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ABSTRACT
In this paper, we present a deployed prototype of a scalable low-
cost solution providing personalised home heating advice to house-
holds. Our solution, named MyJoulo (www.myjoulo.com), uses
intelligent algorithms to analyse data collected from a specially de-
signed USB temperature logger, placed on top of the thermostat,
in order to build a thermal model of the home and to infer the op-
erational settings of the heating system. This model is then used
to calculate the impact, in terms of percentage reduction in heating
costs, of various interventions (such as reducing the thermostat set-
point temperature or adjusting timer settings); providing specific
actionable advice to the household. The system was launched in
beta form in December 2012 and registered over 750 users in its
three months of operation.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Design, Experimentation

Keywords
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1. INTRODUCTION
Recent years have seen significant research into providing house-
holds with realtime feedback on their energy consumption in an ef-
fort to reduce the carbon emissions from the domestic sector. Much
of this work has focused on low cost solutions that use a small num-
ber of easily deployed sensors in conjunction with artificial intelli-
gence algorithms to infer what cannot be measured directly. A ma-
ture example of this approach is non-intrusive appliance load mon-
itoring (NIALM) that attempts to disaggregate total electricity con-
sumption, using a single clamp-on sensor on the main feed to the
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home, into individual appliance level consumption [3]. These sys-
tems typically model the operational state of individual appliances
within the home using a hidden Markov model, and then infer the
operational state of each appliance at any time, using both the in-
stantaneous total consumption of the home, and the changes in con-
sumption that occur when appliances change state [6, 5]. A number
of commercial entities already provide such services to households,
focusing on a small number of high consumption appliances (see
for example www.plotwatt.com and www.bidgely.com).

However, electrical appliances are not the only consumers of
energy within the home, and other forms of consumption can be
equally or indeed more significant. In particular, home heating
typically accounts for 60-70% of domestic energy consumption
in cooler climates, and yet, has received less attention in the re-
search literature. Recent work has tended to focus on smart heating
controls that use some modelling of the home to provide feedback
to users and to optimally control heating [8, 10], and innovative
products such as the Nest thermostat (see www.nest.com) have
brought these approaches to the market. To date though, no system
offers the type of low-cost, minimally intrusive approach, aimed
at providing advice to householders, that has been successfully ap-
plied to electricity consumption. There appear to be two reasons for
this. Firstly, heating in many countries uses gas-fired boilers, and
non-invasive metering of gas consumption is not straightforward.
Furthermore, there is little quantitative data on how households use
their existing heating systems [4], and thus, developing algorithms
to provide actionable advice in this context is problematic.

To address both these issues, in this paper we present a deployed
prototype system, named MyJoulo, that both provides personalised
home heating advice to households, and is collecting data on typical
heating use across a large number of UK homes. The system was
launched in beta form in December 2012 and registered over 750
users in its three months of operation. Rather than attempting to
directly measure gas or electricity consumption of the heating sys-
tem, we use a specially designed low-cost USB temperature logger,
placed on top of the thermostat (the single point of control of most
heating systems), to infer the operation of the heating system indi-
rectly. The temperature logger is sent to users by mail, and returned
after use, providing a cost effective solution at scale. Our solution
then uses external temperature data, from the internet, to build a
thermal model of the home, describing the rate at which heat is
gained and lost, which is then used to infer the operational settings
(e.g. the timer settings and the thermostat set-point) of the heat-
ing system. This model, and the inferred operational settings, is
then used to calculate the impact (in terms of percentage reduction
in heating costs) of interventions such as reducing the thermostat
set-point temperature or adjusting timer settings; providing specific
actionable advice to the household.



Figure 1: MyJoulo website (www.myjoulo.com).

Figure 2: USB temperature logger in packaging as sent to the
750 users who registered for the initial trial.

The MyJoulo system consists of three components: (i) a website
through which households can sign up to the service and see the
final analysis and feedback, (ii) a low-cost USB temperature logger
which is sent to the user once they have registered on the website,
and (iii) intelligent algorithms that model and calculate the impact
of interventions. In the rest of this paper, we describe each in more
detail, and then discuss the trial deployment, the lessons learned
and the challenges to be addressed in future work.

