
Using a Bayesian Model to Combine LDA Features with
Crowdsourced Responses

Edwin Simpson and Steven Reece

Department of Engineering Science, University of Oxford, UK.
{edwin, reece}@robots.ox.ac.uk

Antonio Penta and Sarvapali Ramchurn

School of Electronics and Computer Science, University of Southampton, UK.
{ap7, sdr1}@ecs.soton.ac.uk

February 5, 2013

Abstract

This paper describes a crowdsourcing system that integrates machine learning techniques with hu-
man classifiers, showing how to apply a Bayesian approach to classifier combination to the challenge of
crowdsourcing document topic labels. First, we use a number of NLP techniques to extract informative
document features. We then screen and select workers using Amazon Mechanical Turk to label selected
documents. We then apply Independent Bayesian Classifier Combination (IBCC) to classify the complete
set of documents in a semi-supervised manner, taking into account the unreliability of crowd-sourced la-
bels. More documents are then selected intelligently for labeling by the crowd. We demonstrate superior
results using IBCC compared to a two-stage classifier and strong performance with only 16% documents
labelled by the crowd.

1 Introduction
Information Retrieval is becoming a serious challenge in the face of Big Data and the Internet of Things
where information is generated by people, communities, sensors, and agents on the web. The Crowd-
sourcing track of the Text Retrieval Conference has the following objectives:

• Develop crowdsourcing techniques to label 15424 documents

• Use human-machine collaboration to minimise cost and maximise efficiency

This chapter reports on our approach to achieving these objectives using a combination of Natural Lan-
guage Processing (NLP), Machine Learning, and crowdsourcing.

The TREC challenge was to judge 18260 topic-document pairs. Ten topics were randomly chosen by
the TREC organising committee. Each topic had a title, description and narrative and these were used
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to determine if a document was relevant to a topic. Examples of topics included definition of creativity
and recovery of treasure from sunken ships. The documents came from the TREC corpus (TREC 8),
previously labelled by the National Institute of Standards and Technology (NIST) experts. Document
sources included the Financial Times, Los Angeles Times and Federal Register articles. As of writing we
are aware that out of 17 groups that participated in the TREC challenge we came in the top four according
to the NIST committee’s evaluation of our results using standard statistical measures (chiefly the Receiver
Operating Curve Area Under Curve (AUC)).

This chapter is structured as follows: Section 2 presents a brief overview of our approach to solving
the TREC crowdsourcing challenge problem. Section 3 then describes the natural language processing
applied to the documents to extract distinct features for each topic type. Section 4 describes in detail
our approach to crowdsourcing using Amazon Mechanical Turk which includes a description of the user
interface we built into Amazon Mechanical Turk for document labelling, a method for evaluating a turker’s
trust and a method for paying turkers upon completion of their labelling tasks. Section 5 describes two
classifiers that were developed for predicting labels for unlabelled documents. These classifiers where
the Independent Bayes Classifier Combination (IBCC) algorithm and a traditional two-stage Bayesian
classifier. A mechanism which uses the output of these classifiers to select documents for crowdsourced
labelling is then presented in Section 6. The efficacy of the IBCC and two-stage classifier are compared
on the TREC challenge problem in Section 7. Finally, we discuss our solution to the TREC challenge
problem in Section 8 and offer some ideas for future research.

2 Overview of the Document Classification System
We called on the crowd to label a subset of documents from which we inferred probabilities of topic rele-
vance of the unlabelled documents. We developed a document labelling system comprising the following
modules:

1. Feature extraction.

2. Crowdsourcing.

3. Classification to infer probabilities of class labels for unlabelled documents.

Stage 1 was performed initially off-line. Stages 2 and 3 then iterated until all documents were labelled
with sufficient confidence.

For the feature extraction module we first applied some classical NLP stages and then extracted differ-
ent features using word-based counting with the computational complexity of this approach mitigated with
word clustering. A measure based on the features extracted was also used to define an initial relevance
rank to select the first set of documents to be labelled by the crowd.

To crowdsource the labelling of documents we developed the following components using Amazon
Mechanical Turk (AMT) as the crowdsourcing platform:

1. a Bayesian trust model which computes the level of trust we can assign to a turker to complete
specific “gold” tasks (which are tasks for which the ground truth topic labels are known)

2. a hiring process which is the workflow for hiring workers

3. an HIT (Human Intelligence Task) interface which controls the presentation of the labelling task to
maximize efficient labelling, perform verification and avoid boredom by the turker.

