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Abstract

We consider multi-agent planning in which the agents’ op-
timal plans are solutions to mixed-integer programs (MIP)
that are coupled via integer constraints. While in principle,
one could find the joint solution by combining the separate
problems into one large joint centralized MIP, this approach
rapidly becomes intractable for growing numbers of agents
and large problem domains. To address this issue, we pro-
pose an iterative approach that combines conflict detection
with constraint-generation whereby the agents plan repeat-
edly until all conflicts are resolved. In each planning itera-
tion, the agents plan with as few other agents and interaction-
constraints as possible. This yields an optimal method that
can reduce computation markedly. We test our approach
in the context of multi-agent collision avoidance in graphs
with indivisible flows. Our initial simulations on randomized
graph routing problems confirm predicted optimality and re-
duced computational effort.

Introduction. Mixed-integer programming (MIP) methods
are a general tool for solving (multi-agent) planning prob-
lems. Indeed, since MIP algorithms can solve the NP-
complete multi-commodity flow problem (Even et al. 1976),
by reduction, they harbour the potential for solving any
NP problem. Unfortunately, this universality property im-
plies that, unless P=NP, there is no hope of guaranteeing
tractable performance on all problem instances. Nonethe-
less, the promise of optimality of a MIP solver’s output upon
termination has spawned an abundance of papers propos-
ing MIP to be applied in various settings, including model-
predictive control, sensor networks and graph routing with
indivisible flows both in single- and multi-agent scenarios
(e.g. (Schouwenaars et al. 2001; Calliess et al. 2011;
Blackmore et al. 2010)). While the availability of highly
optimized MIP libraries allows such approaches to exhibit
good average-case performance in low-dimensional applica-
tions with a limited number of constraints, ordinarily MIPs
scale poorly in the number of constraints and dimensionality
of the domain. The latter is exacerbated in multi-agent sce-
narios where the dimensionality scales linearly in the num-
ber of agents. This effectively denies application to larger
agent collectives. To address such tractability concerns, an
abundance of heuristic aproaches have been proposed, in-
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cluding methods based on Fixed-Priorities (FP) (Erdmann
& Lozano-Perez 1987) and auctions. Unfortunately, these
normally yield suboptimal solutions and often are not guar-
anteed to terminate.

In contrast, we propose two approaches that are based on
adaptive constraint generation to ameliorate tractability. The
first, CCG, aims to reduce the number of interaction con-
straints of a centralized MIP to generate the optimal joint
solution. In addition, the second method, SDCG, also at-
tempts to reduce the dimensionality of the domain by un-
covering a decomposition into cliques of independent sub-
problems. For both methods, we assume all agent interac-
tions are modelled as constraints. We call solutions violat-
ing these constraints to be in conflict. For instance, in the
graph routing scenario considered below, such constraints
will prohibit collisions – i.e. no node is allowed to be used
by two agents simultaneously.

Proposed methods. CCG: The approach aims to solve
the centralized MIP for the joint solution with a small num-
ber of interaction constraints. In an iterative process, CCG
solves a sequence of centralized MIPs. Each MIP jointly
optimises the agents’ solutions simultaneously in (high-
dimensional) joint planning space. The initial MIP contains
no interaction constraints. After a joint solution is generated
it is examined for conflicts. Any interaction constraint that
is violated is then added to the definition of the MIP before
re-planning begins. The whole process is repeated until a
conflict-free joint solution is found.

SDCG: At the outset, each agent solves its own (low-
dimensional) MIP independently, without any interaction
constraints. The agents then exchange their solutions and
detect conflicts. Conflicting agents merge into clusters.
Within each cluster, they plan centrally by combining their
MIPs into one larger joint MIP that is solved with our CCG
method. That is, each of these cluster MIPs contains the con-
straints of the individual MIPs as well as exactly those inter-
action constraints that suffice to prohibit the previously de-
tected conflicts among the agents within the cluster. When-
ever solutions of different clusters emerge to be in conflict,
the corresponding clusters are merged. The whole process
of merging and re-planning repeats until all conflicts are re-
solved.