2. MYJOULO WEBSITE
The website (see www.myjoulo.com and Figure 2) allows house-
holds to request a temperature logger be mailed to them, upload
data recorded by the logger, and view the resulting energy sav-
ing advice. Since the temperature logger is returned after use, the
marginal cost of providing the service is very low (just postage
charges and packaging replacement), and the service can operate
at scale at low cost.

3. USB TEMPERATURE LOGGER
In our initial evaluation, commercially available temperature log-
gers failed to provide the necessary accuracy and ease of use (typ-
ically requiring installed software or additional hardware to access
the logger data, both of which precluded their easy use by our
users), and thus, a specially designed temperature logger, based
around an Atmel AT90USB162 micro-controller with a Texas In-
struments TMP275 temperature sensor, was developed (see Figure
3 for a schematic of the logger, and Figure 4 for a photograph of

AT90USB162 
Microcontroller 

4MB Data 
Flash 

TMP275 
Temperature 

Sensor 

Real-Time 
Clock 

30mAh Li-
ion Battery 

Battery 
Charger 

SPI$

I2C$

USB$DATA$

USB$POWER$

BUTTON$

LED$

Figure 3: USB temperature logger schematic.

Figure 4: Deployed USB temperature logger.

the logger correctly positioned on top of a home heating thermo-
stat). This provides better than +/- 0.2◦C measurement accuracy
without requiring additional calibration. The logger is triggered by
the single button, and then records temperature at 2 minute inter-
vals for 7 days; collecting a total of 5041 measurements. The log-
ger firmware supports both USB HID and Mass Storage protocols,
such that it can be configured prior to dispatch (setting sampling
rates and serial number), and then appear as a conventional flash
drive (with the recorded data in a ‘DATA.TXT’ file), allowing the
householder to upload the recorded data to the website where it is
analysed in real time.

4. ANALYSIS ALGORITHMS
The analysis algorithms form the core of the MyJoulo system; in-
ferring the operational settings of the heating system from the raw
temperature measurements collected by the USB temperature log-
ger, and calculating the energy savings from various interventions
which might then be recommended to the user. The first stage of
the analysis consists of retrieving external temperature data from
the internet. We use data from the closest live weather station
to the postal address that the logger was sent to (collected auto-
matically from www.weatherunderground.com). However,
since these temperature measurements are not time aligned with
the internal temperature measurements, and often exhibit periods
of missing data, we use Gaussian process regression to interpolate



the temperature readings and complete any missing periods. We
then use a simple thermal model of the home to infer the parameters
that describe the heat output of the heating system, the rate at which
heat leaks away from the interior of the home, and the operational
settings of the heating system (specifically, the times at which the
heating system starts and stops each day, and the thermostat set-
point). Finally, using seasonal average temperature patterns, we
calculate the energy savings that would result from making specific
interventions in the use of the heating system; specifically, calcu-
lating the impact from reducing the set-point either by one degree,
or to the recommended value of 19◦C. These insights are then pre-
sented to the user through visually appealing infographics.

4.1 Interpolating External Weather Readings
In order to time align the internal and external temperature mea-
surements, and to handle missing data, we use Gaussian process
(GP) regression [7]. Our USB temperature logger collects n tem-
perature measurements, Tlog , at times, t. For the same time period,
we download from the internet, m external temperature measure-
ments, Text, made at times, τ . We then wish to infer the external
temperatures, T̂ext, at times t. Using the standard result of GP
regression, this is given by:

T̂ext = K(τ , t)TK(τ , τ )−1Text (1)

where the elements of the matrices, K(τ , t) and K(τ , τ ), is de-
fined by a covariance function, k(t, t′), that encodes our prior knowl-
edge of how external temperature measurements at a time t corre-
late to measurements at another time, t′. The function we use takes
the form:

k(t, t′) = kSE(t, t′) + kP (t, t′) + kN (t, t′) (2)

