
Robust Execution of Service Workflows Using
Redundancy and Advance Reservations

Sebastian Stein, Terry R. Payne, and Nicholas R. Jennings, Fellow, IEEE

Abstract—In this paper, we develop a novel algorithm that allows service consumers to execute business processes (or workflows) of

interdependent services in a dependable manner within tight time-constraints. In particular, we consider large interorganizational

service-oriented systems, where services are offered by external organizations that demand financial remuneration and where their

use has to be negotiated in advance using explicit service-level agreements (as is common in Grids and cloud computing). Here,

different providers often offer the same type of service at varying levels of quality and price. Furthermore, some providers may be less

trustworthy than others, possibly failing to meet their agreements. To control this unreliability and ensure end-to-end dependability

while maximizing the profit obtained from completing a business process, our algorithm automatically selects the most suitable

providers. Moreover, unlike existing work, it reasons about the dependability properties of a workflow, and it controls these by using

service redundancy for critical tasks and by planning for contingencies. Finally, our algorithm reserves services for only parts of its

workflow at any time, in order to retain flexibility when failures occur. We show empirically that our algorithm consistently outperforms

existing approaches, achieving up to a 35-fold increase in profit and successfully completing most workflows, even when the majority

of providers fail.

Index Terms—Business process dependability, managing and adaptively controlling end-to-end dependability properties, managing,

establishing, and assessing interorganizational trust relationships.

Ç

1 INTRODUCTION

LARGE-SCALE and open, distributed systems, including the
web, peer-to-peer systems, and computational Grids,

enable participants to share resources and services with
each other across organizational boundaries (e.g., complex
data-processing services running on expensive hardware or
traditional business services that are accessed through
software interfaces). To facilitate such interorganizational
interactions, service-oriented computing is emerging as a
popular approach for allowing consumers to dynamically
procure services for complex business processes (or work-
flows). These workflows usually consist of multiple inter-
dependent tasks, each of which can be completed by a
number of competing providers that offer the same type of
service at different levels of quality and price. In this
context, it is increasingly common for service consumers
and providers to agree on explicit service-level agreements
(SLAs), which state the price and performance character-
istics of a service (e.g., using WS-Agreement [1]). Employ-
ing such agreements, consumers are able to reserve services
in advance to ensure they are available when needed, while
providers can better schedule their resources [2].

Despite the existence of these advance reservation
mechanisms, executing workflows in a robust, dependable

manner in distributed systems is still an open challenge. In
particular, participants in these systems are typically
autonomous, self-interested agents that act according to
their own decision-making mechanisms [3]. In more detail,
in the interorganizational settings we consider, services are
provided by distinct companies that will have very different,
sometimes conflicting aims to the consumer. This means
that their behavior is inherently uncertain—they may
decommit from SLAs if they receive a better offer or wish
to serve a more valued customer (possibly paying a penalty),
and some may even default completely, perhaps to damage
a competitor. This unreliability makes it vital to explicitly
consider trust relationships with potential providers.

Unintentional failures further exacerbate this unrelia-
bility, as machines may crash due to hardware problems or
malicious attacks. Whether intentional or not, a single
failure can have a highly detrimental knock-on effect on
other services that have already been reserved for future
time slots, but which require the output of the failed
service to proceed. Furthermore, service availability can
change over time, resulting in the disappearance of some
providers, but also offering opportunities as better provi-
ders enter the system. Hence, we believe that such
uncertainty and dynamism must be considered, especially
when a workflow has an intrinsic value and when it needs
to be completed in a timely manner.

In this paper, we extend the state of the art in service
selection by proposing a novel strategy that uses decision
theory as a principled approach for reasoning about service
uncertainty and taking actions to maximize the consumer’s
expected utility (i.e., profit). In particular, we build on our
previous work on selecting multiple providers in parallel to
mitigate their unreliability [4], but significantly extend it to
cover dynamic environments where service availability
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changes over time and where services are reserved in
advance using explicit service-level agreements. To address
these environments, our strategy reserves only part of a
workflow at a given time (e.g., it may reserve services only
for immediately executable tasks to retain high flexibility, or
it may identify and reserve services for a number of highly
critical tasks, if advance reservations are generally more
reliable). It also constructs contingency plans where out-
comes are uncertain (to predict the impact of failures and
the cost of recovering from them) and refines initial high-
level decisions at runtime to incorporate new information
about the performance and availability of services (e.g.,
when a highly reliable service fails, it will reserve a new
service immediately and adjust its strategies for later tasks
in the workflow to get back on schedule).

By conducting a thorough empirical evaluation, we
show that existing approaches are unsuitable for highly
dynamic and uncertain environments, and we demonstrate
that our proposed strategy outperforms the state of the art
in most environments when services are unreliable (and
also achieves good results when services never fail). In our
experiments, we show that these trends hold over a range
of environments, including where providers fail mali-
ciously (i.e., do not pay compensation). In highly uncertain
environments, we show that our strategy completes
86.1 percent of all workflows within its deadline, compared
to only 1.6 percent achieved by current approaches
(resulting in a 35-fold improvement in average utility).

The remainder of this paper is organized as follows: In
Section 2, we begin by giving an overview of related work.
Then, in Section 3, we formalize our system model, and,
in Section 4, we outline our workflow execution strategy.
In Section 5, we evaluate this and finally conclude in
Section 6. In a separate online Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSC.2010.47, we
show how our algorithm is applied to a real workflow.

2 RELATED WORK

There is already some existing research that focusses on
building more robust and dependable service-oriented
systems. Here, a number of approaches use redundancy
or replication on the provider’s side to create fault-tolerant
services [5], [6], but such work is typically ad hoc in nature
and requires a considerable investment on the part of the
provider. Other efforts rely on a certain level of cooperation
between the consumers and providers, targeting mostly
unintentional failures that arise due to infrastructure
problems. This includes the WS-Reliability specification,
which allows service consumers and providers to commu-
nicate over potentially unreliable transport networks [7].
Furthermore, much work has focused on developing
transactional workflows, which are based on earlier work
in database technologies and seek to ensure that the
execution of a workflow results in a consistent outcome,
even if some of the constituent tasks fail [8], [9]. This is
achieved using specifications such as WS-Transaction,
which allows service consumers to roll back service
operations if later parts of the workflow fail. While such
techniques may reduce the risk for the consumer, they rely
on the cooperation of the service providers, and they are
limited to settings where the cost of rolling back a service is

minimal. This is unrealistic in scenarios such as cloud or
Grid computing, where a service consumes valuable
resources that cannot be recovered retrospectively.

As cooperative approaches cannot address intentional
failures, other work uses game theory to analyze when
providers may have incentives to fail deliberately or to lie
about their capabilities [10], [11]. These approaches model
providers as rational self-interested agents that act to
maximize their utility. With such a model, it is then possible
to design mechanisms that incentivize the providers to act
in a certain manner—for example, to give accurate
estimates about their completion probability [10]. However,
these techniques have some drawbacks. First, it is difficult
to accurately model the preferences of providers in such
open and heterogeneous systems as we consider here. More
specifically, some providers may purely aim to maximize
profits, others are concerned about their long-term reputa-
tion with consumers, and some may act irrationally, e.g.,
due to bugs in their scheduling routines or because they use
heuristic algorithms. Second, the interaction mechanisms
between consumers and providers are often well-estab-
lished and the consumer is not at liberty to change them.
Instead, it must take the best course of action, given these
mechanisms. For these reasons, it is more appropriate to
use a decision-theoretic approach here, which models the
behavior of providers probabilistically and can help the
consumer choose the best course of action [12].

