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ABSTRACT
In this paper, we present AgentSwitch, a prototype agent-based
platform to solve the electricity tariff selection problem. Agent-
Switch incorporates novel algorithms to make predictions of hourly
energy usage as well as detect (and suggest to the user) deferrable
loads that could be shifted to off-peak times to maximise savings.
To take advantage of group discounts from energy retailers, we
develop a new scalable collective energy purchasing mechanism,
based on the Shapley value, that ensures individual members of a
collective (interacting through AgentSwitch) fairly share the dis-
counts. To demonstrate the effectiveness of our algorithms we em-
pirically evaluate them individually on real-world data (with up to
3000 homes in the UK) and show that they outperform the state
of the art in their domains. Finally, to ensure individual compo-
nents are accountable in providing recommendations, we provide
a novel provenance-tracking service to record the flow of data in
the system, and therefore provide users with a means of checking
the provenance of suggestions from AgentSwitch and assess their
reliability.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence

Keywords
Electricity, Smart Grid, Optimisation, Group Buying, Provenance,
Recommender Systems

1. INTRODUCTION
Energy poverty is a rapidly growing issue across the world due to
the significant rise in energy costs over the last few years.1 Such
increments are due to the unprecedented growth in energy demand

1According to the British energy regulator, ofgem, half a million
households in the UK have been put into fuel poverty due to price
increases in 2008 alone, while domestic energy bills have nearly
doubled since 2003.
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(e.g., world energy is set to grow by more than 50% by 2030) cou-
pled with dwindling fossil fuels and the high costs of (and resent-
ment against) constructing large renewable energy generation fa-
cilities. This is set against a background where ageing nuclear and
coal power stations are gradually being decommissioned (and as
a result, a recent report suggested widespread blackouts are to be
expected in the United Kingdom by 2015 [10]). In the UK energy
market, we note that the loss of generation capacity is exacerbated
by a misalignment of incentives whereby energy companies have
no motivation to innovate nor to adopt cleaner sources of energy,
given that they can easily pass on any rising costs they face directly
to their customers. Thus, unsurprisingly, retailers have made sig-
nificant profits even during periods of serious economic downturn2.
In addition, most consumers (40%-60% in the UK) tend to ‘stick’
to the same energy supplier year in year out and do not spend much
time looking for a cheaper deal. This reduces competition in the
energy retail market and does not help drive down prices [11, 19].3

Now, consumers cannot be completely blamed for not finding
the best deal, given that energy tariffs are often made explicitly
complex and, at times, confusing. For example, tariffs may have
multiple tiers (e.g., the first tier may be priced at 20p per kWh,
and beyond this the cost drops to 5p/kWh), implement time-of-
use pricing (e.g., 5p/kWh between 11pm and 7am), and may in-
clude additional one-off discounts (often only for a limited pe-
riod). To help consumers combat this complexity, a number of
third-party online services exist to help consumers submit simple
estimates of their yearly consumption and obtain the cheapest tariff
(e.g., uswitch.com and moneysupermarket.com). Some other ser-
vices also claim to help consumers come together as a collective
in order to access group discounts from retailers (e.g., which.com
and incahoot.com). Crucially, however, these services rely on con-
sumers being able to make a reasonable estimate of their yearly
consumption (taking into account varying usage over different sea-
sons and usage at on- and off-peak times) and being able to un-
derstand how to take advantage of the various tiers or time-of-
use tariffs they offer (e.g., by shifting appliance usage to off-peak
times). Moreover, in existing collective purchasing systems, all
members of the collective tend to obtain the same contract without

2One of the largest energy suppliers in the UK noted a rise in profits
of more than 20% in the first half of 2012 despite the UK economy
being in recession.
3Indeed, research by the U.S. Dept. of Energy found that most peo-
ple are likely to spend no more than two hours a year setting their
preferences for comfort, tariffs, and environmental impact [19].



considering whether the discounts are fairly distributed across all
the members of the collective (e.g., those with unpredictably peaky
consumption profiles should be charged more than those with pre-
dictably flat profiles, as they tend to cause higher penalties in the
balancing market).

Against this background, here we report on the development of
a prototype agent-based platform, called AgentSwitch4, that inte-
grates state-of-the-art techniques and mechanisms to address the
challenging issue of energy tariff selection. AgentSwitch builds
upon the data provided by off-the-shelf energy monitoring devices,
and applies a number of machine learning, optimisation, and coali-
tion formation algorithms in order to solve the energy tariff selec-
tion problem. In more detail, this work advances the state of the
art in the following ways. First, we develop novel extensions to
Bayesian Quadrature (a machine learning technique), in order to
generate predictions of yearly consumption at hourly level. These
estimates can then be directly used to select the best tariff avail-
able from energy retailers. Second, using the predictions of yearly
consumption, we develop a novel mechanism for collective energy
purchasing. The mechanism relies on a novel scalable algorithm
to approximate (in linear time) the Shapley value for coalitional
games involving thousands of agents (homes). Third, we present
a novel non-intrusive appliance load monitoring (NIALM) algo-
rithm that works on coarse energy data (at five-minute level rather
than second-level as is traditionally the case in this field) in order
to detect deferrable loads that might benefit from being shifted to
off-peak times. This algorithm is shown to outperform the state
of the art on standard datasets. Fourth, we implemented a novel
provenance service that allows the tracking of data throughout the
system in order to provide accountability for its recommendations.
As such, AgentSwitch instantiates the foundational tools, substan-
tiated by benchmarks against the state of the art, in order to address
a real world challenge for real users.

