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Introduction: In recent years there has been much re-
search into the use of Gaussian processes (GPs) for online
identification of value functions and discrete-time transitions
and their use in adaptive model-predictive control. These
methods typically require significant computation for policy
evaluation. This limits their applicability in settings where
robust continuous control signal is required. Furthermore,
there is little understanding of modelling the continuous
system closed-loop dynamics resulting from application of
control at discrete times. On the other hand, classical control
theory provides the necessary machinery to derive continuous
closed-form control policies in settings where the underlying
plant dynamics are sufficiently simple and known. Unfortu-
nately, in many situations these dynamics are too complex,
poorly known or unknown.

In this work, we propose a Gaussian process to learn the
non-linearity of the uncontrolled state-evolution. To enable
the controlled plant to exhibit desirable target behaviour, the
control is set to the negative prediction output (to eliminate
the non-linearity) plus a feedback term of our choice enabling
desirable target behaviour. As a starting point, we focus on
adaptive control where we wish to drive the state towards a
reference signal. The feedback term could be implemented in
analogue hardware (e.g. a PID circuit) whereas the GP output
might come from a digital device connected to a sample-hold
circuit. Open questions under investigation are whether it is
possible to choose the feedback term in closed form, such
that the overall control law incurs low control cost.

Method: We consider a plant with dynamics1 ẋ = a(x)+
u(x) and require it to follow a prescribed reference trajectory
ξ : I = [t0,∞) → RD in D-dimensional state space. We
assume the non-linear function a : RD → RD is unknown
at start time t0 but that we can obtain noisy samples from it
from time to time (e.g. by observing uncontrolled velocities).

Our approach is to set u(x) := −â(x) + φ(x;w, ξ). Here,
â is the posterior mean of a Gaussian process conditioned
on the observations; φ(x;w, ξ) is a fixed feedback control
law (with parameter w) designed to drive the state towards
reference ξ.

The resulting closed-loop dynamics can be modelled as
the SDE ẋ = φ(x;w, ξ) + ν(x) where ν(x) captures the
prediction uncertainty. Hence, in explored regions of state
space the dynamics is could be modelled as an ODE ẋ =
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1Our method can be easily generalized to work on ẋ = a(x) + Bu(x)

where B is a matrix.

φ(x;w, ξ).
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Fig. 1. Left: Comparison our adaptive control law with fixed proportional
control law u(x) = w(ξ − x) as a function of proportional gain factor w.
Bars depict the percentage of the control error of our method compared to
the fixed controller (green) and the percentage of control energy expended
(blue). Our GP method outperforms the fixed gain controller both in terms of
control energy and error. Notice, for w = 20, ..., 23 the fixed proportional
controller was unable to stabilize the system whereas our adpative control
succeeded. An example for w = 1 is depicted right: GP adaptive control
with two nonlinear dynamics vs. time [sec]. (top-right: quadratic, bottom-
left: sinusoidal). Training examples were added online every 0.5 seconds.

The choice of control law φ may depend on the control
objective. If it merely is to drive the state to ξ, we could
consider defining φ(x;w, ξ) := w(ξ−x) where w > 0. If a is
bounded, we can guarantee stability. If not, we can establish
convergence success (in expectation) if a is drawn from our
GP prior. Even if this assumption is violated we may be
able to stabilize the system sufficiently. As an illustration,
consider Fig. 1 (right). Starting with an unknown function
a(x) = (sin(x1) + 3, x22 − 1)T , our adaptive control rule
learns to drive the prescribed reference signal to follow
the reference. We see that our combined adaptive method
outperforms a static linear feedback controller both in terms
of control energy and control success (Fig. 1 (left)).

Ongoing work: Ongoing work investigates suitable
choices of feedback component φ in the presence of control
cost functions. In optimal control, we wish to find a control
solution to the variational problem minu J(u), st:[ẋ = a(x)+
u(x)], where J is a cost functional chosen to penalize the
control error as well as control energy. Our current work
explores the choice of φ such that our adaptive control
mechanism yields low overall cost whenever our GP model
has made enough observations. As an example we presently
investigate the performance of setting φ to the optimal
feedback law of minu J(u), st:[ẋ = u(x)] (which, due to the
simplicity of the learned dynamics, ẋ = u(x)) can invariably
be found via the Hamilton-Jacobi-Bellman equation.