The first term encodes our belief that the external temperature will
vary smoothly, and is given by a standard squared exponential func-
tion:

kSE(t, t′) = σ2
SE exp

(
− (t− t′)2

2`2SE

)
(3)

where σ2
SE is the amplitude of the process and `SE is the charac-

teristic length-scale that determines how rapidly the correlation be-
tween temperature measurements decreases as t and t′ diverge. The
second term encodes the observation that the external temperature
profiles often exhibit diurnal patterns (cold at night, and warmer
throughout the day), and thus, we also use a squared exponential
periodic covariance function with unit periodicity given by:

kP (t, t′) = σ2
P exp

(
− sin2 π(t− t′)

2`2P

)
(4)

where σ2
P is again the amplitude of the process and `P scales the

change in correlation across the day. This ensures a reasonable
temperature profile is inferred even when a whole day of external
temperature measurements is missing. Finally, we also consider
the noise in measurements by applying an additive Gaussian noise
function given by:

kN (t, t′) = σ2
Nδt,t′ (5)

where δt,t′ is the Kronecker delta and σ2
N is the noise variance. We

find the values of the set of hyper-parameters, θGP = {σ2
SE , σ

2
P ,

σ2
N , `SE , `P } by maximum likelihood, given that the log-likelihood

of the observed data given the hyper-parameters, ln p(Text|θGP ),
is described by:

−1

2
ln |K(τ , τ )| − 1

2
TT

extK(τ , τ )−1Text −
m

2
ln(2π) (6)

Algorithm 1 Algorithm to estimate T̂int

for i = 1 : n− 1 do
rih = 0
if (ti ≥ s1 and ti ≤ e2) then

if T̂ i
int < Tset then rih = 1

if m = 2 and (ti ≥ e1 and ti ≤ s2) then rih = 0
end if
Compute T̂ i+1

int as per Equation 7
end for

Since Gaussian process regression is relatively computationally
expensive and takes approximately 30 seconds to infer external
temperature at the 5041 sample times (using 7 days of external
temperature data sampled at 10 minute intervals, and implementing
the Gaussian process regression using the Python pyGPs library —
github.com/marionmari/pyGPs — on a standard server),
we use a simpler spline approach (which does not represent period-
icity in the temperature measurements) to perform an initial regres-
sion such that we can present data to the user immediately after
they have uploaded their data. We then replace this interpolation
with the Gaussian process version once the background processing
has completed.

4.2 Thermal Modelling
In order to provide feedback to householders on how they are oper-
ating their heating system, and the energy savings that they might
achieve by making specific actionable changes, it is necessary to
model both the thermal properties of the home, and also to infer
the operational settings of the heating system. Since the USB tem-
perature logger is placed on top of the home’s thermostat, we are
not required to model the flow of heat throughout the home, but
rather can focus on the heat flows in the immediate vicinity of the
thermostat, which, being the control point of the heating system,
will ultimately determine the operation time of the boiler, and thus,
the heating costs incurred. To do so, we use a standard building
thermal model, where heat leaks from the home at a rate propor-
tional to the difference between internal and external temperatures
[1]. This model can be expressed as a discrete stochastic difference
equation given by:

T̂ i+1
int = T̂ i

int +
[
rp × rih − φ

(
T̂ i
in − T i

ext

)]
∆t+ εi (7)

where at time ti, T̂ i
in is the estimated internal temperature (◦C),

T̂ i
ext is the interpolated external temperatures described above (◦C),
rih is a binary variable which indicates whether the heating system
is on or off, rp is the heater output (◦C/hr), φ is the leakage rate of
the home (1/hr), ∆t is the time interval (1/30 hr in this case) and εi

is Gaussian noise capturing un-modelled effects.
We model this heating system by assuming that the thermostat

has a single set-point throughout the day, and that the boiler is con-
trolled by a separate timer which allows either one or two heating
periods per day. This is a common configuration in UK homes with
a single zone heating system, and we discuss later how we address
data that does not seem to conform to this model.