The rest of this paper is structured as follows. Section 2 details
the system architecture underlying AgentSwitch. Section 3 elabo-
rates on our Bayesian Quadrature model to predict yearly energy
consumption from limited data. Section 4 then details our group
buying mechanism that includes techniques to form coalitions via
clustering of homes with similar attributes, along with a novel scal-
able Shapley value computation algorithm that allows for approxi-
mately fair distribution of energy costs across consumers. Section
5 then presents our load disaggregation algorithm that helps pro-
vide better suggestions to users. Section 6 presents our provenance
tracking mechanism. Finally, Section 7 concludes the paper.

2. AGENTSWITCH ARCHITECTURE
AgentSwitch is implemented as a prototype web application that
incorporates a number of key modules (see Figure 1) as follows: (i)
an annual load prediction module that uses Bayesian Quadrature
(BQ) to predict annual electricity consumption, (ii) a group buying
module that identifies and forms coalitions of consumers to take
advantage of group discounts from retailers, (iii) a load disaggre-
gation module that uses NIALM techniques to analyse home-level
electricity readings to identify opportunities for savings by shift-
ing appliances to off-peak times, (iv) a provenance tracking service
that tracks the flow of data in the system, and finally (v) user in-
terfaces to input data and visualise recommendations in such a way
that the complexity of the processes underlying AgentSwitch are
hidden from view.

Now, in order to provide tariff recommendations to users who
sign up to use the service (i.e., allow AgentSwitch to analyse their

4see http://agentswitch.orchid.ac.uk.

data to provide recommendations and formulate group buying strate-
gies), AgentSwitch needs to access at least5 two key sources, namely
consumers’ electricity consumption readings (to be kept in a data-
base, termed Energy DB, in AgentSwitch for algorithms to analyse)
and live electricity tariff specifications from all retailers (for Agent-
Switch to match consumption predictions or group consumption
against the best tariffs).6 While the former can be obtained from
users’ off-the-shelf energy monitors or smart meters that provide
average power readings at different levels of granularity, the latter
can be obtained from online third-party providers and suppliers (in
our case, we used live tariff data from uswitch.com with their
permission).

Figure 1: The architecture of AgentSwitch showing the data
flows (arrows) between different modules. The circles repre-
sent algorithms, rectangles represent data providers or sinks.
All the data flows in the system are tracked by our provenance
service.

In what follows, we individually detail the core computational
components of AgentSwitch as presented above. While we omit
detailed descriptions of the architectural elements enabling the ef-
ficient storage and analysis of data in the Energy DB as well as user
interface elements, they constitute important features of Agent-
Switch that render it fit for a real-world deployment. Thus, we
choose to focus on the core Artificial Intelligence (AI) elements of
AgentSwitch in what follows.7

3. ANNUAL LOAD PREDICTION
The choice of an electricity tariff is based on a consumer’s annual
energy consumption and, to date, most online services would nor-
mally use a consumer’s monthly usage and correlate this with the
national average (for a given type of consumer, e.g., a large fam-
ily in a large house, or a single living in a flat) in order to arrive
5Other sources of data such as weather predictions and historical
data, users’ schedule and travel plans for the year ahead, the users’
home types and contents, would all be useful to improve predic-
tions and load disaggregation and could be integrated into our ap-
proach. Thus, despite its complexity, AgentSwitch in its current
shape represents only the first step towards building fully integrated
tariff selection and home energy management systems.
6As a first step, we only consider electricity due to the wide avail-
ability of such electricity monitors, but this approach could be eas-
ily extended to gas or water if the appropriate sensors become avail-
able and affordable.
7As this is more relevant to the Agents community.

uswitch.com


at an estimated annual consumption (possibly ignoring the division
between peak and off-peak consumption). In contrast, here, we
present a principled approach to computing such estimates in or-
der to select the best tariff for a given customer. To this end, we
employ a Gaussian process (GP) to model power consumption as
a function of time. In particular, we apply this Gaussian process
model to estimate the integral of power consumption over a year
(the total annual energy consumption) so that estimates of time-
of-use costs are correctly computed. This technique is known as
Bayesian Quadrature (BQ) [12, 4, 15], a model-based means of nu-
merical integration. To date, only very simple GP covariance func-
tions (typically Gaussian) have been used to perform BQ. In this
work, we extend Bayesian Quadrature techniques to use a more so-
phisticated GP covariance, suitable for quasi-periodic signals. Such
signals emerge from the weekly cycles of energy consumption that
typical domestic consumers exhibit.

