N agents to report their cost
functions. Note that when N is not exactly divisible by n and we have a single remainder,
it is discarded. Otherwise in the final round the centre modifies n and m such that n =
N mod n and m = min(m,n—1).

1.4 We denote the total number of the agents pre-selected in this stage as M and note that its
value depends on N, n and m.

2. Second Stage

2.1 The centre sets its required precision 0, equal to 6.

2.2 The centre randomly selects one of the pre-selected agents and asks it to report its maxi-
mum precision 6¢, with j € {1,...,M}.

2.3 The centre asks the agent j to produce an estimate of this precision and presents this agent
with a scaled strictly proper scoring rule. The scaling parameters o and [ are determined
using equations 9 and 10. However, within these expressions 6? is used instead of 69, and
cs (the cost associated with this agent in the preceding stage — (m + 1) cost in the group
from which it was selected) is used instead of ¢;. Hence, the scaling parameters are given

by:
/ Ac / Ac
Cs(ej) ~c Cs(ej)f’\,
o= == and Bj = Cs(e;') = S(GS') (19)
5'(6) 5(69)
2.4 The centre sets 6, = 0, — min(er,ﬁg) and if ©, > 0 it repeats step two of the second stage.

2.5 The agents that were asked to do so, produce an estimate x; with precision 6; and report
X ;and 0 to the centre?, which after observing the actual outcome, xp, issues the following
payments:

PJ(XO;.;C\j,GJ):aij(xO;)/C\j,ej)jLBj (20)

with o and 3 being already determined in step two of the second stage.
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Theorem 5. The mechanism is incentive compatible with respect to the pre-selected agents’
reported maximum precisions and reported estimates.

Proof. Given the mechanism described above, when the agent reports its estimate, it must do so
with the precision that it claimed was its maximum. Thus, 0 = 6°. Now, given the scaling of
the scoring rules described in step 2 in the second stage of the mechanism, the expected utility
of the agent, if it reports its maximum precision as 8¢, and subsequently produces an estimate of
precision 0, which it reports with precision 9‘ is denoted by U (6, 6‘) and is given by:

T8 =S5

where E(G,@” ) is the agent’s expected score for producing an estimate of precision 6 and re-
porting its precision as 6°. Furthermore, S(@C) is the agent’s expected score for producing and
truthfully reporting an estimate of precision 60, ¢/(.) is the true cost function of the agent, and
cs(.) is the cost function used to produce the scoring rule (i.e. the (m + 1)th lowest revealed cost
in the group from which the agent was pre-selected). Taking the first derivative of this expression
with respect to 0¢ gives:

(5(9,60) —E(ﬁf)) +ey(69) — ¢, () @1)

dU(0,6°)  d [ (69

N

doc  dec \ 5 (o)

(96)

s'(6)
Now, since S is a strictly proper scoring rule, then E(G,/é") = E(@") and 3’(9,6") =0 when 6 = 6°.
Hence:

(E(e,@") - E@.)) 5 (6,89 22)

C
7dU((i,6 ) =0 (23)
doc  lg—e
and thus, the utility of the agent is maximised when it reveals as its maximum precision, the
precision of the estimate that it subsequently produces!®.
We now show that it will actually produce an estimate of precision equal to its reported
maximum precision. To this end, we note that when 0¢ = 0, the expected utility of the agent is
given by:

U(0) = ¢,(8) — c:(8) (25)

Since ¢(.) and ¢,(.) do not cross or overlap, and c;,(8) > c,(8), then U(8) is a strictly in-
creasing function. Thus the agent will maximise its expected utility by producing an estimate at
its maximum precision, and thus, 6 = 6¢, and hence, 6¢ = 6 = 6¢, as required. O

Note that we could restrict agents to report their estimates with precision 6; However, as we shall show in
Section 5.3, under this mechanism the agents are automatically incentivise to report 8; = 93 anyway.

10For completeness, we confirm that the second derivative is negative at @ = 6. To this end, the second derivative
is given by:

A
<D

dZU/(\GGL) /éc _ 9) — i%(/ef)gll(e’/e\c) _ C;/(§C) + L)

d(e)? 5(6) (9‘)

Now, the first term of equation 24 is negative because S is strictly proper, and this implies that E”(e,@') is negative

at © = 6°. Furthermore, cl (@‘) is positive, assuming convexity of the cost function, and S (ﬁc ) is negative assuming
concavity of the scoring rule. Hence, the second derivative is negative at 0c =o.
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Theorem 6. The mechanism is incentive compatible with respect to the agents’ reported costs.

Proof. We prove this by contradiction and consider two cases depending on whether or not an
agent is pre-selected in the first stage of the mechanism as a result of its misreporting. Let ¢,(.)
and ¢(.) denote an agents’ true and reported cost functions respectively. Furthermore, let ¢,(.)
denote the cost function used to scale the scoring rule if that agent is among the m agents with
the lowest reported costs in its group of n agents in the first stage of the mechanism (i.e. ¢(.) is
the (m+ 1) cost of that group).

First, suppose that the agent’s misreporting does not affect whether it is pre-selected or not.
In this case, had the agent been pre-selected, its payment would have been based on the (m+ 1)
cost of its group and therefore independent of its own report. Conversely, had the agent not
been pre-selected, it would have received zero utility, since the remaining n — m agents, of a
group of initially n agents, that are not pre-selected are discarded. Hence, there is no incentive
to misreport.