Now, some work already considers potential strategies
that a service consumer can employ to deal with unreliable
and highly heterogeneous providers. This usually focusses
on service selection strategies that assign providers to
workflow tasks based on nonfunctional properties, such as
reliability, cost, and speed. These are closest to our work and
therefore our empirical comparison in Section 5 will use
them as benchmarks. In more detail, some work uses local
constraints or simple preferential orderings to select a
service for a given task [13], [14], e.g., to select the most
reliable or fastest service, but consequently makes myopic
decisions without considering their impact on the overall
workflow. This can lead to overspending and missed
deadlines, especially when services fail frequently. To some
extent, this myopia can be addressed by reserving services in
advance to maximize an overall aggregated quality-of-
service measure, subject to constraints (e.g., a deadline or
budget constraint). Typically, this measure is a weighted
sum of various qualities, such as the overall reliability,
duration, and cost of the workflow [13], [15]. A similar
approach is taken in [16], which proposes a decision-
theoretic measure to guide the reservation decisions. While
these approaches consider service uncertainty by including
qualities such as the reliability and availability of services,
they tend to be vulnerable to failures. As they reserve only a
single service for each task, one failure may result in the loss
of the complete workflow or require time-consuming
replanning. Finally, reserving all services in advance is
risky, as the consumer may lose its reservation costs if some
tasks fail.

In the following, we will build closely on existing models

to describe our problem more formally. We will also return

to some of the key service selection approaches mentioned

here for our empirical evaluation.
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3 SERVICE-ORIENTED SYSTEM MODEL

To allow us to devise a generic and principled approach, we
base our work on an abstract system model, rather than any
particular service standard or implementation. To this end,
our model builds closely on previous work in the area [13],
[16], [4]. In the following, we first describe the types of
workflows we consider (Section 3.1), then detail the
reservation process (Section 3.2) and finally discuss how
services are invoked (Section 3.3).

3.1 Workflows

In this paper, we are interested in the execution of a single
workflow, which is selected by the service consuming agent
at time t ¼ 0 (we assume that time passes in discrete integer
time steps). This workflow is an abstract description of the
types of services that are needed to fulfil some high-level
goal, as well as appropriate ordering constraints. In
practice, it may be constructed by a human user, selected
from a workflow library or even synthesized by an
automatic planner.

Formally, we define a workflow as a tuple,W¼ðT;E; �; uÞ,
where T ¼ ft1; t2; t3; . . . ; tng is a set of n tasks and E : T $ T
is a set of precedence constraints—a strict partial order over
T , where ðt1 7! t2Þ 2 E means that task t1 must be
completed before starting t2. The function � : T ! T maps
each task in T to an abstract service type, where T ¼ fT1; T2;
T3; . . .g is the set of all service types. Finally, u : ZZþ0 ! IR
describes the reward of completing the workflow at a given
point in time t. This represents the value that the agent (or
its owner) attaches to the workflow and may, in practice, be
the expected financial gain of completing the workflow, or
simply a private utility value [12]. It is defined by a
maximum reward, umax, a deadline, tmax, and a cumulative
penalty for late completion, �:

uðtÞ ¼
umax; if t � tmax;
umax � �ðt� tmaxÞ; if t > tmax ^ t < tmax þ umax

� ;
0; if t � tmax þ umax

� :

8<
:

We treat a workflow as completed when all tasks in T
have been executed successfully in the order prescribed by
E. The overall profit of a workflow execution is the
difference between the reward (or 0 if W is still not
completed at time tzero ¼ dtmax þ umax=�e) and the total cost
it has incurred by reserving and invoking services.

This formalization of a workflow is sufficiently generic to
apply in a wide range of settings. We note, however, that
we have omitted some characteristics that may occur in
concrete applications. In particular, tasks may need to be
completed with a certain level of quality, the nature of which
depends on the problem domain. For example, a video
rendering task may require a minimum output resolution or
frame-rate, or an optimization task might have to be solved
within a given bound of the optimal. We note that this
could be included in our model by attaching appropriate
quality constraints to each task and then selecting only
those services that meet these (as discussed in the following
section). Other more complex models can be derived by
making u conditional on the actual quality that is achieved.
However, we leave this to future work, instead focussing
here on a more general, domain-independent problem. For

the same reason, we also omit the possibility that services
expose transactional operations, as described in Section 2.

3.2 Service Reservation

To complete its workflow, the consumer needs to discover
and reserve suitable services for each task in the workflow.
We have adopted the contract-net protocol to model this
process, as it is simple and has been widely used in
distributed systems [17]. However, our approach does not
depend on this particular protocol—the consumer could
similarly contact a central UDDI registry, where providers
deposit potential SLAs, or it could use the WS-Discovery
protocol to locate services and then engage in a bilateral
negotiation to elicit SLAs for different time slots. It may
even combine different approaches, e.g., relying on the
contract-net protocol to secure advance reservations, but
invoking other services on demand using standard web
service protocols.

To formalize this process in our model, the consumer
may send a call for proposals, ’ : T � ZZþ0 , to the service
market to request a particular service type at a given time
step. For example, ’ ¼ ðT1; 2Þ indicates that the consumer
requires service type T1 to start at t ¼ 2. In response to each
call, the market returns a set of offers, O’. These are potential
service-level agreements that the service providers partici-
pating in the system are willing to offer to the consumer.
Each offer o 2 O’ contains a number of terms, as given in
Table 1. Most of these terms apply universally to a wide
range of service types that are found in practice, including
the service cost, invocation time, and duration. For more
specific nonfunctional parameters, we use a generic quality-
of-service vector, qðoÞ, which may include other parameters
of interest to the consumer, including, for example,
the output picture quality of an image rendering service
or the optimality guarantees of a scheduling service. As
discussed above, however, in order to retain a domain-
independent model, these are not used further in this paper
other than to restrict the choice of suitable offers.

Now, the process of requesting services and receiving
responses may be repeated arbitrarily often during a given
time step, but we assume that the offers returned for two
requests with the same service types and times are always
identical. Furthermore, we assume that the consumer has
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some information about the probabilities of the possible
outcomes of each offer, as shown in Table 2. Together, these
probabilities describe all possible, mutually exclusive out-
comes of an offer, such that PfðoÞ þ PdðoÞ þ PsðoÞ ¼ 1. To
retain a simple, generic model, and in line with existing
work, we assume that the outcomes of any two offers are
independent.

During the same time step, the consumer may reserve
any number of these offers for the tasks of its workflow. To
do this, it sends a single acknowledgment to the market,
which maps offers to the corresponding tasks of the
workflow. At this point, the consumer pays the appropriate
reservation costs, and all other offers are assumed to be
rejected. Importantly, the consumer may reserve several
offers for a single task, in order to increase its overall
success probability.