Both the turkers’ confidence and accuracy in their gold responses were combined to give an overall indi-
cation of the workers’ trustworthiness at labelling a document correctly. At each iteration of the system
we choose a set of documents to be passed to the AMT such that the documents whose labelling would
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yield the greatest potential information gain across the corpus were preferred. The turkers then responded
with both a single topic classification (or no topic) and confidence in their labelling.

We have developed a novel Bayesian unsupervised classifier which accommodates agents’ own con-
fidence in their responses as well as an assessment of their reliability obtained from the trust model.
This classifier uses these unreliable labels extracted from the crowd to learn the correspondence between
features and topics. The occurrence of features is assumed to be conditionally independent and the likeli-
hoods used in the Bayesian classifier are learned directly from the data using an unsupervised formalism
couched in a Variational Bayes learning framework. The classifier is then used to assign a probability that
each document in the corpus belongs to a topic. We describe each of the above modules in the following
sections.

3 Natural Language Processing and Feature Extraction
Before extracting the features from the documents, we pre-processed the documents using classical Nat-
ural Language Processing (NLP) steps Part of Speech (PoS), Lemmatization and Stemming [1]. The PoS
reduced our set of words to nouns and verbs using a maximum entropy classifier. 1 Lemmatization and
Stemming were then used to reduce inflectional forms and derivationally related forms of a word to a
common base form. For example, the forms “am, are, is ” become “be” and “cat, cats, cat’s, cats’ ”
become “cat”. In particular, we used Pling-stemming [2] for nouns and the lemmatization method from
WordNet [3] for verbs.

We compared two feature extraction methods based on word weight models: Term Frequency-Inverse
Document Frequency (TF-IDF) [4] and Divergence from Randomness (DFR) [5]. We observed better
performance from the DFR model on a subset of TREC-7 collections but could not manage the huge
matrices in central memory for the next stages of the NLP process. So, we used a cluster strategy to
aggregate similar words. However, classical clustering algorithms are computationally costly as they
use pair-wise distances between words and, for that reason, we clustered using a latent topic model.
Latent topics are the foundation of Latent Dirichlet Allocation (LDA) [6] for which a document can be
approximated as a mixture distribution of topics where each topic is a distribution of words. We applied
LDA 2 in our feature extraction process by considering each document as a feature vector generated from
the topic distribution. We experimented with different numbers of topics (i.e. 500, 1000, 1500, 2000) 3

and, on a subset of TREC-7 collections, we observed that 2000 topics gave the best performance.
We also used LDA to select the first documents to send to the crowd, aiming to find some examples

of documents that match the query topics in the TREC challenge. For each TREC relevance topic, we
ranked the documents in the collection using the measure:

r(d,L,τ) = ∑
N
i=1 ∑

K
j=1 ρ(wi,Tj , τ)θ(Tj ;d)

where d is a document, L={w1, . . . ,wN} is a set of words extracted from a TREC topic description, τ ∈N
is a threshold (in our experiments set to 50), Ti is the i-th LDA topic, θ(i;d) is the probability of the i-th
LDA topic given the document d and

ρ(wi,Tj , τ) =

{
1 if wi belongs to the set of the most τ probable words of Tj
0 elsewhere.

1We used the implementation and trained model from the Stanford Core NLP package
(http://nlp.stanford.edu/software/corenlp.shtml)

2We used the implementation in the MALLAT package (http://mallet.cs.umass.edu/)
3We were limited by the dimension of our matrices to 2000 as our upper bound.
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4 Crowdsourcing Techniques
We chose to use Amazon Mechanical Turk to crowdsource the document labelling because of the versatile
and ease of use of the application programming interface (API) that is available to this service and also
because it provided access to the largest number of workers without polluting trust metrics. Given the
large size of the document set, it was deemed inefficient to crowdsource the labelling of documents by
consensus. That is, to ask multiple turkers to label the same document and aggregate the votes to produce
a single label. In more detail, the crowdsourcing approach has to balance the complexity and potential
monetary cost of crowdsourcing against the quality of performance of the individual turkers. Indeed, the
labelling task requires the reader to read every sentence and check whether a particular sentence could
render the document relevant to a particular topic. The majority of documents were not more than a page
long but a significant number were also more than two or three pages long. This would require significant
effort from the reader to read every sentence and this task would, therefore, take considerably longer to
complete. It was also obvious that, if a particular turker had to verify lots of documents, this process
would quickly become boring and reduce the effectiveness of the turker.