Second, suppose that the agent’s misreporting affects whether that agent is pre-selected or
not. There are now two cases: (1) the agent is pre-selected by misreporting but would have
not been if it was truthful, (i.e. ¢;(8°) > ¢,(6°) and ¢(6°) < cs(ec)) and (2) the agent is not pre-
selected by misreporting but would have been if truthful (i.e. ¢/(8) < ¢;(8°) and €(6°) > ¢, (6°)).

Case (1). Since the true cost c,(ec) > cs(Gc), it follows directly from Theorem 5 that the
expected utility U(0) = ¢(0) —c;(0) is strictly negative, irrespective of 0. Therefore, the agent
could do strictly better by reporting truthfully in which case the expected utility is zero.

Case (2). In this case the agent would have been pre-selected if it was truthful, but now
receives a utility of zero since it has not been pre-selected due to its misreporting. To show that
this type of misreporting is suboptimal, we need to show that, when ¢;(8°) < ¢,(6°), an agent
benefits from being pre-selected, since it may then be asked to generate an estimate at its reported
maximum precision, 0¢. It follows directly from Theorem 5 that U (8¢) = ¢;(8) — ¢;(6) > 0
when ct(G‘) < cs(e‘), and therefore there is no incentive for an agent that would have been
pre-selected to misreport its cost function. O

Theorem 7. The mechanism is interim individually rational.

Proof. Due to Theorem 6, we can assume that all agents, and consequently those pre-selected,
will report their true cost functions, and therefore ¢;(0) < ¢,(8). In Theorem 5, we show that the
expected utility U(0) = ¢4(8) — ¢,(0) is strictly non-negative, irrespective of 0. Therefore, the
expected utility of a pre-selected agent that generates an estimate of precision equal to its reported
maximum precision G‘ is strictly non-negative (i.e. U (GC) > 0), and hence the mechanism is
interim individually rational. O

5.4. Numerical Simulations

Having proven the economic properties of the mechanism, we present empirical results for a
specific scenario in order to explore the effect that the parameters n and m have on the centre’s
total payments, and on the probability of achieving its required precision. In more detail, as
before, the cost functions are represented by linear functions, given by ¢;(0) = ¢;0, where ¢;
are independently drawn from a uniform distribution ¢; ~ €(1,2). The maximum precisions of
the selected agents, 6f, is independently drawn from another uniform distribution 6§ ~ (0, 1)

and finally the centre’s required precision, 6, is equal to 1.7 in order to generate representative
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Figure 4: Centre’s probability of achieving the required precision and the mean total payment it
has to issue.

results whereby the probability of achieving the required precision, P(6y), covers a broad range
of values in [0, 1]. Finally, we restrict our analysis to the use of the parametric scoring rule for
k = 1.2 as we have shown in Section 4.4, that among the common rules and for various values
of the parameter k, this rule is a good choice for a centre intending to issue low payments with
low variance, that still remain bounded.

Given this, and for N = 7, we explore all possible combinations of n and m given the con-
straints that 2 < n < N and 1 < m < n. For each combination, we simulate the mechanisms 10’
times and for each iteration we record whether the centre was successful in acquiring an esti-
mate at its required precision, and the sum of all the payments it issued to those agents that were
asked to produce an estimate. In Figure 4 we plot, for each possible combination of n and m, the
probability of acquiring the required precision against the total payment made by the centre. We
note that again the standard error of the mean values are much smaller than the plotted symbols,
and thus, for clarity we omit it.

With regard to this figure, the squares indicates the case where the centre has full information
of the agents’ costs, and therefore represents an upper bound for the mechanism. It results in
significantly lower total payments to the agents since the centre is able to select those agents
with the lowest costs to generate the estimates and it use payment rules that are scaled using the
known costs of these agents. The circles depict the results for all possible combinations of n and
m, except where n = N and m = M, which is indicated by a diamond (the reason for this will
become clear shortly). We first note that many possible combinations of n and m give rise to the
same value of P(8p), and thus the family of possible pre-selection methods fall into 6 distinct
columns. This is because this probability depends only on the number of agents that are pre-
selected (denoted by M) and many of these combinations result in the same number of agents
being pre-selected (e.g. if N =7,bothn=4,m=2and n =15, m = 3 result in M = 4). Second,
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note that for each possible value of M, the case where n = N and m = M dominates all other
combinations of n and m (i.e. it results in the lowest mean total payment). This case corresponds
to a single selection stage in which M agents are pre-selected directly from the original N in a
single step. We more formally analyse these two observations in the following section.

5.5. Analysis of Pre-Selection Schemes

With regard to the observation above that the probability of achieving 6y is dependent on the
number of agents pre-selected, we can see that this is so since within our mechanism the max-
imum precisions of the pre-selected agents are independent of their costs. In the numerical
simulations described above we have M independent and uniformly distributed random variables
8¢ ~ €(0,1) which denote the agents’ maximum precisions. If we denote the sum of these
as O such that ® = Z?i 187, then its cumulative probability distribution allows us to calculate
P(® > 6)) as follows:

1LGOJ (M M
=5 2 (=1) Bo— i) 0<0,<M
P(®>8)) = M'i;o( )@= <8<

0 0> M

(26)

Although not immediately obvious from its analytical form, this is an increasing function in M
as demonstrated in the numerical simulations.

The second observation is that a single selection stage in which M agents are pre-selected
directly from the original N in a single step dominates all other selection schemes. This is
perhaps more surprising and for this reason we provide a formal proof for the case where costs
are linear functions of precision below.

Theorem 8. In a setting with linear cost functions, where agents’ costs and maximum precisions
are independently drawn from uniform distributions, for a given probability of achieving 9y, the
centre minimises its expected total payment when n = N and m = M.