We perform inference of the thermal properties of the home, and
the operational settings of the heating system, by defining the pa-
rameter vector, θ, given by:

θ = [rp, φ, Tset, s1, e1, s2, e2,m] (8)

where rp and φ are the heater output and the leakage rate from the
thermal model, si and ei are the start and end times of each timer
period, and m ∈ {1, 2} is the operational mode of the heating sys-



(a)

T
e
m

p
e
ra

tu
re

 (
C

)

14

16

18

20

22
Temperature Record

Tlog

T̂int

Fri 07 Dec Sat 08 Dec Sun 09 Dec Mon 10 Dec Tue 11 Dec Wed 12 Dec Thu 13 Dec
5

0

5

10

T̂ext

(b)

T
e
m

p
e
ra

tu
re

 (
C

)

18

20

22

24

26
Temperature Record

Tlog

T̂int

Fri 21 Dec Sat 22 Dec Sun 23 Dec Mon 24 Dec Tue 25 Dec Wed 26 Dec Thu 27 Dec
0

5

10

15

T̂ext

Figure 5: Temperature logger records from (a) a home with one timer period and set-point temperature of 20◦C and (b) a home with
two timer periods and a set-point temperature of 23.5◦C.

tem. If m = 1, then just one heating period is applied each day
from s1 until e2, and if m = 2, two heating periods are applied
from s1 until e1, and from s2 until e2. We then use these param-
eters to estimate the internal temperature over the logging period,
by initialising our first estimate of the internal temperature to be
equal to the first temperature logger measurement, T̂ 1

int = T 1
log ,

and using Algorithm 1 to iteratively propagate the thermal model
forward, updating the internal temperature estimate given the ther-
mal performance of the home, and the real-time control policy of
the heating system (using on the thermostat setting, the internal
temperature and the timer setting to determine rih in each time pe-
riod). The optimal parameter vector, θ∗, is that which minimises
the squared error between the estimated internal temperature mea-
surements, and those actually recorded by the logger, and is given
by:

θ∗ = arg min
θ

n∑
i=1

(
T̂ i
int − T i

log

)2
(9)

This objective function is convex and quadratic with added con-
straints that, rih ∈ {0, 1} and m ∈ {1, 2}, and thus, we solve this
constrained convex optimisation problem using the interior-point
algorithm with conjugate gradient steps [2].

Figure 5 shows this process applied to two example datasets col-
lected within the 2013 live trial. Figure 5a shows a home with one
timer period and set-point temperature of 20◦C and Figure 5(b)
shows a home with two timer periods and a set-point temperature
of 23.5◦C. The figures show the internal temperature measurements
made by the USB temperature logger placed on the homes’ ther-
mostats (light blue line), the external temperature taken from the
internet (dark blue line), and the best fit thermal model derived from
the parameters values found in equation 8 (red line). Note that the
fit is generally very good, with the only significant deviation oc-
curring in the first time series on the night of 11th December due

to additional un-modelled heating from the anti-frost mechanism
switching on the boiler as the external temperature drops below
0◦C, which causes the leakage rate to be slightly underestimated
overall.

4.3 Calculating the Impact of Intervention
Having inferred the thermal properties of the home, and the oper-
ational settings of the heating system, we can calculate the impact
that any intervention will have. In the 2013 live deployment of
MyJoulo, we focused on the thermostat set-point value, and pro-
vided feedback on the savings that would be made if it were re-
duced to a recommended value of 19◦C. In order to do so, however,
we can not simply consider the energy consumption over the week
during which the temperature logger was deployed, since any par-
ticular week may exhibit unseasonably low or high temperatures.
Thus, we use monthly daily maximum and minimum temperatures,
for the postal address that the logger was sent to (again collected
automatically from www.worldweatheronline.com), to cal-
culate the expected external temperature profile over the course of
any particular day (using a sinusoid with a minimum temperature
at 02:00 and a maximum temperature at 14:00). Having calculated
the expected external temperature, we can then use it for T̂ext in
Algorithm 1 to calculate the resulting internal temperature profile
on any given day for the optimal parameters found in the last sec-
tion; iterating until T̂ 1

int = T̂ 721
int since we do not know the initial

temperature. For any such day, we assume that the total energy is
proportional to total time over which the heating system was ap-
plying heat, and this can be found directly by calculating,