To address the above issues, we developed a number of mechanisms to ensure:

1. The best turkers were chosen (i.e., those that can be trusted to perform tasks correctly).

2. The task of labelling a document was made easier for the turkers.

3. The turkers were encouraged to perform tasks quickly.

We describe each of these mechanisms in the following sections.

4.1 Trust Mechanism
Before we assigned paid tasks to workers, we ran a screening process to exclude those turkers that were
likely to produce uninformative responses. In the screening process, workers had to assign the correct
topics to 10 “Gold task” documents for which the true topic label was known. Workers also marked their
decisions as confident or not confident. We then calculated the trust T (k), i.e. the probability that a worker
k was correct,

T (k) = ((n
(k)
cc +1)+G(n(k)cn +1)+(1−G)(n(k)in +1))/(N (k)+4) (1)

where n(k)cc , is the number of tasks where turker k was correct and confident, n(k)cn is the number of tasks
where the turker was correct but not confident, n(k)in is the number of tasks where the turker was incorrect
and not confident. N (k) is the total number of tasks they actually performed. The variable G distributes
the weight of a“not confident” answer between the possible responses. In preliminary tests, 70% of not
confident responses were correct, so we set G= 0.7.

4.2 Derivation of Trust Mechanism
Trust in a turker is defined as the belief that the label assigned to a document by the turker is the correct
label for that document and follows from a general definition of trust [7]. Formally, given an assigned
label, rw, by a turker, w, and some true label, t, for a document then the trustworthiness, T (w), of that
turker is,

T (w) = ∑
j

p(rw = j | t= j)p(t= j) .
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Figure 1: Trust levels of the 42 turkers that performed our gold tasks.

For ease of exposition we drop the index w and assume a uniform prior over the document classes,
p(t = j). We now expand this definition of trust to incorporate the intuition behind decisions labelled
as“confident” or “not confident”. A worker who is not confident about labels which turn out incorrect and
confident in labels that turn out correct is more trustworthy than a worker who expresses high confidence
in all her labels whether they turn out to be correct or not.

Each turker who labels a Gold standard document returns a report pair [s,d]: a document label, s, and
a statement of confidence in her labelling d. We assume the turker either correctly labels the document,
s= j, or incorrectly labels the document, s= ¬j. Furthermore, the turker is either confident in her label
in which case d= c or unconfident, in which case d= n. Now,

p(r = j | t= j) = ∑
s∈{j,¬j}

∑
d∈{c,n}

p(r = j | [s,d])p([s,d] | t= j) (2)

where p(r = j | [s,d]) is drawn from a beta distribution, i.e. r is binomial distributed, and p([s,d] | t= j)
is drawn from a Dirichlet, i.e [s, d] is multinomial distributed. The turker’s response pair [s,d] can take
one of four values: cc, correct and confident labelling in which case s = j and d = c; ic, incorrect and
confident labelling with s = ¬j and d = c; cn, correct but unconfident labelling in which case s = j and
d= n and in, incorrect and unconfident labelling in which case s= ¬j and d= n.

We assume uninformative priors so that p(r= j | [s,d])∼Beta(1,1) and p([s,c] | t= j)∼Dir(1,1,1,1)
for all values of j. We can thus learn the trust values from the data,

p̂(r = j | t= j) = ∑
s∈{j,¬j}

∑
d∈{c,n}

p̂(r = j | [s,d])p̂([s,d] | t= j) (3)

= ∑
s′∈{c,i}

∑
d∈{c,n}

Gs′d
ns′d+1
N +4

(4)

whereN is the total number of gold standard test documents submitted to the turker and, for example, nin
is the number of documents with low confidence labellings which are incorrectly labelled. The probability
Gcc = p̂(r = j | [s= j,c]) = 1 is the turker’s expected belief that the document should be labelled j given
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that it has been labelled j and she has absolute confidence in that label. Alternatively, Gnc = p̂(r = ¬j |
[s= j,c]) = 0 is the turker’s belief that the document should be labelled ¬j given that she has labelled it
j and she has absolute confidence in that label. Gcn = p̂(r = j | [s= j,n]) =G is the turker’s belief that
the document should be labelled j given that she has labelled it j and she has some doubt in that labelling.
Finally, Gnn = p̂(r = ¬j | [s= j,n]) = (1−G) is the turker’s belief that the document should be labelled
¬j given that she has labelled it j and she has some doubt in that labelling.