Now, this model makes a number of important assump-
tions that need to be justified. First, we assumed that
outcome probabilities of different service offers are inde-
pendent. We believe this typically holds, because services
are executed on physically separate machines, will likely
use different implementations, and do not directly interfere
with each other. However, we recognize that correlated
failures can occur, e.g., when several providers rely on a
third-party service that fails, or when an infrastructure
failure disrupts a large part of the network. At the simplest
level, such correlation could be modeled through external
events that happen with a certain probability. Alternatively,
the consumer could derive complex joint probability
distributions to express correlations between service out-
comes. Both options represent realistic and feasible exten-
sions to our model, but for reasons of space, we leave this to
future work.

Our second assumption is that the outcome probabilities
are known. While the consumer may have interacted with
some providers in the past and thereby built up statistical
distributions about their behavior, it is not realistic to
assume this is available for all providers. This might be
because interactions are too costly or because the popula-
tion of providers changes frequently. Furthermore, provi-
ders might try to strategically exploit the consumer’s
perception of its success probability, possibly fulfilling a
number of low-value offers before defaulting on a particu-
larly critical and expensive service. However, we note that
there is a growing body of work in the area of trust and
reputation that deals with this problem [18]. Techniques
from that field can be used to aggregate and exchange

experience from many consumers using reputation me-
chanisms, newcomers can be modeled using Bayesian
priors, which are updated as more information becomes
available [19], and changes in behavior trends can be
detected using heuristic exploration strategies [20]. As these
issues are being addressed separately, we do not consider
them directly in our work.

3.3 Service Invocation

During each time step, the consumer may also invoke the
offers reserved for that step, provided that all relevant
precedence constraints given by E have been satisfied. The
outcome of the invocation is one of those listed in Table 2.
More specifically, if the service is successful, we assume that
the result is sent back to the consumer at the beginning of
the time step at which the service was scheduled to end (i.e.,
at time t ¼ tðoÞ þ dðoÞ). To limit the scope of this paper, we
assume the result is correct or that it can be easily verified.1

If the provider does not return a correct result at this time
and within the specification of the original offer o, it means
that it has failed to honour the service-level agreement and
must immediately pay the agreed penalty. If no payment is
made, it is assumed that the service provider has defected. In
summary, the consumer only discovers the outcome of a
given invocation at the beginning of time step
t ¼ tðoÞ þ dðoÞ, by which a successful result will have been
received (success), a penalty will have been paid (failure), or
nothing is received from the provider (defection).

4 FLEXIBLE WORKFLOW EXECUTION

In this section, we detail our workflow execution strategy.
We begin in Section 4.1 with a brief overview, which is then
elaborated upon in Sections 4.2 to 4.6.

4.1 Strategy Overview

As outlined in Section 1, we are interested in building a
rational agent that acts to maximize its expected utility. For
the purpose of this paper, we assume that the agent is risk-
neutral and therefore that the utility it gains from executing
a workflow is equal to the profit it makes.

Hence, we want our agent to adopt a strategy (an
appropriate mapping from observed system states to
actions) that maximizes the expected difference between
the reward and cost of following it. Formally, given a
workflow W and some probabilistic beliefs about the
behavior of the market, we want to find strategy ��,
defined as �� ¼ argmax� EðRð�Þ � Cð�ÞÞ, where Rð�Þ
and Cð�Þ are random variables describing the final reward
and cost, respectively, when using strategy � and Eð�Þ is the
expectation operator.

However, finding �� is intractable for the same reasons
as described in [4]. First, selecting service providers for the
tasks of the workflows we consider is a combinatorial, NP-
hard problem, even when all offers are known in advance
and service behavior is deterministic. Second, calculating
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1. We note that many computational problems that are difficult to solve
can be verified easily, e.g., those in NP. When this is not the case, our
approach, as described in Section 4, is inherently well-suited to deal with
more general Byzantine faults, because it employs redundancy and can
therefore use voting techniques to discard erroneous results. However, we
leave this for future work.



the probability distribution for the duration of a workflow
with uncertain task durations is known to be #P -complete
and this makes it difficult to calculate EðRð�ÞÞ [21]. Finally,
encoding a potential strategy is far from trivial due to the
potentially huge decision space. For these reasons, we adopt
a heuristic approach in our work, which allows us to find
good solutions in a reasonable amount of time. More
specifically, we use local search techniques to find a
strategy that maximizes the expected profit, we rely on fast
approximations where analytical solutions are too costly,
and we search a subset of potential strategies that consider
only a limited number of contingencies.

In the remainder of this section, we first discuss the types
of high-level reservation decisions and contingency plans we
consider for each workflow task (Section 4.2). Then, we
describe how these are used to estimate the overall utility
(Section 4.3) and how task strategies are selected (Section 4.4).
In Section 4.5, we discuss how the utility estimates are
revised at runtime, and in Section 4.6, we summarize the
consumer’s behavior.

4.2 High-Level Task Strategies

In general, it is inefficient for a consumer agent to reserve
services for all workflow tasks in advance. Doing so would
restrict the agent unnecessarily, as it must commit to
particular services and execution times, and is therefore
inflexible when services fail. On the other hand, some
providers may offer better service terms when reserved in
advance, and the consumer should decide automatically
whether it is appropriate to trade off a higher quality with
decreased flexibility. To this end, our agent initially
considers simple high-level reservation strategies that deter-
mine when and how it intends to submit a call for proposals
for a given task, and how it will select from the returned
offers. In this section, we formalize these strategies and
discuss how they can be extended to express task strategies
with contingencies.

4.2.1 Task Library

High-level reservation strategies are available to the
consumer as a strategy library, l : T ! Pð�Þ, that maps
each service type to a set of strategies (� is the set of all
strategies). Each strategy ! 2 � is described by a number of
parameters, as shown in Table 3. The first two of these
prescribe how the consumer will formulate its call for
proposals, e.g., if tað!Þ ¼ 100 and twð!Þ ¼ 3, it will request
services 100 time steps in advance and for three consecutive
time steps. The latter two describe how it will select from
the returned offers. Here, we consider four selection
strategies for parameter #ð!Þ: fcost; unreliability;
end time; balancedg. The first three indicate that the

consumer will always choose the offers with, respectively,
the lowest expected cost (crðoÞ þ ceðoÞ � PfðoÞ�fðoÞ), the
lowest probability of not succeeding (1� PsðoÞ) or the
lowest end time (tðoÞ þ dðoÞ). The selection strategy
balanced will pick the offers that minimize a sum of these
parameters, each normalized to the interval ½0; 1�, so that 0
corresponds to the offer with the lowest parameter and 1 to
the highest. We denote by !null the strategy to do nothing
and stop the task.