3.1 Bayesian Quadrature
Bayesian quadrature [12, 15] is a means of performing Bayesian
inference about the value of a potentially nonanalytic integral,

〈f〉 :=

∫
f(x)p(x)dx. (1)

For clarity, we henceforth assume the domain of integration X =
R, although all results generalise to Rn. Previous work on BQ
assumes a Gaussian density p(t) := N (t; νt, λt), although other
convenient forms, or, if necessary, the use of an importance re-
weighting trick (q(x) = q(x)/p(x)p(x) for any q(x)), allow any
other integral to be approximated.

Quadrature involves evaluating f(t) at a vector of sample points
ts, giving fs := f(ts). Often this evaluation is computationally
expensive; the consequent sparsity of samples introduces uncer-
tainty about the function f between them, and hence uncertainty
about the integral 〈f〉.

Previous work on BQ chooses a Gaussian process (GP) [16] prior
for f , with mean µf and squared exponential (or un-normalised
Gaussian) covariance function, suitable for modelling very smooth
functions,

KSE(t1, t2|h, w) := h2 exp−1

2

(
t1 − t2
w

)2

(2)

Here hyperparameter h specifies the output scale over f , while hy-
perparameter w defines an input scale over t. This covariance can
be readily modified to give a periodic covariance, suitable for mod-
elling periodic functions,

KPSE(t1, t2|h, w, P ) := h2 exp−1

2

(
1

w
sin
(
π
t1 − t2
P

))2

(3)
where h and w are hyperparameters that have interpretations as for
the squared exponential, and P is the hyperparameter representing
the period.

We use the following dense notation for the standard GP ex-
pressions for the posterior mean m and covariance Σ, respectively:
mf |s(t?) := m(f?|fs) and Σf |s(t?, t

′
?) := Σ(f?, f

′
?|fs).

Variables possessing a multivariate Gaussian distribution are jointly
Gaussian distributed with any affine transformations of those vari-
ables. Because integration is affine, we can hence use computed
samples fs to perform analytic Gaussian process inference about
the value of integrals over f(t), such as 〈f〉. The mean estimate for

〈f〉 given fs is

m(〈f〉|fs) =

∫∫
〈f〉 p(〈f〉|f) p(f |fs) d〈f〉 df

=

∫∫
〈f〉 δ

(
〈f〉 −

∫
f(t) p(t) dt

)
N
(
f ;mf |s,Σf |s

)
d〈f〉 df

=

∫
mf |s(t) p(t) dt , (4)

which, for Gaussian input density and squared exponential covari-
ance, is expressible in closed-form due to standard Gaussian iden-
tities [15].

3.2 Applying BQ to Household Energy Con-
sumption Prediction

We applied our model to predict the yearly energy consumption of
a test set of UK homes. This application motivated the develop-
ment of a bespoke GP mean and covariance to permit long-range
forecasting. The prior mean function was taken as:

µ(t|a) := c α(t), (5)

where c is a hyperparameter acting as a scaling constant, andα(t) is
the UK national average energy consumption for time-of-use con-
sumers drawn from data provided by Elexon Ltd. Figure 2 illus-
trates this national average consumption over the year. Our moti-
vation for this prior mean was to permit the model to appropriately
extrapolate from the patterns of consumption in winter to the re-
maining seasons in 2012. Then, the covariance chosen was built
from terms of the form (2) and (3),

K(t1, t2|ha, wa, wp, P, hb, wb)

:= KSE(t1, t2|ha, wa)KPSE(t1, t2|h = 1, wp, P )

+KSE(t1, t2|hb, wb), (6)

modelling the quasi-periodic behaviour of the signal (e.g., lower
energy use at night). Note that this covariance introduces additional
hyperparameters. The period P is set a-priori to one day; the daily
period was by far the most significant repeated pattern in the data.
Other hyperparameters (including an additional observation-noise
variance hyperparameter) are fitted using maximum likelihood for
each available data-set.8 Figure 3 displays an example of GP re-
gression using the model above.