Proof. Given the mechanism and setting described above, we first note that when the costs of
the agents are represented by linear functions, then ¢;(8) = ¢;0, and hence, ¢}(8) = ¢;. Using this
result within the scaling parameters of the payment rule described in Step 2.4, gives the result:

Cs ~ Cs =
o = /5= and B-:cse‘~—i5 0¢ (27)
J Sl(ec) J J S/(es) ( ])

Thus, both o and 3 are proportional to ¢, and hence the payment to any agent is also proportional
to the cost used in the calculation of the scaling parameters. Secondly, we note that due to
the random selection of agents within the second stage of the mechanism, the precision of the
estimate generated by any agent is independent of the cost used to generate its payment rule.
Hence, the expected total payment to the agents is proportional to the mean cost used to generate
their payment rules.

Now, the costs used to generate the payment rule of any agent is the (m+ 1)/ lowest reported
cost when m agents are pre-selected from n. Thus, in order to show that settingn =N and m =M
minimises the expected total payment of the centre, we must simply show that the expected value

of the (M + 1)™ cost when pre-selecting M agents from N, is lower than any other combination.
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To do so, we note that if the costs of the agents are i.i.d. from the standard uniform distribution!?,
and the agents report truthfully (as they are incentivised to do), then the density function that
describes the (m+ 1)/ cost, denoted by Cy,, 1., is given by:

n!

Crs 1 (1) = W"(1—u)"™ ' 0<u<1 (28)

m!(n—m—1)!

and Arnold et al. (2008) show that ¢, 1.,(«) ~ B(m+ 1,n —m) and therefore the mean of this
distribution is simply % Thus, we now prove that the (M + l)th cost when pre-selecting all M
agents directly from N is less than the expected cost that results from first pre-selecting m agents
from n and then pre-selecting the remaining M — m agents from N — n. Therefore, and given that

cy+1N () ~BM+1,N—M) and cyy—mi1:N—n(tt) ~ B(IM —m+ 1,N —n— M + m), we must

prove the inequality:
M+1 mm+1 M—m(M—-—m+1
- )< = 2
<N+1>_M(n+l>jL M (N—n+1> 29)

subject to the constraints that M < N, m < n and N —n > M —m, and we note that if it holds in
this case, then it holds for all possible combinations of n and m.
A first step towards the proof of equation 29, is performing the following substitutions:

a=m, b=M—-—m, c=n, d=N—n
such that equation 29 now takes the following form:
(a+b)(a+b+1) ala+1) bb+1)
< +
c+d+1 ~ c+1 d+1

with a,b,c,d > 0,a < c,and b < d.

Now, by multiplying all fractions in equation 30 to obtain a common denominator,(c+ 1)(d +
1)(c+d+1), and noting that this denominator is positive, translates equation 30 into the follow-
ing condition:

(30)

(a+b)(a+b+1)(c+1)(d+1)

—ala+1)(c+d+1)(d+1)

—b(b+1)(c+d+1)(c+1)<0 (31

We can rearrange this expression into the form:
Fi(a,b,c,d)+ F(a,b,c,d)+ F3(a,b,c,d) <0 (32)

where:

Fi(a,b,c,d)=—(d-a—b-c)? (33)
F(a,b,c,d) = —b(c —a)* — b*(c —a) —a(d — b)* —a*(d — b) (34)
Fs(a,b,c,d)=a(b—d)+b(a—c) (35)

Now, it is easy to verify that Fj, F,, and F3 are all negative given the initial constraints that
a,b,c,d > 0,a < cand b < d. Hence, it follows that equation 32 is negative. ]

For notational simplicity we shall assume that the costs are drawn from 7I(0, 1), but we note that the proof is
valid for a uniform distribution of any support.
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5.6. Discussion

In this section, we extended our original two-stage mechanism by relaxing the assumption that
a single agent can provide an estimate of infinite precision and have introduced limitations on
the agents’ maximum precisions. As a result of this, an agent might not be able to generate
estimates of a sufficient precision to individually meet the centre’s needs, hence leaving the
centre no option but to combine multiple such estimates and fuse them into a more accurate one.
In addition to that, the centre now needs to elicit the maximum precision from the agents. In
order to address these challenges, in this extended mechanism a centre pre-selects M from the N
available agents by eliciting their cost functions in the first stage. Then, in the second stage, it
approaches some of these M agents and asks them to report their maximum precision and make
a costly probabilistic estimate or forecast of that precision. We proved that this mechanism is
incentive compatible and individually rational, and we empirically evaluated the mechanism for
various values of the parameters m and n and showed that for a given probability, P(8y), the
centre minimises its mean total payment if it pre-selects M agents directly from a single group
of N agents. These results showed that while it is always preferable to set n = N (i.e. no agents
should be excluded from the mechanism), the choice of the value of m is determined by the trade-
off between the total payment made by the centre and the probability of it acquiring an estimate
of its required precision. If the distributions of cost and maximum precisions are known, this can
be evaluated prior to running the mechanism through simulation. However, if these distributions
are unknown, setting m = N — 1 ensures that the probability of acquiring the required precision
is maximised (but doing so will also incur the greatest expected payment).