Thus, inserting G into (4) we arrive the expression in (1). The value for G can be inferred from data
comprising the ground truth document labels, t, and worker response pairs [s,d].

4.3 Hiring Process
After computing the trustworthiness for each turker using the mechanism reported above, we then only
allowed those with trust greater than 0.5 to perform tasks in order to get more than 50% of the turkers to
do tasks. This, however, resulted in very poor performance and the participation threshold was therefore
raised to 0.65 and this resulted in only about 40% of the turkers being available to do tasks (see Figure 1).
The classifier (to be described later) was then queried for those documents that were considered most
important to be labelled. These documents were then chunked into parts not more than 20KB in size to
make sure they were readable within 5 minutes. Then, depending on the document size, a payment level
was determined for the labelling tasks required. We chose the following payment levels depending on
document size,

• $0.03 for tasks less than 5KB

• $0.05 for tasks between 5KB and 15KB

• $0.08 for tasks beyond 15KB.

Once the tasks were uploaded into AMT, the trusted turkers were notified through the AMT messaging
service to start working on the tasks. The trust mechanism was good at filtering turkers and the labelling
task was completed to a high quality. However, we noticed that those turkers performing large numbers
of tasks generally under performed as they completed lots of tasks, possibly due to boredom.

4.4 HIT Interface
The principle we adopted for our Human Interface Technology (HIT) interface was that the task should
be straightforward for the user and should include checks to make sure the task was completed to a high
level of quality. Therefore, the labelling task required the turker,

1. To read the document which was divided into three sections this is to break down the reading task
into more manageable segments and avoid the reader feeling overwhelmed.

2. Paste a key sentence from each section into the page this is meant to check whether the reader
actually read the section.

3. Choose a topic for the document as well as assign a confidence level to the label she gave.

5 Document-Topic Classification
We applied the Independent Bayesian Classifier Combination (IBCC) algorithm to automatically label
documents using the responses from the turkers. We also compared it to a more traditional two-stage
Bayes classifier. Both classifiers were used to infer the probability of relevance of each document to
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each topic from the document features identified using the NLP algorithms described in Section 3 and
crowdsourced labels.

5.1 IBCC: One-stage Classifier
Members of the crowd can be seen as imperfect base classifiers, where each individual has their own
probability of producing a particular label. Features occur with different probabilities given each topic, so
can also be seen as base classifiers ranging from highly indicative of a topic to completely uninformative.
Our method learns the probabilities of features and crowd responses, simultaneously combining them
to infer topic probabilities. This differs from traditional classification, which has separate training and
prediction phases. The one-stage classifier is a semi-supervised approach that allows latent structure in
the unlabelled documents to influence the results, which is particularly effective when there is limited
training data.

The graphical model for IBCC [8] is shown in Figure 2. For a set of documents indexed from 1 to
N , the ith document has topic ti = 1...J that we wish to infer, where J is the number of topics. We
assume ti is generated from a multinomial distribution with class probabilities κ : p(ti = j|κ) = κj . For
the challenge problem we have assumed that the topics are mutually exclusive based on our understanding
of the topics, and that there also exists a “none of the above” topic for documents of unknown topic.
The total number of base classifiers (features and turkers) is K and the set of values assigned by base
classifiers to documents is c. A turker k may produce a label c(k)i with values l = 1..L, where L is
the number of topics. A feature k can have values c(k)i of either 0 or 1. The value c(k)i is assumed
to be generated from a multinomial distribution dependent on the topic of document i, with parameters
π
(k)
j : p(c(k)i = l|ti = j,π

(k)
j ) = π

(k)
jl . IBCC assumes conditional independence between base classifiers.

Parameters π(k)
j and κ have Dirichlet prior distributions with hyper-parameters α(k)

0,j = [α
(k)
0,j1, ...,α

(k)
0,jL]

and ν = [ν0,1, ...ν0,J ] respectively. We refer to the set of π(k)
j for all base classifiers and all classes as Π ={

π
(k)
j |j = 1...J,k = 1...K

}
and also denote the hyper-parameters A0 =

{
α

(k)
0 j |j = 1...J,k = 1...K

}
.