We ultimately wish to compute an integral of power over time
in order to estimate energy computation. That is, we need to solve
(1) for an input density p(t) that is constant for the desired time
period and zero elsewhere. Unfortunately, the complex form of (6)
rules out the analytic computation of (4) required for traditional
BQ. In order to effect BQ for our problem, we discretise by assum-
ing power is constant for each observed minute, and aggregate to
provide observations of total energy consumption in each observed
hour. We can then use these within the BQ framework as noisy
integral observations of the true power signal. These observations
can then be used to directly infer the desired integral over the en-
tire year. The use of the BQ formalism allows for both a mean and
variance to be provided for such integrals. Thus, the flexibility of
our model allows for inference of the integral of power over any
desired time period. Use of the time-of-use tariffs implies differ-
ent electricity prices in nominal night and day periods, in order to
encourage electricity demand at night. As such, in order to pro-
vide recommendations to users of the benefits of switching to or
8Note that we do not yet consider correlations between houses.
Future work might investigate the emergence of such correlations
from observable demographic information, such as household in-
come and the number of household residents.
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Figure 2: UK national average hourly energy consumption
throughout the year.
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Figure 3: Example of GP regression for energy consumption
given sparse observations.

from tariffs with cheaper electricity during the night (such as the
UK’s Economy 7 tariff), we must estimate both annual day-time
and night-time energy consumption. This is trivially achieved by
our approach.

3.3 Evaluating BQ
We evaluated the efficacy of our prediction module on half-hourly
consumption data collected for a set of 18 UK homes over winter
2011-2012 (our longest metered set of homes out of a pool of 3000)
and divided the data into a set of training data (one third of the total
data) and test data (the remaining two-thirds); the goal was to ac-
curately predict the total energy usage across the test period given
only training data. To provide comparisons for the BQ method,
we implemented two alternative methods. The first predicted that
energy usage for the household would be identical to the national
average, ignoring the data. The second assumed that energy us-
age for the test data would continue at exactly the mean usage rate
across the training data; this method ignores prior knowledge about
the national pattern of energy usage. The root mean square errors
(RMSEs) across all households are tabulated in Table 1. These ex-
periments reveal that in combining both prior knowledge and the
information contained in data, BQ returns slightly better predic-
tions than either alternative. While the improvement offered by BQ
for this limited segment of data are modest, we are hopeful that
datasets spanning entire annual cycles (or taking into account lo-
calised weather patterns) will permit the full modelling capacity of
BQ to achieve more significant gains. We expect that explicitly en-
coding a non-negativity constraint [13] for energy usage may also
improve the BQ model. Note that in addition to providing mean
estimates of energy consumed, the probabilistic BQ method also
provides an indication of the uncertainty in such quantities in terms
of the variance in yearly consumption. The provision of such un-
certainty estimates is crucial to helping consumers understand the
degree of confidence that can be attributed to the savings that a
given tariff could provide. Thus, if a consumer has a large con-
sumption variance, he or she may prefer to choose a tariff which
is less risky (e.g., fixed average price rather than one that charges
extra for going above a given tier).

Table 1: RMSE (MWh) for predictions of total energy usage.
Nat. Avg. Mean BQ

4.57 0.28 0.27

By predicting consumption accurately using the techniques above,
we are able to choose the best tariff for any given home (resulting
in savings of hundreds of pounds depending on the previous tar-
iff). In the next section, we extend the use of such predictions to
help create efficient energy purchasing collectives in order to take
advantage of group discounts.

4. COLLECTIVE ENERGY PURCHASING
The creation of consumer collectives is a challenging problem given
the number of potential consumers that can be grouped, along with
the vast amounts of historical energy consumption data they come
with. To date, apart from generic signup mechanisms, there is no
principled way to group energy consumers and take advantage of
group discounts (e.g., forming groups with flat energy profiles that
enable the purchase of energy contracts in the forward market or
green groups that prefer power from renewable supplies). A key
challenge is the problem of sharing the group discounts “fairly”
among group members. In this section, we describe a principled
approach to do so based on the concept of the Shapley value from
cooperative game theory [18], and address the computational issues
that arise by presenting a novel, scalable algorithm that is integrated
within AgentSwitch, and is shown to significantly outperform the
state of the art.

In what follows, we first describe how we model the collective
energy purchasing problem as a cooperative game involving coali-
tions (i.e., non-overlapping groups) of consumers, and discuss the
challenges involved in computing the Shapley value. Second, we
describe our algorithm for computing the Shapley value. Finally,
we evaluate our algorithm using real data.

4.1 Cooperative Game Model
Given a group of consumers and their estimates, the value of a

coalition (i.e., a group of energy consumers signed up to AgentSwitch)
is the expected cost of the aggregated consumption of all its mem-
bers, taking into consideration the group discount. Due to the work-
ings of the forward energy market, and the penalties applied to un-
expected over-consumption and under-consumption in the balanc-
ing market, the consumers that will obtain the highest discounts
are those whose consumption estimate has a low variance. In this
vein, adopting a similar model to [17, 1], we construct the expected
cost function for a coalition C based on the expected usage pro-
file over a given period (e.g., day, month, or year), as well as the
variances (which captures the uncertainty in demand) of all coalion
members. More formally, let A be the set of consumers with an
AgentSwitch account, and C ⊆ A be a potential coalition. More-
over, let fi(S) ∼ N(mi(S),Σi(S, S)) be the predicted consump-
tion profile for consumer i ∈ C over times S. Now, for coalition
C, the mean predicted consumption is:

µC =
∑
i∈C

∫
S

mi(t)dt .