Furthermore, we assume that the consumer has some
performance information about each of the strategies, which
it previously learned by observing the response of the
market to various calls for proposals. Specifically, we
assume that it has repeatedly submitted calls for proposals
corresponding to its known strategies to the market. Then,
using simple calculations,2 it has recorded a number of
statistical averages for the probabilities of various out-
comes, for the expected costs and for the durations
associated with the different reservation decisions (based
on its trust information and without necessarily reserving
and invoking any offers). This information is summarized
in Table 4. Here, � denotes the overall outcome of the
strategy, with � 2 fsuccess; unavailable; failedg (refer-
ring, respectively, to the events where at least one offer is
successful, where no suitable offers were found and where
some offers were invoked but failed). As with the outcome
probabilities of a given offer, we here assume that this
performance information is accurate. As discussed earlier,
we note that obtaining this is not trivial and that changes in
these statistics must be monitored carefully, e.g., when
market conditions change.

4.2.2 Planning for Contingencies

The simple reservation strategies discussed so far allow the
consumer agent to make some predictions about the likely
outcomes, the cost and duration for completing a task,
given that it adopts a certain strategy. However, assigning a
single strategy to each task is unlikely to be sufficient in
uncertain environments as the consumer needs some
capabilities to plan for contingencies and predict their
impact on the cost and feasibility of the workflow. Hence,
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TABLE 4
Average Performance Statistics When Following Strategy
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2. Example strategies and performance statistics can be found in the
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paper. Full details are in [22].



we decided to include several contingent strategies that the
consumer can fall back on.

These are shown in Fig. 1. Here, sp is the main strategy
for the task, but the consumer also has three other strategies
to employ if sp was unsuccessful:

. sl is used to reserve further offers when the
preceding tasks in the workflow have not been
completed by the time the initial offers are available
for invocation. In this case, the consumer will wait
until the preceding tasks have completed and then
follow sl.

. su is used when sp did not result in any reservations
at all (e.g., if no offers were made). In this case, the
agent waits until all preceding tasks have been
completed and adopts su.

. sf is adopted when the initial offers were invoked,
but did not complete successfully. It is carried out as
soon as the last offer completes unsuccessfully.

To further extend the number of strategies we consider,
we note that the consumer might continue to repeat certain
strategies until a task is completed (e.g., when the consumer
does not have a tight deadline, it may decide to select the
cheapest offer on the market, attempt it, and, in case of
failure, simply try another cheap offer until the task is
eventually completed). Hence, we extend the space of
possible strategies for sl, su, and sf by adding a repeated
strategy, !r for each ! 2 �. The statistics for a repeated
strategy !r can be directly derived from those for the
nonrepeated ! (see [22]).

Now, when the service consumer plans to reserve a
given task further in advance (indicated by a large taðspÞ), it
is often desirable for it to do so earlier in the workflow,
when some predecessors of the task may still be executing.
This means that the consumer will waste less time waiting
to invoke tasks after their predecessors have been com-
pleted, but it also increases the risk of conflicts with
preceding tasks if these take longer than expected (e.g., due
to failures or uncertainty about the offers that will be
available). To express the risk the agent is willing to take,
and to determine the time of making a reservation, we
attach a late probability, pml, to each task. This is the largest
acceptable probability when reserving services for task ti
that one of its predecessors will still not have been
completed successfully by the reserved time step ti. More
formally, the consumer will reserve task ti with primary
strategy sp at the earliest possible time step t where
ppðti; tþ taðspÞÞ � pml, and ppðti; xÞ is the probability that
at least one of the predecessors of ti has still not been
completed successfully at time step x. Expressing the
starting time of a task in such a way allows us to succinctly

express when to start reserving offers relative to other tasks
in the workflow.

Generally, as pml becomes smaller, the gap between the
starting time of ti and the end times of preceding tasks
becomes larger. This means that the consumer may take
longer to execute the workflow, but it also reduces the risk
of losing reserved services. To estimate this delay (denoted
ŵi), we examine the predecessors of ti and determine the
task during which reservation will take place so that the
above condition for pml is satisfied. To this end, we consider
the critical path3 to task ti. As described in [21], this is
defined as the longest path to the task considering the
complete duration of each preceding task (the sum of the
expected duration �ti and the waiting time ŵi). We then
proceed backwards along the critical path to identify the
task during which to reserve services for ti, as shown in
Algorithm 1. Here, the input C is a set of tasks on the critical
path to task ti. The functions d, w, and v map each task to its
respective duration, waiting time and variance (as w of a
given task is established by the algorithm, we run it
iteratively in topological order over the tasks).

Algorithm 1. Determining the reservation time.

1: procedure FINDRESERVATIONTIME ðC; d; w; v; pml; sp; tiÞ
2: if pml ¼ 0 _ Cj j ¼ 0 _ taðspÞ ¼ 0 then

3: return ðti; 0; taðspÞ; 0Þ . No advance reservation

4: dpre  0 . Total duration of tasks preceding ti
5: vpre  0 . Total variance of tasks preceding ti
6: t �1 . Reservation time

7: while C 6¼ ; ^ t < 0 do . Step backwards along C
8: tx  element of C that is nearest to ti
9: C  C n tx

10: dpre  dpre þ dðtxÞ
11: vpre  vpre þ vðtxÞ
12: t d��1

mpre;vpre
ð1� pmlÞe � taðspÞ

13: if t < 0 then . Earlier reservation needed

14: dpre  dpre þ wðtxÞ . Add waiting time
15: if t < 0 then

16: tx  none . Reserve immediately

17: t 0

18: p̂l  1� �mpre;vpre
ðtþ taðspÞÞ . New late probability

19: w 
R tþtaðspÞ
t �mpre;vpre

ðxÞðtþ taðspÞ � xÞdx
20: if t > 0 then

21: w wþ taðspÞ�mpre;vpre
ðtÞ . Early completion

22: return ðtx; t; w; p̂lÞ
The algorithm returns a tuple r ¼ ðtx; t; w; p̂lÞ : ððT [

fnonegÞ � IN� IR� ½0; 1�Þ. Here, tx is the task during which
services for ti should be reserved (or the special case none if
services should be reserved immediately) and t is the time
of making the reservation, relative to the starting time of
task tx (specifically, the first time step of any offers reserved
for tx). The returned value w is the expected amount of time
between the last completion time of any of the predecessors
of ti and the first time step for which ti was reserved—this
is effectively the expected time that the agent will waste due
to the advance reservation process. Finally, p̂l is a revised
late probability that is used by the consumer to update its
calculations for the task (p̂l � pml).
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Fig. 1. Task contingencies.

3. This is a common approximation for workflow durations [21], [4].



Briefly, the algorithm begins in line 2 by considering the
trivial case where pml ¼ 0, where the task has no prede-
cessors, or where the reservation strategy contains no
advance notice time. In these cases, the consumer will
always start reserving services only when the task itself
becomes available.

In all other cases, the algorithm will work backwards
from task ti along the critical path to find a suitable task tx
for commencing the reservation process. At each step, it
estimates the time it will take from that task until ti becomes
executable by using a normal distribution with mean and
variance equal to the sum of all duration means and
variances along the path so far. Using the late probability
pml, the algorithm then determines the earliest acceptable
reservation time, relative to the start time of tx (line 12). If
this is negative, it continues to consider further predecessors
of ti. If no suitable task is found in the set of predecessors,
the consumer will reserve services for the task immediately
(i.e., tx ¼ none, line 16). Finally, the algorithm calculates the
expected waiting time, considering both the case that the
predecessors finish after the reservations were made but
before ti is started (line 19) and that they finish before any
services for ti are reserved (line 21).