6. A Mechanism Addressing the Centre’s Lack of Access to Knowledge of the Outcome

So far, in both mechanisms we have considered, we have assumed that the centre has access to the
actual outcome of the estimated event in order to calculate the payment to the agents in the second
stage. In this section we remove this assumption. This means that in the second stage the centre
must now calculate the score of each individual agent based upon the reports of the other agents.
To do so, we have to modify the standard strictly proper scoring rules because, as we will show, to
use them directly results in a scoring rule which no longer motivates agents to truthfully report the
precision of their estimates (as as we have seen in the last section, failing to truthfully report the
precision means that multiple independent estimates cannot be correctly fused). In particular, we
show that our ensuing mechanism is incentive compatible with respect to maximum precisions
and estimates, and that it is individually rational. We empirically evaluate our mechanism and
compare it with the one we introduced in the previous section, in which the centre has access
to the actual outcome and with a modified version of the ‘peer prediction mechanism’ proposed
by Miller et al. (2007b). We show both analytically and empirically that for all the mechanisms
we simulate, the agents expect to derive the same payment, which means the centre incurs no
additional cost as a result of its lack of knowledge of the outcome. However, we identify a
significant difference between the fusion and the peer prediction methods, by showing that in
our mechanism the variance of the total payment issued to the selected agents by the centre
(and thus the variance of the individual payments) is significantly lower than the total payment’s
variance in the peer prediction mechanism for M > 2 (although both are greater than the case
where the outcome is known). This is important since this variance represents the uncertainty in

the payments of both the centre and the individual agents (i.e. although the expected payments
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may be calculated before hand, the actual payments will depend on the individual reports of the
agents).

6.1. Evaluating Information without Knowledge of the Outcome

As described in Section 2, here we consider the same model as in the previous section, however
we additionally assume that the centre will have no access to any knowledge of the outcome of
the estimated event at the time at which is must make the payments to the agents. In doing so,
the centre now has to rely solely on the estimates that it receives from the agents in order to scale
the scoring rule, and is has two options is doing so: peer prediction or fusion.

In more detail, in the peer prediction mechanism (Miller et al., 2007b) the centre scores
each agent’s estimate directly against each of the other agents’ estimates and then calculates its
payment by averaging the resulting scaled scores. However, in the mechanism we introduce in
this section, the centre uses the fused reported estimates of all the other agents (excluding from
the fusion process the agent that is currently receiving the payment), and repeats this process for
each individual agent. The exclusion of the agent that is receiving the payment from the fusion
process is important, otherwise agents would have an incentive to exaggerate the precision of
their estimates in order that the fused estimate corresponds more closely with their own report.

To this end, when there are K > 2 available agents, the centre calculates the payment to
agent I, after fusing the agents’ conditionally independent and unbiased probabilistic estimates
with mean {X,..,X;_1,X;+1,..,Xx} and precision {61,..,§i,1,§i+1,..,§k}, into one estimate with
mean ¥ and precision 8 by using the standard result (see DeGroot and Schervish (2002)):

.76_1'6_,': Z fjé\j and é_,‘: Z §j (36)

JEK_; JEK_;

where K_; = {1,..,i—1,i+1,..,k} is the set that contains all k agents besides agent i, which is
the agent that is receiving the payment from the centre.

In this case, it is in a selected agent’s best interest to consider its belief about the fused ob-
servations of all the other agents when reporting its precision. Now, this means that agent i’s ex-
pected score S(¥; x;,0;) is maximised not at §; = §; but at ©;, = 6,+0_;. Indeed, if N(x_;;x;,1/6;+
1/6_;) and N[(%:;%;, 1 /8;) are Gaussian distributions with mean and variance (x;,1/6; + 1/6_;)
and (x;,1/6;), which represent agent i’s true and reported estimate’s distributions, agent i’s ex-
pected score, which is given by:

— ~

S(xX_i;%;,6;) = /°° N(X_isxi, 1/0i4 1/8_)S(x | N (xis %, 1/6:))dx i (37

will be maximised at @,- =0, +6_,, since for that value of the reported precision, §,~, the two
distributions become identical.

Subsequently, an agent wanting to maximise its expected score (equation 37), will have to
report 0, + 0_; instead of 8;, which is impossible since it does not have access to other agents’
precisions (8_;). However, given that the centre, when calculating the payments, has access to
both 8; and 8_;, it can modify the strictly proper scoring rule such that the agent is only required
to report ©; but the payment is calculating using ©; + 0_;. Therefore, within our mechanism
we use this modified modified strictly proper scoring rule, S(X,i;)?,-,ﬁi +0_;) and in Section 6.3
we prove that payments based on this modified scoring rule result (when scaled appropriately) in
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Mechanism 3 The mechanism for dealing with the case where the centre does not have access
to the actual outcome:

1. First Stage
1 Identical to Stage 1 of Mechanism 2.
2. Second Stage

2.1 and 2.2 are identical to steps 2.1 and 2.2 of Mechanism 2.

2.3 The centre asks the agent j to produce an estimate of this precision and presents this agent
with a scaled strictly proper scoring rule. Scaling parameters o,; and 3; are now based
on the expected value of the modified scoring rule, E(@?,é_ i), and its derivative. The
parameters are given by:

ci(85) ~
Oj=—==—— and [;=c(09) —
" SEe) Bj = cs(85)

& (©) 5(66,0_)) (38)
f iy I—j
S0, "’

where, ¢, is the cost associated with this agent in the first stage and 6_; is the fused
precisions!! of all the agents that are asked to produce an estimate except agent j and is
defined in Equation 36.

2.4 Identical to step 2.4 of Mechanism 2.

2.5 The agents that were asked to do so, produce an estimate with mean x; and precision 6,
and report X; and 0 ; to the centre, which in turn issues the following payment:

Pj(X_ji%7,0,+0_;) = o;S;(T_;;%;,8,+6_;) + B, (39)

where X_ ; and 0_ ; are the fused estimates and precisions of all the selected agents except
agent j as defined in Equation 36.

truthful revelation of an agent’s estimate being a Nash equilibrium, since the agent will maximise
its expected payment if it reports truthfully, assuming that all other agents also report their true
estimates.