∑720
i=1 r

i
h

(where 720 is the number of 2 minute intervals in the day). To
calculate the saving, we repeat the process using the reduced ther-
mostat set-point within Algorithm 1, and calculate the percentage
reduction that results.

Figure 6 shows the seasonal daily minimum and maximum tem-
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Figure 6: Seasonal daily minimum and maximum tempera-
tures for the location of the dataset show in Figure 5b.
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Figure 7: Internal temperature, and cumulative heat input, for
the dataset show in Figure 5b when the thermostat set-point is
reduced from 23.5◦C (solid) to 19◦C (dashed).

peratures for the location for the dataset shown in Figure 5b, and
Figure 7 shows the result of using Algorithm 1 to calculate the cor-
responding internal temperature for an example day in December,
when the thermostat set-point is set at the original 23.5◦C, and at
the reduced setting of 19◦C. Figure 7a shows the internal and exter-
nal temperatures, and Figure 7b shows the cumulative period over
which the heating system was delivering heat in both cases. Note
that when the thermostat set-point is reduced, the internal temper-
ature exhibits a similar reduction in temperature (being approxi-
mately 4.5◦C lower everywhere). However, the temperature pro-
file is not completely unchanged. In this example, during the first
timer period (from 06:00 to 08:30), the internal temperature does
not reach the thermostat set-point in either case, and thus the cu-
mulative heater on time is 2.5 hrs over this period for both thermo-
stat settings. However, in the second timer period (from 16:30 to
22:00), the internal temperature reaches the reduced set-point tem-
perature more rapidly, and then acts to maintain the temperature at
this point by alternative periods of heating and not heating. This
results in an overall reduction in the total heat input into the home,
and a resulting reduction in heating costs.

Performing this calculation over a 7 month heating period from
1st October to 30th April, yields an energy reduction in the case of
the dataset shown in Figure 5a when the thermostat is reduced from
20◦C to 19◦C, and a 27% saving for the dataset shown in Figure 5b
when the thermostat is reduced from 23.5◦C to 19◦C. These figures
conform to the often quoted benchmark in the UK that reducing the
thermostat by 1◦C results in a 10% reduction in heating costs.

4.4 Verifying Energy Savings
Whilst we can not verify the predicted savings, as calculated above,

Figure 8: Average prediction error in boiler on times in Home 1
and Home 2, and estimated and actual boiler on time reduction
yielded in Home 2.

directly since any individual heating season may deviate from the
statistical average, we can verify the accuracy of our thermal model
in predicting the boiler on time in any individual home. To do so
we instrumented two homes owned by the University of Southamp-
ton, to collect live internal temperature, thermostat set point, and
the actual boiler firing state at 1 minute intervals. In addition, we
collected external air temperature data from a deployed tempera-
ture logger. Then across a two week period, one house (Home 1)
maintained a constant thermostat set point of 21◦C, while the other
(Home 2) maintained a set point of 21◦C for the first week, and then
reduced it to 19◦C for the second week (the exact values decided
through negotiation with the residents of the homes to balance the
aims of the experiment against their comfort preferences).

Fitting the thermal model exactly as described above across the
first week in each home yields the average error in the predicted
boiler on times as shown in Figure 8. Note that the average error in
Home 1 where the set point was held constant is 7%, and in Home
2 the average errors are 4.7% and 5.7% respectively, correspond-
ing to the periods when the set point is first maintained at 21◦C
and then reduced to 19◦C. These results indicate a very good fit
between our simple thermal model and reality. We then predict the
average percentage reduction in boiler on time (assuming that this
will be proportional to heating costs) in the second week in Home
2 from reducing the set point temperature by 2◦C. However, here
rather than using seasonal average temperatures, we use the actual
external temperature that was observed. Figure 8 shows the results
of this comparison where the predicted reduction was 29%, and the
actual realised reduction was 27%, indicating the very good predic-
tive properties of the relatively simple thermal model1.