It is important to note that the algorithm presented here is
a heuristic approach for estimating the durations of tasks
and for determining appropriate reservation times. It relies

on several simplifying assumptions. Specifically, task dura-
tions are not independent of each other when the agent has
reserved offers in advance (i.e., when one task takes longer,

then this may have an impact on the duration of following
tasks). Furthermore, our treatment of task waiting times
simplifies the real problem, as they are not independent from

task durations and may also lead to a reduction in variance
along the workflow, which we ignore here. Finally, the
algorithm uses a normal distribution even when considering

a small number of tasks, and this can be inaccurate.
Despite this, we chose to adopt the algorithm to make

fast predictions about waiting and reservation times. As we

use an adaptive approach, these possibly inaccurate
estimates are continuously revised during execution and
eventually replaced by concrete offers (see Section 4.5).

Furthermore, our empirical experiments in Section 5 show
that our approach works well in practice.

To conclude, we note that, given a primary strategy, sp,
the contingency strategies, sl, sf , and su, as well as the late

probability, p̂l, it is easy to extend the statistics from Table 4
to the whole task by considering the possible outcomes of
Fig. 1 (full details are in [22]). In the following, we use these

to estimate the workflow utility.

4.3 Utility Estimation

As discussed in the previous sections, we can now calculate

a number of performance parameters for every task of the
workflow. More specifically, for each task ti, these include
an overall success probability, pi, an expected execution

cost, cei, an expected reservation cost, cri, an expected
execution time, �ti, the variance of the execution time, vi, and
an estimated waiting time, ŵi. These allow us to estimate

the overall utility of the workflow in a similar manner as
done in previous work [4].

First, the overall success probability of the workflow, p, is

simply the product of all task success probabilities,

p ¼
Q

i2I pi, where I is the set of all task indices. Next, the

overall expected workflow cost, denoted ~c, can be estimated

by taking the sum of all task execution costs, each

multiplied by the probability that they are reached, and

all reservation costs, each multiplied by the probability that

they are paid for, i.e., ~c ¼
P

i2I ðcei

Q
j2Bi

pj þ cri

Q
j2BrðiÞ

pjÞ,
where Bi is the set of the indices of all tasks that precede ti,

and rðiÞ is a function that returns the index of the task

during which services for ti will be reserved, as given by tx
in Algorithm 1 (if tx ¼ none, we assume BrðxÞ ¼ ;).

We approximate the duration of the workflow again
using the critical path and a normal distribution. To this
end, we first attach a predicted completion time (di;end) and
variance (vi;end) to each task:

di;end ¼ ŵi þ �ti þ di;pre;

vi;end ¼ vi þ vi;pre;

di;pre ¼
0; if Bi ¼ ;;
maxj2Bi

dj;end; otherwise;

�

vi;pre ¼
0; if Bi ¼ ;;
vargmaxj2Bi dj;end

; otherwise:

(

Next, we estimate the overall workflow duration and
variance using the task that is expected to finish last:

�W ¼ dl;end;

vW ¼ vl;end;

where l ¼ arg max
i2I

di;end:

Given these, we estimate the final expected reward

conditional on overall success, denoted ~r, using the density

function dW of a normal distribution with mean �W and

variance vW to approximate the workflow duration, i.e.,

~r ¼
R1

0 dWðtÞ � uðtÞdt. This can be written in closed-form and

quickly calculated as in [4]. Finally, we combine the

parameters to derive an estimated workflow utility,

~u ¼ p � ~r� ~c. Next, we describe how we use this utility

estimation technique to find a good strategy.

4.4 Optimization Algorithm

As a brute-force approach is clearly not practical, we use a
local search algorithm to find a good overall strategy for the
workflow. More specifically, we adopt simulated annealing,
which is less prone to finding low-quality local optima than
other local search algorithms [23].

This is detailed in Algorithm 2 and starts with an initial
candidate solution, �, which is an assignment of high-level
strategies and maximum late probabilities for each work-
flow task, i.e., a tuple ðspi; sui; sfi; sli; pmliÞ for each ti (we will
formalize this further in Section 4.6). Given this, the
algorithm then repeatedly adds small random variations
to � (using the GENERATENEIGHBOR function in line 4,
which we will elaborate on shortly), accepting it as the new
candidate solution if it yields a higher utility than the
original (line 7), or, with a certain probability, if its utility is
less. As is common in simulated annealing, this probability
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depends on the utility difference, an initial temperature �, a
decay factor �, and the number of steps so far. The
algorithm terminates after nmax steps or if a better solution
has not been found after nfail consecutive attempts (this
applies only after the first nexp steps, to encourage
exploration initially).

Algorithm 2. Local Search Algorithm

1: procedure OPTIMIZEð�; nmax; nfail; nexp;�;�Þ
2: i; f  0

3: repeat

4: �0  GENERATENEIGHBORð�Þ
5: �~u PREDICTUTILITYð�0Þ �

PREDICTUTILITYð�Þ
6: if �~u > 0 then

7: �; f  �0; 0

8: else

9: x drawn uniformly at random from ½0; 1�
10: if x � e�~u=ð��iÞ

11: � �0

12: i; f  iþ 1; f þ 1

13: until i ¼ nmax _ ðf > nfail ^ i > nexpÞ
14: return �

For the neighbor generation in line 4, we first choose
uniformly at random4 whether to change the strategy
associated with a particular task or the structure of the
workflow. In the former case, we pick a random task ti and
randomly apply one of the following changes:

. All strategies (spi, sui, sfi, sli) and the late probability,
pmli, are reassigned randomly.

. A strategy, !, is picked and changed to !0 so that
exactly one of its parameters (tað!0Þ, twð!0Þ, nð!0Þ,
#ð!0Þ) is different from the original. This is done in
one of four ways: by increasing or decreasing the
parameter by a single step, or by randomly choosing
one of the remaining higher or lower values.

. A strategy, !, is picked and changed in one of three
ways: to a random !0, to its repeated or nonrepeated
equivalent, or to !null.

. The late probability, pmli, is changed to p0mli in one of
three ways: by randomly choosing a value from
ðpmli; 1Þ, from ð0; pmliÞ, or by setting p0mli ¼ 0.

When altering the workflow structure, we change the
precedence constraints E by either introducing or removing
temporary edges. This allows us to represent the fact that
the consumer may prefer to delay the reservation or
invocation of certain tasks until the outcome of other tasks
is known. For example, the consumer might decide to delay
a particularly expensive task until it knows the outcome of
another task that precedes it. Clearly, we pick only from
new edges that do not introduce cycles and we update
transitive dependencies.