The joint distribution over all variables for the IBCC model is

p(κ,Π,t,c|A0,ν) =
N

∏
i=1
{κti

K

∏
k=1

π
(k)

ti,c
(k)
i

}p(κ|ν)p(Π|A0), (5)

A key feature of IBCC is that π(k) represents a confusion matrix that quantifies the reliability of
each crowd member and feature. The prior distribution over each π(k) is specified through the hyper-
parameters A0, which can be regarded as pseudo-counts of prior observations of base classifier outputs.
Through our choice of these hyper-parameters, we assume that turkers are likely to be informative but not
perfect, allowing us to perform inference without observing true topic labels directly.

5.1.1 Inference over IBCC using Variational Bayes

The unknown variables t,Π, and κ can be estimated using maximum a posteriori (MAP) estimation [9] or
inferred in a Bayesian manner [8] using Gibbs Sampling [10]. Here we applied a principled approximate
Bayesian method, variational Bayes (VB) [11], as this converges rapidly to a good approximate solution
[12]. VB can be seen as a Bayesian generalisation of the Expectation-Maximisation (EM) algorithm [13].

For the variational treatment of IBCC, VB-IBCC, we assume an approximate form of the posterior
distribution over the unknown variables:

q(κ,t,Π) = q(t)q(κ,Π) (6)
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Figure 2: Graphical Model for IBCC. The shaded node represents observed values, circular nodes are vari-
ables with a distribution and square nodes are variables instantiated with point values.

The VB algorithm runs by first initialising the variables E[lnπ(k)jl ] and E[lnκj ] from their prior distribu-
tions. We then iterate over a two-stage procedure, updating each of the factors q(t) and q(κ,Π) to their
optimal values in turn, using the current expectations over parameters not in that factor.

The optimal factor q∗(t) for the topics is defined by taking the joint distribution in (5) and absorbing
terms not dependent on t into the normalisation constant:

lnq∗(t) = Eκ,Π[lnp(κ,t,Π,c)]+ const. (7)

This factorises into independent data points:

lnρij = Eκj ,πj
[lnp(κj , ti,πj ,c)] = Eκ[lnκj ]+

K

∑
k=1

L

∑
l=1

p(c
(k)
i = l)Eπj [lnπ

(k)

j,c
(k)
i

]. (8)

For a base classifier that is a turker, the value of c(k)i is known and p(c(k)i = l) is either 0 or 1. However, for
features we receive probabilities rather than discrete outputs, hence the term p(c

(k)
i = l) in the equation

above. We then obtain the approximate probability of a topic, which also gives its expected value:

q∗(ti = j) = Et[ti = j] =
ρij

∑
J
ι=1 ρiι

. (9)

For the parameters of the model we have the following optimal factor. Terms involving κ and terms
involving each confusion matrix in Π are independent, so we can factorise q∗(κ,π) further into

q∗(κ,Π) = q∗(κ)
K

∏
k=1

J

∏
j=1

q∗
(
π
(k)
j

)
.

In IBCC we assume a Dirichlet prior for κ, which gives us a Dirichlet posterior for the optimal factor

q∗(κ) ∝ Dir(κ|ν1, ...,νJ ) νj = ν0,j+Nj (10)
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where ν is updated by adding the data counts to the prior counts ν0 andNj =
N

∑
i=1

Et[ti = j] is the expected

number of documents of each topic. The expectation of lnκ required to update (8) is therefore:

E [lnκj ] = Ψ(νj)−Ψ

(
J

∑
ι=1

νι

)
(11)

where Ψ is the standard digamma function [14]. For the confusion matrices π(k)
j , the priors are also

Dirichlet distributions, giving us a posterior Dirichlet distribution of the form

q∗
(
π
(k)
j

)
= Dir

(
π
(k)
j |α

(k)
j1 , ...,α

(k)
jL

)
, α

(k)
jl = α

(k)
0,jl+N

(k)
jl . (12)

where α(k)
j is updated by adding data counts to prior counts α(k)

0,j , and N (k)
jl is defined as

N
(k)
jl =

N

∑
i=1

p(c
(k)
i = l)Et[ti = j] (13)

i.e. the number of times that classifier k has assigned value l to a document of class j. The expectation
required for (8) is given by

E
[
lnπ(k)jl

]
= Ψ

(
α
(k)
jl

)
−Ψ

(
L

∑
m=1

α
(k)
jm

)
. (14)

5.2 Two-Stage Bayes Classifier
The traditional approach to classification is two-stage. In the first stage labelled training data is used to
build models for the probability of each class and the probability of features conditioned on each class.
The second stage uses this model to infer class probabilities of unlabelled documents.