Experiments. We apply our methods to multi-agent tra-
jectory planning in graph environments. Incurring edge-
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Figure 1: Left: Joint costs. As expected, the optimal joint costs (OPT) coincide with those incurred by CCG and SDCG. Centre: runtime
over 30 randomized graph routing problems with 5 agents and varying graph sizes, time horizons and edge-transition costs. Curves show
log-scale performances of full centralized MIP solvers without constraint generation (OPT), the Fixed-Priority method (FP) and our CCG and
SDCG methods. Right: number of spatial nodes and temporal layers (time steps) in each trial.

transition costs along the way, agents can move from node
to node along edges. Each agent aims to reach a given goal
node without colliding with any other agent.

Following a simple unrolling process of the spatial graph
into a spatio-temporal graph, the problem can be reduced to
the multi-commodity flow problem with atomic flows and
unit node-capacities. That is, the trajectory planning prob-
lem in the spatial graph is reduced to the path planning prob-
lem of finding min-cost disjoint paths connecting goals and
start nodes in the corresponding spatio-temporal graph (cf.
(Calliess et al. 2011)). It is straight-forward to find an op-
timal joint plan for this problem, i.e. a sequence of edge
transitions for the agents, as a solution to a mixed-integer
program.

To gain a first impression of the viability of our meth-
ods for this task, we conducted preliminary tests on a num-
ber randomized graphs in comparison to a fully centralized
MIP solver (OPT) (which is known to find the optimal joint
plan) and the Fixed-Priority method (FP) (as an example of
a heuristic approximation method). Our simulations were
executed on a laptop running MATLAB R2013a on a sin-
gle Intel(R) CORE(TM) i7-2640M @2.8GHz with 8 GB
RAM. The solver used was MATLAB’s inbuilt bintprog. In
Fig. 1 the plots depict the relative log-scale performances
of the different methods along the metrics of social cost
(of the generated plans) and runtime. CCG and SDCG re-
quired significantly more computation than the FP heuris-
tic. However, in contrast to FP, they always managed to find
the cost-optimal solution while being markedly faster than
OPT. Note, on certain trials omitted from the plots, FP did
not succeed in finding a feasible solution. By contrast, all
three optimal methods did.

Discussion. Our methods have the following properties:
(i) Optimality. The proof relies on the fact that in each

iteration, a relaxed version of the optimal centralized MIP is
solved. In the iterative process, conflict detection then un-
covers a superset of those interaction constraints that would
be active for an optimal plan vector under the full global
MIP.

(ii) Improved average-case tractability. One can conceive
problem instances where our methods eventually solve the
full centralized MIP (OPT). Since computation is expended
before this final MIP is created, they would be slower than

OPT in such cases. Often however, agent plan interactions
occur on a small subset of plan dimensions (between few
agents) and resources (e.g. nodes). In such cases, optimal
solutions only involve few active interaction constraints that
may each involve only a fraction of plan vector components
each. For instance, in large graphs where agents will never
(or only sparsely) encounter each other, it would be compu-
tationally wasteful to generate plans based on mixed-integer
problems that model even those potential interactions that
will never occur near the optimal solution anyway. Conse-
quently, a lot can be gained by our method in such scenarios.
Our initial experiments confirm this intuition.

(iii) Semi-distributivity (SDCG). In cases, where the full
centralized MIP does not have to be solved, SDCG may
succeed in decomposing the large joint problem into low-
dimensional sub-problems that could be solved more locally
and in parallel. However, since the approach may eventu-
ally lead to the necessity to solve the full central MIP in the
worst case, we cannot claim that SDCG is fully distributed.

Ongoing work aims at further elucidating the relative per-
formances of the different methods. For instance, we antici-
pate parallelized implementation of SDCG to yield superior
average run-time performance over CCG. Furthermore, un-
der which statistical assumptions about the graph environ-
ment would we expect one method to outperform another?
Finally, we aim to develop machine learning algorithms that
can predict the best method for a given problem instance.
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