In testing our optimization algorithm, we noticed that we
could consistently improve its performance by making
small adjustments, which are, for brevity, not shown in
Algorithm 2. First, we apply an additional penalty to
solutions that result in a negative expected utility, to
generate a new expected utility value, ~u0, as follows:

~u0 ¼
~u; if ~u > 0;
~u� �fail; if ~u � 0 ^ �W � tmax;
~u� �fail � �late; otherwise;

8<
:

where �fail ¼ ð1� pÞ � umax and �late ¼ ð�W=tmax � 1Þ � umax.
This encourages the algorithm to avoid a common local
maximum, where the consumer reserves only a few cheap
services with a low probability of success, thus incurring a
small overall loss. Second, we found that we could
generally decrease the time to find a solution by immedi-
ately reconsidering the same neighbor generation strategy
in line 4 if it resulted in a higher utility.

So far, we have discussed how the consumer can make
high-level decisions about reserving offers for its workflow.
In the next section, we describe how our mechanism is
extended to deal with new information as it becomes
available during execution.

4.5 Dynamic Adaptation

As we use a local search, our strategy is easily extended to
incorporate information at runtime and act on it if
necessary. For example, if reliable services suddenly fail,
the agent may need to reserve further offers for the task and
possibly even change its strategies for subsequent tasks, in
order to meet its deadline. Similarly, the agent may come
across new opportunities; for example, if it discovers a
particularly attractive offer on the market and is able to
immediately reserve it for a current task.

In this context, it is straightforward to incorporate new
information into our calculations. First, when the consumer
reserves services for a particular task (according to sp and at
the time determined by the procedure in Algorithm 1), we
use the actual performance statistics of each reserved offer
to immediately replace those for sp (the detailed calcula-
tions can be found in [22]). This gives us a more accurate
estimate of the probabilities of various outcomes, the late
probability, the completion time, and the cost for the task.
Similarly, as services fail, we remove them from their
respective tasks, and when reservation or invocation
payments are made, we remove them from the calculations
as sunk costs.

Next, we also refine the overall completion time of the task.

Specifically, we consider two cases: the preceding tasks finish

in time for at least one of the reserved offers to be invoked or

they finish too late for any offer to be invoked. In the former

case, we derive a probability distribution for the completion

time that assigns probabilities to the various end times of the

reserved offers and a normal approximation if the reserved

offers fail (using the performance statistics associated with

the contingency strategy). In the latter case, when there is a

conflict with the previous task, we use a normal approxima-

tion with mean mi;late ¼ taðslÞ þ �dðsl; successÞ þ ð1�
Eiðt̂sÞÞ�1 R1

t̂s
E0iðxÞx dx and variance vi;late ¼ ~vðsl; successÞ þ

ð1� Eiðt̂sÞÞ�1 R1
t̂s
E0iðxÞx2 dx�m2

i;late, where t̂s is the latest

starting time of any offer reserved for task ti and Ei is a

cumulative distribution function for the completion time

of the predecessors of ti. This is either obtained using a

simple normal approximation or, if concrete offers have

been reserved for the predecessors, using the equations

described here.
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Now, combining the two cases described above into a
single distribution (each occurring with probability 1� p̂l

and p̂l, respectively) gives us a more accurate estimate of the
completion time for the task, as we now take into account
the reserved offers. We then use this instead of the simpler
normal approximation in all calculations.

Furthermore, we modify the neighbor generation proce-
dure described in Section 4.4 to consider adding to or
removing offers from a previously reserved task. These are
chosen randomly from all available offers or from the set of
offers that the agent plans to reserve during that time step
(as we will discuss in the next section, offers are not
reserved until the end of a time step). More specifically, in
addition to changing the structure and high-level reserva-
tion strategies during the neighbor generation procedure,
we include the possibility of changing a reserved task.
When this occurs, we select a random task that has some
associated reserved offers (denoted by the set �i 	 CC), and
randomly carry out one of the following changes:

. Add offer: We first sample a value tr from an

exponential distribution with mean ��1 ¼ 1
�ij j �P

o2�i tðoÞ � tmin, where tmin is the lowest starting

time in �i (when
P

o2�i tðoÞ� tmin¼ 0, we use ��1¼1).

Then, we submit a request for offers for time step

t ¼ tr þ tmin � 20, and add a random returned offer
to �i. This process allows us to select a random offer,

but with a bias toward offers at a similar time as

those already in �i.
. Remove offer: If �ij j > 1, select a random offer that

has been added to �i during the same time step and
remove it again.

Finally, we also modify Algorithm 1 to terminate its
main loop when it examines a task for which offers have
already been reserved. This is because the agent has already
decided when to start invoking that task and, as a result, the
normal approximation will be far less accurate. If t is still
negative at this stage, we use the starting time of the task as
an anchor and infer the absolute reservation time from there
(e.g., if t ¼ �10 and the earliest reserved service is to start at
time step tðoÞ ¼ 120, the algorithm returns the time t ¼ 110
and specifies the target task tx ¼ none to signal that services
should be reserved at an absolute time step).

We now summarize our strategy in the form of an overall
decision-making algorithm.

4.6 Overall Algorithm

In this section, we can now detail the strategy that addresses
the optimization problem outlined in Section 4.1. In
particular, building on the work described in previous
sections, we define the strategy � more formally as a tuple
� ¼ ð�; 	; �; d	; d�; E0Þ, where �, 	, and � are a set partition of
T , describing the current state of each workflow task. Here, �
contains the tasks that have been completed successfully, 	
contains the tasks for which some offers have been reserved,
and � contains the tasks for which no offers have been
reserved. The functions d	 and d� provide further informa-
tion about the agent’s high-level decisions for the members
of 	 and �, respectively. Based on previous sections, d	ðtiÞ of
a reserved task ti 2 	 is d	ðtiÞ ¼ ð�i; sli; sui; sfiÞ, where �i is

the set of offers already reserved for ti, while the other
variables refer to the contingent strategies.5 Similarly, d�ðtjÞ
of a task tj 2 � is d�ðtjÞ ¼ ðspj; slj; suj; sfj; pmljÞ, where spj is
the primary reservation strategy and pmlj is the late
probability. Finally, E0 : PðT � T Þ is the set of current
precedence constraints.

Given this, Algorithm 3 contains a high-level overview of
our strategy. At time t ¼ 0, the consumer creates an initial
execution strategy � to form the basis of its local search6

(line 2). Then, at each time step, the consumer first updates
its current plan with any service outcomes (line 5), followed
by an optimization process that refines the plan by
changing its high-level task strategies and by altering
already reserved offers (line 7), as described in the previous
two sections. In line 8, the agent considers the reservation of
due tasks, as determined by Algorithm 1. It does this by
carrying out the associated primary strategy, but only
temporarily associates the chosen offers with the workflow
(they are not yet explicitly reserved). If any such reserva-
tions are added to the workflow, the consumer then repeats
the optimization stage, so that the initially chosen offers can
be improved (and possibly replaced by better ones), and
this continues until no more new offers are reserved.

Algorithm 3. Summary of Flexible Strategy

1: t 0

2: � create initial strategy

3: abandoned false

4: repeat

5: � update strategy with recent service outcomes

6: repeat

7: � local search for better strategy
8: � use high-level strategies to reserve services

9: until � was not altered in line 8

10: if PREDICTUTILITY ð�Þ > 0 then

11: reserve new services

12: invoke services that are due

13: else

14: abandoned true

15: t tþ 1

16: until abandoned ¼ true or workflow completed

Following that, if the consumer expects to receive a
positive utility from continuing, it reserves any new offers
that have been added to the workflow during that time step
and invokes due services (lines 11 and 12). This procedure
continues until the consumer either expects a nonpositive
utility or the workflow is completed.