6.2. The Mechanism

Having defined our modified strictly proper scoring rules, in this section, we describe how we
extend the two-stage mechanism introduced in Section 5.2 for the setting in which the centre
will not have access to the actual outcome when calculating the payments to the pre-selected
agents (Mechanism 3). To this end, in the first stage the centre pre-selects M out of N agents and
identifies their cost functions, while in the second stage it calculates their payments. Although
the first stage is identical to the previous mechanism, in the second stage the centre fuses the
pre-selected agents’ reports into a single estimate (excluding the agent for which the payment is
being calculated) and then uses an appropriately scaled modified scoring rule to calculate each
agent’s payment.
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6.3. Economic Properties of the Mechanism

Having detailed the mechanism we now prove that truthful reporting of the preselected agents’
maximum precisions and estimates is a Nash equilibrium. Note that truthful reporting of agents’
cost functions in the first stage is still a dominant strategy and that this mechanism is also indi-
vidually rational, like in all the previous mechanisms in this paper, and given that the proofs are
identical to those of Theorems 6 and 7 respectively we refrain from re-writing them here. How-
ever, we now formally prove that truthful reporting of the agents’ estimates is a Nash equilibrium
when using our modified strictly proper scoring rule, and that truthful reporting of the agents’
maximum precisions and estimates is a Nash equilibrium under our mechanism.

Theorem 9. Truthful revelation of an agent’s estimate and precision is a Nash Equilibrium under
our modified strictly proper scoring rule.

Proof. Given that an agent i’s estimate is represented by the Gaussian distribution A (xo;x,1/8),
under the modified strictly proper scoring rules, the score it expects to derive, is the following:

S(x_i:%5,8,+6_;) :/ N (X _isxi, 1/0i4 1/8_)S(x | N (%%, 1/6i+1/8_,))dx_;  (40)

where A((X_j;x;,1/6;+1/8_;) and A[(xi:%;, 1/6;+1/6_;) are Gaussian distributions with mean
and variance (x;,1/6;+1/6_;) and (%;,1/6; 4+ 1/8_;) respectively, which will be denoted as Q
and R respectively. Now equation 40 takes the following form:

5= [0l )SGIRG-)ds- @n

Since S is a strictly scoring rule, as defined by Hendrickson and Buehler (1971) and Savage
(1971), its expected value is maximised when Q = R. Furthermore, given the definition of Q
and R, for x; = x; and §,~ =0;=0=R. Tllerefore, for x; = x; and ﬁi = 0;, a payment based on
the modified strictly scoring rule, S(¥_;;X;,0; +0_;), is incentive compatible, since an agent will
maximise its expected payment if it reports truthfully its estimate, assuming that all other agents
also report their true estimates. The latter makes truthful reporting a Nash equilibrium since an
agent will maximise its utility, thus making this strategy the optimal, if all other agents report
truthfully their estimates too. O

Theorem 10. Truthful reporting of the maximum precisions and estimates is a Nash equilibrium
under our mechanism.

Proof. In the mechanism described above, when agent j reports its estimate, its reported preci-
sion, §j, is equal to its reported maximum precision, 63 Indeed, 6 ;> 65 is not possible given
that the centre is already informed of the agent’s maximum precision, and 6 i< 63 would not be
in the agent’s best interest since under-reporting its precision would lead to a smaller payment.
Therefore, 6 ;= @; Now, given the scaling of the scoring rules described in step 3 in the second
stage of the mechanism, the expected utility of the agent, if it reports its maximum precision as

THowever, it is important to note that whilst the scoring rule can be described at this point in the mechanism, the
value of some of these precisions is still unknown, and is only known after the final iteration of the mechanism.
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65, and subsequently produces an estimate of precision 0;, which it reports with precision 60., is
denoted by U ;(8 J-,@j), and given by:
~ (66 ~ ~ ~ .
_ f _ _ _ _
U(0,8%) = 51— (S,5(8;,85,8-)) ~ 57,(85,8-)) ) +,(8) — (85 42)
T 55(85.0-) |

where §f7 i(® j,é\;,é, j) is agent j’s expected score for producing an estimate of precision 6 and
reporting to the centre, 0 and Sy, j(e;, 0_;) is agent j’s expected score for producing and truth-
fully reporting an estimate of precision 6; Furthermore, ¢,(.) is the true cost function of the

agent, and c,(.) is the cost function used to produce the scoring rule (i.e. the (m+ 1) lowest
revealed cost in the group from which the agent was pre-selected). R

Note that Sy ; is the expected value of the modified scoring rule S(x_;;X;,0; +6_ j), already
defined in Theorem 9:

S(x-j:%,0;+8-;) = /7 N j3xj,1/0;+1/8_)S(Ej|N(%;:%),1/8,+1/8_))dx_; (43)
Now, taking the first derivative of expected utility (Equation 42 ) with respect to OAj gives:

de(ejvé\c‘) d C;(AC') < acn <. ./oc
AN ket LS f,Ai’) <Sf.,j(9j79jve—j> —Sf,j(epe—j)) +

a9 85 \ Sy, (85,0
a®) o
+o——5, ;(6;,65,6-)) (44)
$1.1(85:0-))

We have already shown that truthful revelation is a Nash equilibrium for the modified scoring
rule, Sy, j (Theorem 9). Hence, when 6; = 6¢:

_ ~ o - ~
57.j(8),65,0-j) = Sr,;(65,6-;) and S, ;(6;,65,6_;)=0
and subsequently:
dU ;(8;,6¢
w R =0 (45)
de 6:=6;

Therefore, a preselected agent’s expected utility is maximised when it reveals as its maximum
precision, the precision of the estimate that it subsequently produces, given that all other agents
do the same.