Furthermore, the variance of the predicted consumption is:

VC =
∑
i∈C

∫
S

∫
S

Σi(t, t
′) dt dt′

Based on these, the characteristic function, which is a function that
reflects a coalition’s expected cost, is:

v(C) = p× µC − k
√
VC (7)

where p is the unit price, and k is a constant parameter that captures
the balancing penalties. We can replace the integals above with
summations for discrete times S. Given the above cost function for



a coalition of homes, it turns out that the minimum cost is achieved
if all consumers come together in the grand coalition (i.e., the set
of all consumers). With this in mind, the objective of AgentSwitch
is to divide the value of the grand coalition, i.e., the expected cost,
among its members in a fair way.

We start by noting that the presence of any consumer i in a coali-
tion C causes a reduction in the expected cost that the coalition has
to pay. This reduction is referred to as the marginal contribution
of consumer i to coalition C, and is given by v(C ∪ {i})− v(C).
According to the Shapley value, the fairest way to divide the group
discount is as follows. Each consumer receives a share that is equal
to his average marginal contribution to all possible subsets of the
rest of the consumers. This division satisfies a number of axioms,
each of which being a desirable fairness property.

Unfortunately, due to its combinatorial nature, the Shapley value
quickly becomes hard to compute as the size of the grand coali-
tion exceeds tens. The state-of-the-art research on addressing this
issue [2] proposes an approximation algorithm based on uniform
sampling from the marginal contributions. However, since the ap-
proximation bound that this technique provides may fail with some
probability, it is undesirable to be used for dividing consumers’
payments, as it might negatively impact their willingness to sign
up to AgentSwitch. Moreover, depending on the variance and the
desired probability of failure, the number of samples needed to be
used could actually exceed the total number of marginal contribu-
tions.

Against this background, in the next subsection, we present a
branch-and-bound algorithm for computing the Shapley value of a
given consumer. Initially, this algorithm approximates the Shapley
value, and establishes a tight bound, both in linear time. After that,
it iteratively improves the approximation until it eventually arrives
at the exact value.

4.2 Computing the Shapley Value for Group
Discounts

For any consumer, i ∈ C, let MCi ⊆ R be the set of marginal
contributions of i (to all possible coalitions). As mentioned earlier
in Section 4.1, the Shapley value of i is the average of MCi. The
challenge comes from the exponentially large number of elements
in MCi (2|C|−1 to be precise). To overcome this challenge, we
divide MCi into n− 1 subsets (where n is the number of agents),
namely: MCi

s : s = 0, . . . , n − 1, where each MCi
s consists of

the marginal contributions of i to coalitions of size s. The rationale
behind this division is that it results in a number of subsets linear in
the number of consumers. We note that, with some characteristic
functions, such as the one we introduced in equation (7), the max-
imal and minimal elements of each MCi

s can be found in constant
time. Based on this observation, we approximate the average of
each MCi

s as the mid-range of its maximal and minimal elements.
This way, the worst-case error (i.e., the distance between the ap-
proximated and the actual value) can also be quantified. Setting the
complexity of computing v(C) aside, this approximation requires
a number of operations linear in the number of consumers.

Once the algorithm has computed the initial approximation, and
has established the tight bound, it iteratively improves both the ap-
proximation and the bound until it reaches the actual Shapley value
of the consumer. This is done as follows. In each iteration, the al-
gorithm selects what we call a branching agent, and divides MCi

s

into two subsets: those elements whose corresponding coalitions
contain the branching agent, and those whose corresponding coali-
tions do not contain it. Then, for each one of these two subsets, the
algorithm finds the maximal and minimal elements, and uses them
to approximate the average value in that subset in the same way

Algorithm No. MC Avg. Error % Confidence

AgentSwitch 1200 0.4% 100%
Castro [2] 2950 0.4% 75%

Liben-Nowell [7] 25× 15000 0.4% 75%
Optimal 25× 224 0 100%

Table 2: Comparison of our algorithm and the state-of-the-art,
for 25 randomly chosen consumers from a pool of 3000 UK
homes.

that it would initially do with MCi. If more time is available, the
algorithm divides each one of the two parts of MCi

s further based
on yet another branching agent, and so on and so forth. By continu-
ing this process, the algorithm reaches a state whereMCi has been
divided into 2n−1 subsets. In this case, the approximated average
of each subset would be equal to its actual average.

Table 2 shows a comparison of the performance of our algorithm,
and two state-of-the-art algorithms. As the expected cost function
mentioned above happens to be supermodular, one of the two algo-
rithms that we benchmark against is the polynomial sampling algo-
rithm proposed by Liben-Nowell et al. [7] for supermodular games.
For the sake of also including the exact Shapley value, which has
an exponential time complexity, we have considered 25 randomly
chosen consumers from a pool of 3000 UK homes. As can be seen,
the total number of marginal contributions that our algorithm re-
quires to approximate the Shapley value of all the 25 consumers
with an average error of 0.4% is a significantly small number com-
pared to the 25 × 224 optimal. The next best approximation is
Castro et al.’s [2], which requires to evaluate 145% more marginal
contributions than our algorithm to approximate with the same pre-
cision. Whereas our algorithm does so with 100% confidence on
the reported error, Castro et al.’s and Liben-Nowell et al.’s confi-
dences are 75%, which can only be improved with more samples
(i.e., more computation).