Clearly, it is time-consuming for the service consumer to
carry out a long optimization stage during every time
step—especially as the expected utility of the workflow may
not change at all. Hence, we have found it sufficient to carry
out further optimization only when its expected utility
changes significantly from an earlier estimate, and also to
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5. In a slight departure from our previous notation, we add the subscript
i to refer to the task ti.

6. In our work, we start with a simple allocation that uses !r with
tað!rÞ ¼ 0, twð!rÞ ¼ 10, nð!rÞ ¼ 1, and #ð!rÞ ¼ unreliability as the
primary and contingent strategies (all repeated) for every task and set
pmli ¼ 0:01. This already constitutes a feasible strategy in most environ-
ments, thus, typically leads to a quicker convergence than a completely
random initial strategy.



vary the amount of time spent during the optimization
depending on the magnitude of the change.

More specifically, we have experimented with various
optimization strategies and found the following approach
to work quickly and effectively in a variety of environ-
ments. First, we always carry out an extensive initial
simulated annealing run with the parameters given in the
first row of Table 5. This is repeated up to three times if the
resulting allocation does not yield a positive expected
utility. Then, at each time step, we calculate the difference
between the current expected utility and the total costs
incurred so far. We carry out a “long” optimization run (see
Table 5) if this value is at least 40 percent higher or lower
than the same value when this was last run. Otherwise, if it
is at least 20 percent higher or lower than after the last
optimization run, we run a “quick” optimization procedure.
It should be noted that these parameters can be easily
adjusted for particular problems. For example, when time is
critical, nmax can be set to a fixed cutoff time.

The online Appendix of this paper outlines how our
approach reserves services for a real bioinformatics work-
flow. In the following section, we detail a number of
experiments we carried out to test its performance.

5 EMPIRICAL EVALUATION

As our approach is heuristic and due to the difficulty of
finding an analytical solution (as described in Section 4.1),
we have conducted a thorough empirical study of our
algorithm in a simulated environment and compared it to a
number of current approaches. The primary focus of this
section is to investigate the feasibility of our approach in
environments of varying uncertainty (i.e., where services
are more or less likely to fail) and also in environments
where the market favors certain reservation approaches
(e.g., where early reservations are rewarded by more
reliable services). In the following, we first describe how
we simulate the market (Section 5.1), then we detail the
strategies we test (Section 5.2) and the hypotheses that
guide our investigation (Section 5.3). Finally, we describe
our results (Sections 5.4-5.6).

5.1 Market Setup

In our experiments, we assume that there are five different
service types (T ¼ fT1; T2; T3; T4; T5g). To simulate the
market, we keep a list of currently available offers associated
with each time step, from the current step t to tþ 250 (hence,
the consumer may reserve services up to 250 time steps in
advance). During the simulation, at the beginning of each
time step, we first generate new offers that become available
in the market by drawing the number of new offers and their
parameters from random distributions. More specifically, for
each time step in the list (t; tþ 1; . . . ; tþ 250), we generate

offers using the distributions in each row of Table 6. First, we
generate the number of offers by drawing a sample from a
Poisson distribution with a mean given by the birth rate in
that row.7 Then, for each such generated offer, we assign it
the service type given in the table and draw a value for the
reservation cost, execution cost, and service duration from
the specified distributions.8 All other offer parameters, such
as the failure probability and penalties, are determined
according to our experimental parameters detailed below. At
the end of each time step, we remove offers in a similar way
by drawing a random sample from a Poisson distribution
with its mean given by the death rate. This models the
demand for such services and we remove the generated
number of offers from that time step (or all if the number
exceeds the supply).

In our simulations, a consumer is rewarded a maximum
utility of umax ¼ 2;000 for completing a workflow, with
penalty � ¼ 40 and deadline tmax ¼ 200. Each workflow
consists of eight tasks (with random types) and we generate
them by randomly filling an adjacency matrix until at least a
quarter of the total number of possible edges have been
added, thus ensuring that there are several parallel and
sequential tasks in the workflow.

We chose these parameters to represent a realistic and
challenging scenario with a relatively short deadline, but a
sufficient maximum utility to allow the agent to afford a
number of failed service invocations in uncertain environ-
ments. The workflows we test here are small, because the
existing work that relies on integer programming techni-
ques was unable to deal with larger cases. This is because
we consider environments with potentially hundreds of
offers for each task and solving this optimally can take
hours or longer for larger workflows. In particular, even in
the current scenario, finding a solution sometimes took
longer than five minutes, which we believe is unacceptable
in the time-critical settings we cover in this paper. Despite
this, we compared our approach to the remaining strategy
in other environments, including larger workflows with up
to 50 tasks, and obtained the same broad trends as
presented here (see [22] for details).

5.2 Strategies

We evaluate the performance of four strategies: the first
three are based closely on the work presented in [13], but,
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TABLE 5
Simulated Annealing Parameters

TABLE 6
Service Type Parameters

7. This is a common distribution for modeling random arrival events. We
use rb ¼ rd ¼ 0:005, unless noted otherwise.

8. We use UhðmÞ to refer to a uniform distribution with mean m that
varies around m by a proportion of at most h, i.e., UhðmÞ is a uniform
distribution on the interval ½ð1� hÞ �m; ð1þ hÞ �m�. We use h ¼ 0:2 in all
our experiments, indicating a fairly high heterogeneity of offers.



more generally, represent common service selection ap-
proaches that are widely used in the literature, such as [15].
The fourth is the flexible reservation strategy proposed in
this paper. We briefly describe each below.

5.2.1 Local Weighted Optimization

This strategy procures services completely on demand (i.e.,
only when the respective task becomes available). At this
time, the consumer considers all offers in the next n time
steps (we set n ¼ 20 as this produces good results for the
environments we consider) and then reserves the offer o�

that maximizes a weighted sum:

o� ¼ argmax
o

X3

i¼1

wi �QiðoÞ; ð1Þ

QiðoÞ ¼
0; if qmax;i ¼ qmin;i;
qmax;i�qiðoÞ
qmax;i�qmin;o

; otherwise;

(

where q1ðoÞ ¼ ceðoÞ þ crðoÞ is the combined total cost of the
offer, q2ðoÞ ¼ 1� PsðoÞ is the probability that the task will
not succeed and q3ðoÞ ¼ tðoÞ þ dðoÞ is the end time of the
offer. The values for qmax;i and qmin;i are the largest and
smallest of these parameters among the offers that are
considered, and each weight wi 2 ½0; 1� attaches a relative
importance to the associated parameter (with

P
i wi ¼ 1).

We also assume that the strategy will immediately attempt
any failed tasks again. For the purpose of our experiments,
we set w1 ¼ w2 ¼ w3 ¼ 1

3 , which strikes a balance between
the various qualities (in most environments, we did not
observe a significant difference in performance when
adopting other weights).