We assume that the true label t is generated from a multi-nomial distribution with probability κ: p(t=
j | κ) = κj . We also assume that the observed features c are binary so that ci = 1 indicates the presence of
feature i in a document and ci = 0 indicates its absence. Thus, the observed features are generated from
binomial distributions dependent on the class of the true label with parameters β: p(ci = b | t = j,β) =
βjib. The parameters β have Beta prior distributions with hyperparameters µ and κ have Dirichlet prior
distributions ν. Values for µ and ν are inferred from the training data as we will demonstrate. Given some
test (or unlabelled) document the distribution over the true label t∗ of this document given the features c∗
for that document is,

p(t∗ = j | c∗,µ,ν) =
∫
π

∫
κ
p(c∗ | t∗ = j,β)p(t∗ = j | κ)Be(β | µ)Dir(κ | ν)dβ dκ

=

[∫
β
p(c∗ | t∗ = j,β)Be(β | µ)dπ

][∫
κ
p(t∗ = j | κ)Dir(κ | ν)dκ

]
= ∏

i

[∫
βjib

βjibBe(β | µ)dβ
][∫

κ
κjDir(κ | ν)dκ

]
In the training stage, the labelled data is used to infer the expected likelihoods β and class probabilities

κ. For any variable θ and multi-variate φ,
∫
θBe(θ | ·)dθ and

∫
φDir(φ | ·)dφ are the means of a Beta and
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Dirichlet distribution, respectively. Assuming uninformative priors for β and κ and training data {t,c},
the posterior means are:

∫
βjibBe(β | µ(t,c))dβ =

N
(i)
jb +1

∑
1
d=0(N

(i)
jd +1)

,
∫
κjDir(κ | ν(t,c))dκ=

Nj+1
∑k(Nk+1)

where N (i)
jb is the number of documents labelled j that contain feature ci = b in the training data, {t,c},

and Nj is the number of documents labelled j.
Stage two is the prediction phase and for test features c∗ from a document the probability that the

document is class j is,

p(t∗ = j | c∗,µ,ν) = ∏
i

 N
(i)
j ci

+1

∑
1
d=0(N

(i)
jd +1)

[ Nj+1
∑k(Nk+1)

]
.

In summary, we can determine the posterior document class probability, p(t∗ = j | c∗,µ,ν) exactly and
efficiently using only the sufficient statistics of Beta and Dirichlet distributions.

6 Selecting Documents to Pass to the Crowd
We aimed to maximize the information gained from crowdsourcing by choosing documents with particular
features, using approximate methods to reduce computational expense. Each time we receive a set of
labels from the crowd, we must select n more documents to label. Documents may be labelled multiple
times as the turkers are not reliable. Optimally, we would select the set of n documents that maximise the
expected information gain over the set of all documents. However, to calculate the expected information
gain, we must re-run the classifier for each of the possible labels we could receive for every combination
of n documents. This becomes prohibitively expensive with more than a few documents, so we turn to
approximate methods. Learning the label of a document affects the counts Nj and N (k)

jl in (10) and (12).

First, we consider the information gain I(ti;c
(k)
x ) about the topic of a single document:

E[I(ti;c
(k)
x )]≤

J

∑
j=1
−p(ti = j) lnp(ti = j) (15)

If E[I(ti;c
(k)
x )] is low, we assume that the overall information gain for all documents E[I(t;c(k)x )] is

unlikely to be high as we expect to make only small updates to the counts Nj and N (k)
jl given the new

label. Therefore we make the document selection problem tractable by considering nfilter documents
with highest E[I(ti;c

(k)
x )]>θ. The assumption requires that the documents are evenly dispersed in feature

space so that we do not include only outliers. We use a further approximation to (15) and identify most of
the documents with high entropy by finding those with the lowest probability for their most likely class.

Information gain from labelling a document i is higher when we have few previous examples of the
features of i. Therefore, we can choose documents with different sets of features to explore the feature
space fully. To select maximally different documents, we apply k-means clustering to group the documents
according to their features, then select a document from each cluster with approximate highest entropy.
This way, each document is selected to reduce entropy significantly for all documents in its cluster. If some
clusters are much larger than others, this method can be sub-optimal as the information gain for a small
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cluster may be less than from labelling a second document in a larger cluster. However, in this application,
features are generated to give a reasonable distribution across documents. Although this method is highly
approximate, we found a noticeable improvement over random selection. To summarise, the steps of the
algorithm are as follows.