In separate tests, given the linear complexity of our algorithm
and considering 3000 homes in the grand coaltion, our algorithm
took an average of 4 seconds to compute the Shapley value of a
home. Given these values, it is then possible to specify a tariff for
every customer, along with possible penalties for deviating from
the expected consumption.

We next address the issue of making the most of a given (time-
of-use, real-time, or group) tariff by finding out which loads can
be deferred to off-peak times given only an aggregate measure of
power readings from homes.

5. APPLIANCE DISAGGREGATION
Previous work has shown that household electricity data can be
disaggregated into individual appliances, therefore enabling sug-
gestions for optimising a household’s energy efficiency to be pro-
vided to a household’s occupants [14]. The aim of such feedback
is to provide well-defined actionable suggestions (e.g., shift your
five washing machine loads or two dishwasher loads to off-peak
times) with clear savings rather than leave it to consumers to decide
which appliances they should shift to make any significant savings
[3]. However, disaggregating appliances from a household’s elec-
tricity consumption in the context of AgentSwitch is a challenging
problem for the following three reasons. First, the data sampling
rate of once every 5 minutes (as obtained from off-the-shelf me-
ters) is less frequent than that required by similar hidden Markov
model (HMM) based approaches [5, 14]. Second, the data avail-
able to AgentSwitch represents the average power demand over the



sampling interval, as opposed to the instantaneous power demand,
therefore blurring the changes in the observed power demand when
an appliance turns on or off. Third, the number and type of appli-
ances within each household are not known. As a result, the meth-
ods proposed in previous literature are not applicable, and instead
a new approach is required.

Thus, AgentSwitch focuses on the identification of appliances
which both consume a large amount of energy and can be deferred
to another time of day with minimal inconvenience to the house-
hold occupants. Three common examples of such deferrable ap-
pliances are the washing machine, clothes dryer and dishwasher,
and we shall refer to the use of such appliances as deferrable loads.
Since each deferrable load has a high energy consumption, they
have the advantage that they can be disaggregated from the remain-
der of a household’s energy consumption, despite the low data sam-
pling rate. Given this, we first construct appliance models from
individually metered appliances from houses other than those in
which disaggregation will be performed, which we refer to as the
training phase. Second, the appliance models are used to identify
appliance signatures within the aggregate electricity data, which we
refer to as the disaggregation phase. The training phase consists
of operation detection, followed by feature extraction and model
construction, while the disaggregation phase consists of operation
detection, followed by feature extraction and operation classifica-
tion (i.e., identifying the appliance run). The following sections
describe each of these processes.

5.1 Operation Detection
The aim of operation detection is to identify pairs of switch events
from raw power data, potentially corresponding to an appliance
turning on, followed by the same appliance turning off. A switch
event, en, is defined by an increase or decrease in the raw power, p,
within a range of values defined by the appliance model: pmin <
|pt − pt−1| < pmax.

Possible appliance operations are then identified as positive switch
events, estart, followed by a negative switch event, eend, sepa-
rated by a duration within a range defined by the appliance model:
dmin < teend − testart < dmax.

5.2 Feature Extraction
A number of features are then extracted from the detected oper-
ations. In the training phase, these features are used to build the
appliance models, while in the disaggregation phase, these features
are used to determine how well a detected operation matches an ap-
pliance model. We extract the following seven features from each
operation: on power, off power, duration, power range, ratio of
high to low power readings, minimum energy and number of peaks
in power demand. We refer to these features as x1, . . . , x7, respec-
tively.

5.3 Model Construction
In the training phase, we construct models of each deferrable appli-
ance by fitting known distributions to the output of the feature ex-
traction module by maximum likelihood. We use a two-dimensional
Gaussian probability density function (PDF) for the on and off
power, since these features are interdependent, and we use a single-
dimensional Gaussian PDF for the appliance duration, power range
and ratio of high to low power readings. In addition, we use a
single-dimensional Gaussian cumulative density function (CDF)
for the minimum energy feature, to provide a smooth lower bound.
Last, we use a switch function to match the number of peaks in the
power demand. We denote the parameters of these six functions
as θ = {θ1, . . . , θ6}, respectively. In addition, we also extract

boundary values for the appliances’ power, pmin and pmax, and
the appliances’ duration, dmin and dmax.