4.5 More Complex Temperature Profiles
While the approach described above works when the internal tem-
perature exhibits regular heating patterns, more complex temper-
ature profiles can arise when there are additional heating sources
within the home (such as wood burning stoves), when a more so-
phisticated programmable timer is used with many changes of set-
point, or when the thermostat is frequently manually changed. These
are all frequent enough occurrences that any deployed system must
be able to detect and handle them. To do the former, we can simply
observe the deviation between the modelled internal temperature
and that measured by the temperature logger, as calculated in Equa-
tion 9, and use it to indicate when the existing model does a poor
job of describing the temperature measurements made by the log-
ger. To do the later, we must both detect the set-point temperature

1Note that the saving here is larger than that in Figure 5 since this
was a relatively warm week, and thus the percentage change in
the difference between the internal and external temperatures was
greater than average.



Figure 9: Example analysis page presented to the user of the
MyJoulo website showing the 9% saving, for the dataset shown
in Figure 5a, when the thermostat set-point is reduced from
20◦C to 19◦C.

and model the impact of the intervention. Thus, we use a statis-
tical approach and take the mode of the upper 50% percentile of
the temperature logger measurements as a representative set-point
temperature, T̂set. Then, rather than using a parameterised model
of the operational settings of the heating system to calculate the
internal temperature profile and the total heat input, we rearrange
Equation 7, and sum over the temperature record, to calculate the
total energy input over the course of a week:(

Tn
log − T 1

log

)
+ φ×∆t×

n∑
i=1

(
T̂ i
log − T̂ i

ext

)
(10)

where T̂ i
ext is the external temperature calculated as above for any

particular week using the seasonal daily minimum and maximum
temperatures, and φ is the leakage rate of the home, for which we
use a standard value of 0.3 1/hr. Performing this calculation for
one week for each month between 1st October to 30th April, and
scaling appropriately by the number of days in the month, allows
us to estimate the total heat input over a heating season.

We then use the insights of the last section to calculate how the
heat input would be reduced if the thermostat set-point were re-
duced. To do so, we subtract from Tlog the difference between
T̂set and the recommended value of 19◦C, such that the reduced
internal temperature is given by T i

log − (T̂set − 19). For example,
if we estimate the set-point to be 20◦C, we reduce all the mea-
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Figure 10: Aggregate analysis of the collected dataset.

sured logger temperatures by 1◦C. Repeating the calculation over
the same time period as above allows us to calculate the percentage
savings in heating costs that will result.

Using this approach implicitly assumes that the leakage rate ob-
served in Tlog does not depend upon the difference between the
external and internal temperatures. We know that this is not the
case. However, if the difference between T̂ext and typical sea-
sonal values is small, and T̂set is close to 19◦C, then the error is
small. Indeed, for the two example datasets, this alternative cal-
culation yields set-points of 20◦C and 23◦C, and reductions of 9%
and 30%, compared to 9% and 27% as calculated above, indicating
that it provides reasonable agreement. More problematic, is that
this approach precludes us providing more sophisticated feedback
on operational changes (such as timer settings).

4.6 Providing Feedback
We provide feedback to MyJoulo users through a visually appeal-
ing infographic (shown in Figure 9) that shows a comparison of
the user’s thermostat set-point against a typical range, a compari-
son of the minimum, average and maximum temperature recorded
by the logger, the temperature profile recorded by the logger, and
the saving that would result from reducing the set-point to the rec-
ommended value of 19◦C. Taking inspiration from use of social
norms in energy feedback to prevent users who are already under-
consuming from reverting to the norm, we also inform users whose
set-point is already below 19◦C how much they have already saved,
and inform them how much they would save from a further reduc-
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tion of 1◦C [9]. Note that since we do not know the size of the
home, we can not calculate the actual monetary cost saving auto-
matically. However, we provide the user with the option of entering
their annual heating bill, and on doing so, convert the percentage
reductions to monetary savings. Given an average UK heating bill
of £1000, this results in significant annual savings of £90 and £270
for the two example datasets considered here.