1. Receive a set of labels from the crowd.

2. Run the classifier over current set of data to obtain probabilities of topics for all documents.

3. Approximate I(tc;c
(k)
x ) upper bound using the probabilities of the most probable class for each

document.

4. Select the nfilter documents with the highest approximate information gain.

5. Cluster the nfilter documents by features using k-means into nclusters clusters

6. From each cluster, select the document with the highest approximate information gain.

7. Send the selected documents to the crowd and repeat the process.

7 Results
Fourteen out for forty two turkers had a trust value which exceeded the cut-off of 0.65 and the Gold
standard test cost $20 dollars. The trustworthy turkers classified 2500 documents (i.e. 16% of the corpus)
within 4 hours at a cost of between $0.03 and $0.08 per document. The total spend was $210. However,
less than five turkers completed most tasks and one strategic turker was blocked. Since workers got bored
over time we issued a bonus of $3 to complete the task to a deadline.

Using the crowdsourced labelled documents as training data we compared IBCC to the traditional
two-stage Bayes classifier on the TREC 2012 crowdsourcing track dataset, which contained 18260 topic-
document pairs. Within each pair, the classifiers calculated the relevance of the document to the topic.
IBCC outperformed the alternative classifier. The area under curve (AUC) of the Receiver Operating
Characteristic for IBCC was 0.806 against 0.774 for the two stage classifier. The AUC for each individual
topic and for each classifier is shown in Figure 3.

8 Discussion and Conclusions
We concluded that Amazon Turk may not be the best approach to crowdsourcing the labelling of docu-
ments with a small set of topics when the corpus contains a large number of irrelevant documents. In this
context, there is a need to maintain attention levels, for example through Gamification (or GWAP-based,
Games With A Purpose) of the task, whereby the task is re-written as a game.

We also concluded that the IBCC classifier was about 4% more accurate at inferring the class of each
document than the traditional two-stage classifier. There are two reasons for this difference in perfor-
mance. First, the two-stage approach uses only the labelled document data to infer the classifier model
parameters. However, the IBCC uses the test data (i.e. the unlabelled data) as well as the labelled data to
infer the classifier model parameters. Thus, although the test data is unlabelled the features can provide
a strong indication of the class membership. Consequently, this information provided by the test data can
be used along with the labelled data to provide a more accurate model of the class prior and feature-class
likelihood than would be possible using the two-stage approach.

The second advantage of IBCC is that it models the unreliability of crowdsourced labels compared to
the ground truth. In contrast, the class labels referred to within the two-stage model are the class labels
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Figure 3: AUC for each of the ten topics within the TREC 2012 challenge problem. Shown are the AUCS for
the IBCC and the two-stage approach.

provided by the turker. Thus, the feature-class likelihood is interpreted as the probability of a feature
occurring in a document given the turker has labelled the document as belonging to a class. The two-stage
model, as formulated in this chapter, cannot make explicit reference to the ground-truth document labels
as, in the TREC challenge data set, there is no training data labelled with the ground truth. Consequently,
for our two-stage classifier to provide accurate predictions of the document labels we must ensure that the
crowd’s responses are statistically similar to the ground truth dictated by the NIST committee as we have
no opportunity to filter out untrustworthy turkers using the two-stage approach. Thus, the initial filtering
of trustworthy turkers described in this chapter is a critical component of the two-stage approach.

This paper describes our approach to solving TREC crowdsourcing challenge of 2012, and demon-
strates each of the algorithmic components required for a successful system, demonstrated by our place-
ment as 2nd out of 17 participating groups in terms of AUC curves. We intend to revisit our solution and
produce an integrated design for the components of the system based around the IBCC model. For exam-
ple, using IBCC to derive the trust values for workers. The system also collected confidence responses,
and future work could consider how to exploit these with extensions to IBCC.

We aim to apply our approach to more challenging hard/soft data fusion problems, again in collabora-
tion with Southampton University. Specifically, we will apply these algorithms to the Ushahidi data set.
This dataset is particularly relevant to Orchid it is an example of a scenario in disaster recovery which is
one of Orchids application domains. Examples of soft information in Ushahidi setting are human transla-
tions of free-text to constrained text (i.e. feature-spaces) and examples of hard data are the times and GPS
locations of events.
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