5.4 Operation Classification
In the disaggregation phase, to determine whether a potential appli-
ance operation is a deferrable load, we define a likelihood function
which describes the similarity between a potential appliance oper-
ation and the previously learned appliance model. The likelihood
function is defined by:

L(estart, eend;θ) =f(x1, x2; θ1)f(x3; θ2)f(x4; θ3)

f(x5; θ4)F (x6; θ5)g(x7; θ6) (8)

where the function f represents the PDF of a Gaussian distribution
parameterised by θ, the function F represents the CDF of a Gaus-
sian distribution parameterised by θ and g represents a function
which returns 1 if x7 is equal to the number of peaks in the model
and 0 otherwise.

The likelihood of an operation is compared to a likelihood thresh-
old, L, to determine its classification as a deferrable load: L(estart,
eend;θ) > L. The likelihood threshold was optimised using sub-
metered training data from houses other than those in which the
disaggregation is being performed.

5.5 Evaluating Load Disaggregation
In order to test the accuracy of the AgentSwitch disaggregation al-
gorithm, we required a data set for which each appliance’s power
demand is known, since the homes we monitored (as detailed in
Sections 3 and 4) did not have appliance level monitoring and hence
cannot be used for this test. Instead, the Reference Energy Disag-
gregation Dataset (REDD) [6] is such a data set, in which both
the household aggregate and individual appliance power demands
were monitored. We selected three houses which contained a dish-
washer, and downsampled the data to 5 minute average power read-
ings to mimic the UK homes we monitored.

We benchmarked the AgentSwitch approach against a state-of-
the-art HMM-based approach [14]. Such approaches predominantly
use step changes in power demand and state durations as their pri-
mary features. In addition, they represent appliances using state
transition models, which describe the probability of a transition
from one state (e.g., on) to another state (e.g., off) given the ob-
served power readings.

We compare the accuracy of the AgentSwitch and HMM-based
approaches using three metrics: precision, recall and F-score. These
metrics respectively represent the fraction of detections which were
actually loads, the fraction of loads which were detected and a
weighted average of the two.

The detection accuracy of the AgentSwitch and the HMM-based
approaches using the REDD data set are shown in Table 3. It can be
seen that the AgentSwitch approach outperforms the HMM-based
approach. This is due to the nature of the low-granularity average
power readings, which mimics the granularity of UK smart meter
data. Consequently, instantaneous increases in the power demand
caused by an appliance turning on or off are blurred across consec-
utive readings due to the averaging. The HMM-based approach is
not robust to such blurring, and consequently suffers a loss in ac-
curacy. Conversely, the AgentSwitch approach utilises additional
features even when the on and off event signatures are blurred, and
as a result is robust to such effects.

So far, we have considered homes in isolation and how to pro-
vide feedback to consumers in order to help them maximise their
savings given a time-of-use electricity tariff. In our test homes, the
savings from deferring the identified loads were not major (limited
to less than £50 a year) due to low usage of deferrable appliances at



Table 3: Accuracy metrics of dishwasher detection
Approach Precision Recall F-score

AgentSwitch 0.687 0.600 0.596
HMM 0.568 0.438 0.456

peak times electricity. For higher usage levels at peak times (e.g.,
large families or flats) and as energy prices rise and more complex
time-of-use pricing (e.g., real-time or critical peak pricing) are put
in place to combat peaks in demand, we expect such savings to in-
crease substantially. A key step, however, to achieve these savings
is to ensure consumers can understand and trust the recommenda-
tions provided by AgentSwitch. To support mechanisms and inter-
faces to do so, we next introduce our provenance-tracking service.

6. PROVENANCE IN AGENTSWITCH
In order to ensure consumers understand and build confidence in
the suggestions given by AgentSwitch, it is important to provide
them with a means to track the flow of data and decisions made
throughout the system. For example, using such traces, users (or
other services acting on their behalf) may be able to identify faulty
sensors, incorrect assumptions about yearly consumption, or justify
changes to daily routine to make significant savings.

As shown in the previous sections (see Figure 1) various types
of data come in/out of AgentSwitch modules and get consumed
or transformed at the same time (e.g., electricity consumption data
from a third-party provider, post code from user input, tariffs from
uswitch.com). Therefore, the quality of recommendations given
by AgentSwitch depends on the quality of data it receives from the
different sources and the performance of its individual components.
As recommendations from AgentSwitch might potentially lead to
financial gains or losses, it is crucial to be able to identify the origin
of error once a recommendation is deemed to be inaccurate. This,
however, is challenging due to the multiple paths of (data) depen-
dencies inherent to such a complex system.

In order to address this issue, the chains of dependencies that
lead to a recommendation, i.e., its provenance,9, were fully tracked
in AgentSwitch. Such information enables a systematic approach
to pinpointing the sources or agents responsible for the errors and
to auditing the data produced within the system. In more detail,
the integration of provenance tracking in AgentSwitch is described
in Section 6.1. Section 6.2 then demonstrates various use cases of
provenance in the application.