5. DEPLOYMENT CHALLENGES
The system as described above was launched in beta form in De-
cember 2012 in order to test the effectiveness of the methodology
employed. In its three months of operation, 750 users registered
and were sent USB temperature loggers, and 600 completed the
process of recording temperature for a week and uploading the data
to the website. Figure 10 shows the distributions across of this
dataset of three key measures of each home: the average temper-
atures across the week, the identified thermostat set-point, and the
thermal leakage rate, φ. Note that the later is calculated even for
homes where the full thermal model, including timer operational
settings, do not fit well, by identifying the long periods of decreas-
ing temperature that often occur at the end of each day when the
heating is turned off. Taking each in order, the average temperature
plot shows a clear peak around 18-20◦C, with a significant spread
of both cold and very warm homes. The thermostat set point dis-
tribution shows a peak at 19◦C, the temperature that we chose as
the reference point for providing feedback to the householders, and
again shows a number of homes with high settings. Finally, the
leakage rate shows a cluster between 0.01 and 0.04 1/hr, and a sig-
nificant number of outliers with high leakage rates.

While our peer comparison to date has focused on the thermostat
set point, in future work we plan to exploit these additional compar-
isons to identify particular classes of homes. For example, a home
with low average temperature, a normal thermostat setting and a
high leakage rate, may indicate a home which is poorly insulated,
where the installation of roof or cavity wall insulation would yield
significant energy savings, and comfort improvements.

Further information and feedback could also be generated by
more complex analysis of the temperature profiles. For example,
Figure 11 shows three examples of common temperature profiles

that challenge our existing analysis. The first is an example of a
case where the heating system is undersized, and the home never
reaches the thermostat set point. In this case, there is no single best
fit thermostat set point derived from the thermal model fitting, but
rather, the model will indicate that above a certain value, all ther-
mostat set points fit the data equally well. This is important, since
in this case, the household heating bill is determined by the timer
settings, and a reduction of thermostat set point may not yield any
saving at all.

The second example shows the ability to classify the type of ther-
mostat installed within the home with this plot showing the tem-
perature profile of a mechanical thermostat with large hysteresis
band which gives relatively poor temperature control, and drifts
over the course of the day slightly, compared to the two examples
of electronic thermostats with time proportional integral (TPI) con-
trol shown in Figure 5.

Finally, the third example shows an example of a week where
the heating was switched off for two days (in this case over Christ-
mas Day and Boxing Day). While such periods can be addressed
by including a further 7 binary parameters indicating whether the
heating is on or off each day, doing so fails to accurately capture
this long-term temperature decay, which rather than asymptoting to
the external air temperature, settles at an intermediate temperature
of the envelope or structure of the home. Adding this additional
complexity to fully model this decay, is something we intend to ad-
dress in future work, since the decay rate here is highly indicative
of the thermal properties of the home [1].

6. CONCLUSIONS
In this paper, we presented a deployed prototype of a scalable low-
cost solution to provide personalised home heating advice to house-
holds, and discussed the results of an initial deployment of the sys-
tem that saw 750 users order a temperature logger, and 600 of these
users upload the logged dataset the MyJoulo website. As discussed
above, our ongoing future work is aimed at broadening the analysis
provided to users. In particular, we would like to provide energy
saving analysis and recommendations on the timing of heater use
and also the thermal leakage rate of the home itself; identifying
homes which are particularly leaky where adding insulation will



be most effective. In order to do so it is necessary to broaden the
range of heating profiles for which we can use the model-based ap-
proach, recognising and handling cases where the programmable
thermostats are used or where householders make frequent manual
changes to their thermostat and timer settings.
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