We now show that it will actually produce an estimate of precision equal to its reported
maximum precision. To this end, we note that when 6; = 0, the expected utility of the agent is
given by:

Uj(8) =cs(8;) —ci(6)) (46)

Since ¢ (.) and ¢,(.) do not cross or overlap, and c;(0;) > ¢;(8;), then U;(6;) is a strictly
increasing function. Thus the agent will maximise its expected utility by producing an estimate
at its maximum precision, and thus, 6; = 6, and hence, 6°; = 0; = 95, as required. O
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6.4. Numerical Simulations

Having introduced our mechanism and proven its economic properties, we present empirical re-
sults for a specific scenario. We do so in order to compare our mechanism (that uses the fused
outcome of all the other agents to score each individual agent) with Miller et al.’s peer prediction
mechanism (which calculates the average of pairwise comparisons). As in the previous simula-
tions, the cost functions are represented by linear functions, given by ¢;(0) = ¢;0, where ¢; are
independently drawn from a uniform distribution ¢; ~ U(1,2). Also, the maximum precisions of
the selected agents, 6¢, are independently drawn from another uniform distribution 6 ~ (0, 1)
and, as before, the centre’s required precision, 0y, is equal to 1.7. Finally, as before, we use the
parametric family of scoring rules and set the parameter equal to 1.2.

For the purposes of this analysis, the peer prediction mechanism had to be slightly modified
in order to eliminate the assumption that the centre has knowledge of the agents’ costs. Hence,
we transform the peer prediction mechanism to a two-stage peer prediction mechanism, in which
the centre in the first stage asks all agents, N, to report their cost functions and then pre-selects
M of them, while in the second it allocates the payments to the agents providing the estimates.
The first stage is identical to the first stage of the mechanism presented in Section 5.2, while in
the second stage the centre calculates the payment to an agent not by using the fused reported
estimates, but by scoring that agent against each one of the remaining M — 1 agents and then by
averaging over the M — 1 respective payments.

To this end, for N = 7, we evaluate our mechanisms (both that from Section 5 which assumes
access to the real outcome, and that from this section which does not) against the two-stage
peer prediction mechanism. As before, we define the upper bound on the performance of the
mechanism as that in which the centre has access to the agents’ cost functions (denoted as the
‘full information’ case) and thus can optimally allocate the estimate to the agent it needs in order
to achieve the required precision. We simulate the mechanisms 10° times and for each iteration
we record whether the centre was successful in acquiring its required precision, and the sum of
the payments issued to the selected agents. In Figure 5(a) we show for M € {1,2,3,4,5,6}, the
probability with which the centre has achieved the required precision and the total payment made
by the centre (again we omit error bars since, given the number of the iterations, the standard
error in the plotted values is smaller than the symbol size), while in Figure 5(b) we show the
variance of the total payment the centre issues to the selected agents.

Considering Figure 5(a), we note that for every value of M, the sum of the expected payment
for each of the three mechanisms is the same. This means that the centre expects to derive
no additional penalties as a result of its lack of knowledge of the actual outcome. Effectively
this result shows that the uncertainty that has been introduced in our setting due to the lack of
knowledge of the actual outcome has no impact on the expected payments. The explanation of
this result lies within the properties of the mechanism itself and we provide a formal proof in the
next section, where we calculate the total expected payment for the three evaluated mechanisms
for the general case of any convex cost function and show that they are all equal.

However, Figure 5(b), shows that lack of knowledge about the actual outcome does impact
the variance in the total payment that the centre makes. In all cases, the variance of total payments
is lowest when the centre has access to the actual outcome. Furthermore, for M = 2 the variance
of the payments is the same in both mechanisms since our mechanism becomes identical with
the peer prediction mechanism in this case. However, for M > 2 the variance of the payments

the centre issues in the peer prediction mechanism is much greater than the variance of payments
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Figure 5: Centre’s probability of achieving the required precision and the mean total payment,
and the total payment’s variance.

in our mechanism. This results from the peer predictions methods increased sensitivity to agents
whose estimates diverge from the consensus. In the peer prediction method the impact of such an
outlier is somewhat minimised by averaging over all the pair-wise calculated scores. However,
as we show here, the impact is further minimised in our approach where all the estimates, apart
from that of the agent whose payment is being calculated, are fused together prior to applying
the scoring rule.

6.5. Analysis of Expected Total Payment

In the discussion above, we noted that the expected total payment of the centre under all three
mechanisms is equal, and is not affected by the lack of knowledge of the actual outcome. To
see why this is so, we first note that the mechanism by which an agent is selected to produce an
estimate is identical in each case, and thus, we need only show that the expected payment of any
of the selected agents is identical in each mechanism. Thus, to this end, we first consider the
mechanism in which the centre has access to the actual outcome. In this case, the payment agent
J expects to derive, after the centre observes the actual outcome, is given by:

Y =

5,69

In this context, given that agents produce estimates with precisions equal to their reported maxi-
mum precisions (theorem 5), 8; = 85. Thus, agent j’s expected payment is:

A C ) I ~
P;i(6;,07) = a9 (Sj(ejve;') —Sj(9§)> +¢5(69) (47)