6.1 Tracking provenance
Provenance in AgentSwitch was modelled using the PROV Data
Model (PROV-DM) [9] being standardised at the World Wide Web
Consortium. In this model, the three main types of element are:
entity — a physical or digital thing (e.g., a piece of data), activ-
ity — something that occurs and generates or changes entities, and
agent — something that bears some form of responsibility for an ac-
tivity. In addition to these elements, various kinds of relationships
between entities, activities, and agents can be captured in PROV-
DM (see [9] for more details). Figure 4, shows a visual represen-
tation of the provenance tracked in a disaggregation API call (to
the load detection module described in Section 5). It shows that the
API response APIResponseDisaggregation_1 was derived
from the disaggregation result (DisaggregationResult_1),
9Provenance is defined as a record that describes the people, insti-
tutions, entities, and activities involved in producing, influencing,
or delivering a piece of data [9].
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used

wasStartedBy
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Figure 4: Provenance graph captured from a disaggregation
API call to AgentSwitch. Boxes are activities that took place,
pentagons the agents controlling them, and ovals the data enti-
ties consumed/produced.
which was attributed to a script in Matlab (as:Disaggregator).
The activity as:LoadDisaggregation_1, in turn, used the
electricity consumption data HistoryConsumption_1 from an
Energy DB (as:EnergyDB) to produce the disaggregation result.

Provenance tracking was integrated independently into each in-
dividual component of AgentSwitch. When a component passes its
result to the next, the captured provenance also accompanies the
data, such as from the AgentSwitch API to the web front-end. By
so doing, the provenance graph for a recommendation evolves at
each individual component, and the complete provenance is even-
tually made available to the web front-end for further use.

6.2 Exploiting provenance
Having had the provenance of activities in AgentSwitch captured,
it was possible for the application to inform end users about its
underlining processes in a number of ways:

• Responsibility management: In a similiar vein to [8], the
responsibilities of contributing agents in a recommendation
can be queried from its provenance. An example of which
is presented in Figure 5, where parts of the load shifting ad-
vice are tagged with colour labels indicating the main mod-
ules responsible for the respective data. For instance, the
AgentSwitch API ( A ) produced the cost calculation while
the load disaggregation service ( D ) provided the appliance
usage information in the screen-shot. We can also show that
the costs were calculated from the selected tariff and the ap-
pliance usage information.10

• Uncertainty management: In addition to the dependencies
between data entities, the provenance was tracked for meta-
data about those entities, such as the time span of consump-
tion data, the uncertainty of annual consumption predictions
(Section 3) and load disaggregation results (Section 5). Those
uncertainty metrics can be propagated and combined in prove-
nance graphs all the way to the final recommendation, al-
lowing the estimation of its confidence level, which is then

10In this respect, a user interface for drilling down provenance
graphs that offers an information representation suitable to end
users is left as future work.



What can I do?
Save by shifting loads. Shift the use of your washing machine, dish washer or
tumble dryer from day time to night time. We predict that the yearly use of these kinds of
appliances (794 kWh) accounts for 12% of your overall electricity consumption D . From
your profile, we have detected you typically use those kinds of appliances at least 41 times per
month D . How it works

Inspecting the times when you typically use those appliances, we predict their use would cost you
at least £ 84 per year A  on the selected tariff. It appears that 98% of the time D  you would
use these appliances during the day rate hours of the selected tariff. As a result, you would spend
at least £ 83 for day time use A , and £ 1 for night time use A  of your washing machine,
dish washer, and tumble dryer.

Figure 5: The screen-shot of a recommendation with colour
tags (i.e. A and D ) generated from tracked provenance indi-
cating the agents that were mainly responsible for the various
pieces of data shown.

presented to the user. This may help end users understand
the risks associated with a recommendation and, as a result,
adjust their decisions accordingly11.

Beside the above benefits to end users, the captured provenance
also showed us visually how AgentSwitch actually works, similar
to a debug logging system to software developers. It allows the
identification of the flow of executions in the system, the points
where individual components interface with one another, as well as
to manage data dependencies. In fact, provenance graphs produced
by early versions of AgentSwitch had revealed inefficient code by
showing duplicate (thus redundant) API calls, prompting us to im-
prove the system.

7. CONCLUSIONS
In this paper we presented the core modules of AgentSwitch, an
agent-based platform to enable smart energy tariff selection for do-
mestic energy consumers. We focused on the key advances to the
state of the art that the development of modules for AgentSwitch
have brought about, including novel extensions to BQ, a novel al-
gorithm for NIALM, and scalable algorithms to compute the Shap-
ley value for energy purchasing collectives. Moreover, we showed
how these modules can be packaged into an accountable informa-
tion infrastructure underpinned by a novel provenance tracking ser-
vice that allows users to track the flow of their data through indi-
vidual modules and third-parties. While a working prototype of
AgentSwitch, using live data from homes, has been completed12,
future work will look at integrating other sensor data (weather, con-
sumer preferences) into the prediction and group buying algorithms
in order to improve accuracy and the resulting savings.
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