P;(8;) = c(8)) (48)

where ¢,(0;) is the scaling cost used for in the calculation of agent j’s payment.
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Now, in the mechanism presented in this section in which the centre has no access to the
actual outcome, the payment the selected agent j expects to derive is given by:
PN
Ac Cs(ej)

Pi(0,,09) = o——=— (S;,;(6,,05,0_;)—S;,;(8%0_;)) +c,(6 (49)
108 =55 (0880 50,8)) +e @)

Thus, the payment agent j expects to derive, given that 6; = @‘3, is again given by:
P/ (8;) =c(8)) (50)
Finally, in the peer prediction mechanism the centre scores agent j against every other agent
in pairs, and then calculates its payment after averaging over the M — 1 payments that correspond
to each one of the selected agents. Hence, the payment agent j expects to derive in the peer
prediction mechanism is the following:

_ ~ ch (65
OIS i A

icht; Sp, j(65,9;)
where S, ; is the expected score of our modified scoring rule S(x;;x j,§ ;4 6;) which scores agent
J against the estimate of agent i (unlike our approach which would score agent j against the fused
estimate of all other agents). Miller et al. (2007b) have shown that this scoring rule is incentive
compatible, therefore S, ;(0 ,-,6;,61-) =S, j(é\j,éi) when 6; = 65 Hence, the payment agent j
expects to derive is:

(55.4(0,:85.8) =5,,(85.8)) +<.(8) (5D

1
PP(0)) =3 L o(8)) =ci(8)) (52)
lEM,j
In each of the three mechanisms, the agents are incentivised to truthfully report their esti-
mates, and we find that all three payments are equal, P;(0;) = F;(Gj) = P1(8;) = cs(8;), as

required.

6.6. Discussion

In this section, we provided a non-trivial extension to our previous mechanism by eliminating
the assumption that the centre has access to the realised outcome of the estimated event when
calculating the payments to the pre-selected agents. As a result of this, now the centre uses the
fused reported estimates of the selected agents when calculating its payment. We modified the
existing strictly proper scoring rules so they can incentivise agents to truthfully report their esti-
mate, given that they will be scored against all other agents’ fused reported estimates and proved
that in our mechanism, truthful reporting of the maximum precisions and the estimates is a Nash
equilibrium. Finally we empirically evaluated our mechanism for various values of M and com-
pared it with a modified peer prediction mechanism, while using the mechanism which assumes
knowledge of the actual outcome as a benchmark. We showed that the centre’s total mean pay-
ment is the same among all three mechanisms and that for the two mechanisms that do not rely on
knowledge of the actual outcome, the variance of the centre’s total payment is minimised when
it calculates payments using the fused reported agents’ estimates. This result indicates that the
increase of uncertainty in the system, due to lack of knowledge of the realised outcome, restricts
its impact only to the variance of the payments, and does not affect the payments that the agents

expect to derive.
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7. Related Work

The main scoring rules literature has already been described in Sections 1 and 2, so here we
only review other approaches for addressing the problems described within this paper. We first
consider mechanism design, and in particularly the VCG mechanism which has been widely
used to incentivise truth-telling in dominant strategies when allocating goods or tasks (Vickrey,
1961; Clarke, 1971; Groves, 1973; Krishna, 2002). If we first consider the setting in which any
selected agent is capable of providing the centre with the requested estimate, then we can see
the two stage mechanism that we introduce as an extension of the VCG mechanism (or more
precisely, a second price reverse auction in this case) in which the payments are not directly
determined by the types of the agents, but are conditioned on the actual outcome, such that the
agents are incentivised to actually commit resources to generating the estimate.

The case is more complex in the second two mechanisms since procuring estimates from
multiple agents results in an interdependent valuation setting, with so-called allocative external-
ities, for which it has been shown that no standard mechanism exists which is both efficient and
incentive compatible (Jehiel and Moldovanu, 2001). This has been addressed to a certain degree
by Mezzetti (2004, 2007) who shows that efficiency can be achieved in a two-stage mechanism,
where in the first stage the final outcome is determined (i.e. the allocation of some goods or
tasks), while in the second stage the agents and the centre observe their utilities, and hence
receive the final transfers from the centre. Such two stage mechanisms have also been demon-
strated in interdependent valuation settings by Klein et al. (2008) who present an application for
allocating communication bandwidth, by Porter et al. (2008) for a task allocation setting where
agents have some fixed probability of completing a task which the centre must elicit, and Ram-
churn et al. (2009) who extend the previous setting by allowing agents to report on the probability
with which other agents may be able to complete the requested tasks.

However, these settings depart from the one considered here in one important way. In our
setting the agents are able to manipulate the resources that they can commit to generate their
estimates. In the setting described above, this is not possible. In the mechanisms of Mezzetti
(2004) and Klein et al. (2008) fixed goods are being allocated. While in those of Porter et al.
(2008) and Ramchurn et al. (2009), the probability that a task is completed is fixed and is not
under the control of the agent. Thus, agents in our setting are able to manipulate their utility
by misreporting the precision of their estimates. Crucially, this misreporting cannot be observed
by the centre, and it is dependent on the type (their cost function and maximum precision) that
they would report to the centre within the VCG mechanism!'3. For this reason, the two stage
mechanisms described address do not fully address the challenges of our domain, and thus,
rather than seeking an efficient and incentive-compatible mechanism, we settle for an in-efficient
mechanism which is still incentive-compatible.

At this point, it should be noted that scoring rules have found other applications not always
directly relevant to mechanism design. In more detail, there are many similarities between the
logarithmic scoring rule, used in this research, and the market scoring rules (Hanson, 2003,
2007) used in prediction markets (Berg and Rietz, 2003; Wolfers and Zitzewitz, 2004). In such
systems, agents trade information on probabilistic events and receive pay-offs which depend on

I3Note that in the case of the mechanism that selects a single agent, this manipulation is independent of the agents’
types (since their types now only constitute their cost functions), and thus, an efficient mechanism is still possible.
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the outcome of these events. In another line of research, strictly proper scoring rules are not used
as stand alone payments, but in conjunction with prediction markets (Goel et al., 2009). Although
their contribution is significant, since they merge prediction markets and strictly proper scoring
rules, in their setting they assume knowledge of the common prior of the agents’ subjective
beliefs on the estimated parameter. This issue is addressed by Prelec (2004) who propose a
mechanism which does not depend on knowledge of the common prior but only on its existence.

However, in all these applications (i.e. market scoring rules and strictly proper scoring rules
prediction markets), agents can change their initial reported prediction, if they have new evi-
dence, and their payments also have to be adjusted in order to take into consideration the dif-
ference in the agents’ reports. This constant flow of information makes these approaches par-
ticularly appealing in dynamic systems with rich interactions among the participating agents.
Although we are interested in a similar setting where there is also a lack of knowledge about
the state of the world, we adopted a less complex approach, in which agents communicate their
estimates to a centre and then receive their payments. We believe that our approach is more
appropriate for a setting in which a centre wants to acquire a single estimate of a probabilistic
event, since it only has to calculate the agents’ payments in a single round simply by comparing
it with the fused reported estimates or the outcome (if that knowledge is available), instead of
implementing the more dynamic and complex process described above.

More importantly, these approaches fail to account for the costs of the agents, since they do
not explicitly model the case that agents must invest resources to generate their estimates. This
is a key assumption within our setting, and thus, it is difficult to see how these mechanisms can
be applied in this setting, since any agent that commits resources to generating an estimate in
order to participate within the mechanism must expect to receive at least this amount in payment
in order to ensure individual rationality. Extending such mechanisms to address this challenge
would certainly be an interesting contribution, but it is outside of the scope of this paper.

8. Conclusions and Future Work

In this paper we contributed to the state of the art by introducing the first mechanism that elicits
costly probabilistic estimates from multiple agents in a setting where the centre has no knowledge
of the costs involved in the generation of these estimates or the outcome of the estimated event.
We achieved this by gradually relaxing the assumptions in two more specific mechanisms. In
the first mechanism, the agents faced no restrictions on the precision of the estimates they could
provide, while in the second the agents had limitations on the maximum precisions of their
estimates. In the both the first and second mechanisms the payment could be conditioned on the
actual outcome, whereas in the third mechanism the agents’ payments are conditioned on the
reports of the other agents. However, it should be noted that although the third mechanism is a
generalisation of the first two, both preliminary mechanisms are contributions in their own right
and would be used in preference to the more general one in specific settings. Indeed, the first
mechanism is the optimal choice in a setting where all agents can provide estimates of precisions
that are higher than the required by the centre (with out necessarily being infinite), and therefore
the centre does not have to acquire multiple estimates. Moreover, for the second mechanism
truthful reporting is a stronger solution concept (i.e. dominant strategy) when compared to the
final mechanism, and the payments are more robust since their variance is minimised.
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For all three mechanisms we provided both theoretical and empirical results. Specifically, we
proved that the first two mechanisms are incentive compatible with respect to all the reported pa-
rameters (including costs, estimates and precisions). Moreover, we further modified the strictly
proper scoring rules so that they incentivise agents to truthfully report their estimates when they
are scored against the fused reports of all the other agents, and we proved that truthful reporting
is a Nash equilibrium in this case. In addition, we thoroughly compared the quadratic, spheri-
cal and logarithmic scoring rules with a parametric family of strictly proper scoring rules, both
analytically and empirically, and provided criteria for the choice of the parameter k. Our final
contribution was to show that the increase of uncertainty in our model, as introduced by the cen-
tre’s lack of knowledge of the realised outcome, did not have an impact on the centre’s expected
total payment, but it was restricted only to the total payment’s variance.

Our future work will address two of the current limitations of our mechanisms. In particular,
first we would like to investigate the vulnerability of the mechanisms to collusion among the
pre-selected agents in the second stage of the mechanism. Jurca and Faltings (2007) describe
a number of potential manipulations of mechanisms whereby all the agents, or a sub-group of
the agents, agree on a specific strategy, or where agents deploy ’pseudo-agents’ which they can
control and impose their strategies (commonly referred to false-name bidding). A number of
authors have described auction mechanism which are resistant to collusion and/or false-naming
bidding (Day and Milgrom, 2008; Yokoo et al., 2004), and in general these operate by imposing
additional constraints on the payments made to the agents. However, such constraints change
the economic properties of the auction (for example, the core-selecting package auctions de-
signed by Day and Milgrom (2008) reduce opportunities for bidders to collude but render it only
approximately incentive-compatible), and their use in our setting must be carefully evaluated.

Second, we would like to extend our model and mechanism to cases where the cost functions
and the exchanged information cannot be modelled by continuous distributions. This will allow
us to address a wider set of problems where the exchanged information can be represented by
not only continuous but also discrete probability distributions; as used within the task allocation
problems of Czumaj and Ronen (2004), or for rating and ranking of information in recommender
systems by Adomavicius and Tuzhilin (2005). However, several of the assumptions we make
regarding the order of the cost functions and their derivatives will not hold in the case of discrete
probability distributions, and thus, it is not obvious that an incentive compatible and individually
rational mechanism can still be derived.
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