5.2.2 Global Weighted Optimization

This is perhaps the most widely adopted approach for
reserving services in the literature [13], [15]. Here, the agent
observes the market once, then selects and reserves one
offer for each task, so that a weighted sum similar to (3) is
maximized. This sum now aggregates the quality para-
meters over the entire workflow and may contain con-
straints, such as an overall budget or time limit. Compared
to the work in [13], we have added suitable extensions to
deal with explicit time slots for services and we use ILOG
CPLEX to solve the associated integer programming
problem. We again use w1 ¼ w2 ¼ w3 ¼ 1

3 and set the
overall cost constraint to umax and the time limit to tzero � 1.

5.2.3 Adaptive Global Weighted Optimization

This strategy is similar to the previous, but it reserves new
services in case of failures.

5.2.4 Flexible Strategy

This is our robust strategy as presented in the previous
section. As learning and trust are not the focus of this paper,
we assume that the agent has access to accurate trust
information and a large strategy library (see [22] for details
on how this is generated).

5.3 Hypotheses

In our experiments, we are interested in testing four
hypotheses. The first two consider environments where

providers fail maliciously without paying compensation,
the next one considers cases where providers offer full
refunds for failures, and the final hypothesis looks at
environments where providers offer better services when
reserved with varying advance notice periods (e.g., where
there are discounts for early or late reservations).

. Hypothesis 1: In environments where the service
performance does not depend on the time of
reservation and where services fail maliciously
without paying penalties, the flexible strategy results
in a higher profit than any of the other examined
strategies, averaged over all cases.

. Hypothesis 2: In the above environments, the flexible
strategy successfully completes a higher proportion
of workflows than any of the other examined
strategies, averaged over all cases.

. Hypothesis 3: Hypotheses 1 and 2 also hold when
services offer full refunds for failures.

. Hypothesis 4: Hypotheses 1 and 2 also hold in
environments where the performance of services is
dependent on the time of reservation.

In the following, we discuss the results of our experiments.
Where appropriate, we test the above hypotheses by
carrying out ANOVA, followed by pairwise t-tests. For
reasons of space, we do not report individual p-values,
which were all at the p ¼ 0:001 level or better. We also
provide 95 percent confidence intervals for all data.

5.4 Malicious Providers (Hypotheses 1 and 2)

During our first experiments, we evaluate the performance
of the strategies in environments where service providers
are increasingly unreliable. To this end, we vary an overall
average defection probability �d across several experiments
and use this to generate the defection probability of offers.9

We also assume that services always either succeed or
defect. This case is challenging, because consumers do not
get compensation for failures, but it is realistic in highly
dynamic distributed systems, where some providers may
act maliciously and never perform the service they were
paid to do. Examples of such systems include peer-to-peer
systems, where providers frequently leave the system and
where the enforcement of contracts is difficult.

The results of our experiments are shown in Fig. 2, which
plots the average failure probability against the average
profit (as a proportion of umax) that each strategy gains.10 To
complement this, Fig. 3 shows the associated proportion of
workflows that the strategy managed to complete with a
positive reward. When providers never defect (�d ¼ 0), all
strategies perform well, achieving between 70-90 percent of
the maximum reward, and there is no significant difference
between either of the global optimization approaches and
the flexible strategy. Intuitively, both global strategies are
equivalent here, because there is no need to reattempt failed
tasks, and they both perform well due to the certain
information they have about the cost and duration of the
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9. Again, we draw from Uhð�dÞ, where h ¼ minð0:2; h0Þ and h0 is the largest
real number with ð1� h0Þ � �d � 0 ^ ð1þ h0Þ � �d � 1.

10. We average the profit over 750 runs for the flexible and the local
approaches, while we average it over 250 runs for the global optimization
approaches due to their more time-intensive nature.



complete workflow. The flexible strategy similarly performs
well—although it does not reserve the complete workflow
in advance, it makes accurate predictions at the start (with
little uncertainty) and reserves services as it proceeds
through the workflow. The local optimization approach
performs worse, as it takes myopic decisions and therefore
occasionally exceeds tmax or even tzero.

As �d increases, all strategies generally perform worse,
because they have to pay for services that do not perform as
promised. The nonadaptive global optimization strategy is
most affected as �d begins to rise, due to it only attempting
one execution of the workflow before giving up. If it
succeeds, it gains a relatively high reward, but if it fails, it
loses its initial investment. At �d ¼ 0:3 and beyond, the
strategy no longer makes a profit, as it begins to fail most
workflows and lose its investments.

In contrast to this, the adaptive optimization strategy
performs considerably better than the nonadaptive one as
the defection probability begins to rise, up to �d ¼ 0:4. On
this interval, failures occur occasionally and the adaptive
consumer is generally able to reserve new offers to meet its
deadline. However, at �d ¼ 0:5, failures become too numer-
ous (the consumer now fails to complete 69.0 percent of its
workflows before tzero) and the consumer begins to make
an overall loss. As the defection probability rises further,
this loss increases, eventually levelling off toward �d ¼ 1:0.
This considerable loss occurs because the consumer lacks
the capability of predicting the overall cost it will incur by
reattempting failed tasks and whether this investment is
rational, given the defection probabilities of services.
Rather, it will persist in retrying more services and making
further investments, despite a high probability of failure
(at �d ¼ 0:8 and beyond, the consumer completes no
workflows successfully).

Next, the average profit of the local strategy initially
drops less quickly than the global strategies. This occurs
because it is less affected by a small number of failures than
the global approach, which may need to reserve new offers
for its entire workflow upon a single failure. In some
environments, when the defection probability is �d ¼ 0:2 and
�d ¼ 0:3, it even outperforms the adaptive global approach
for that reason. Beyond that, it drops more quickly and
follows a broadly similar trend to the adaptive global
strategy, as it also invests heavily in services without
completing the workflow.

Finally, we consider the performance of the flexible
strategy. At low defection probabilities, it achieves a similar
performance to the global approaches. However, at �d ¼ 0:2,
it begins to clearly dominate all other strategies. Unlike the
other strategies, it reasons explicitly about failures and their
impact on the workflow cost and execution time, and so at
these higher failure probabilities, the flexible strategy is
able to deal proactively with failures, for example, by
reserving them redundantly or by favoring more reliable
providers. In more detail, this means that the flexible
approach is able to achieve an almost 200 percent
improvement over the best-performing nonflexible strategy
at �d ¼ 0:4 and it still makes a positive profit at �d ¼ 0:5,
�d ¼ 0:6, and �d ¼ 0:7, when all other strategies make a loss
(in fact, the flexible strategy here successfully completes
over 98, 93, 88, and 66 percent of its workflows before tzero,
respectively). At �d ¼ 0:8, we notice that the flexible strategy
makes a small net loss of �9:97
 18:25. However, this is
not significant in this case.

Averaged over all values for �d we tested, the flexible
approach achieves a higher profit and completes more
workflows than all other approaches, supporting Hypoth-
esis 1 and 2 (see Table 7 for full results).

5.5 Failures with Refunds (Hypothesis 3)

Next, we are interested in environments where providers
are not malicious, but offer full refunds to the consumer in
case of failure. Hence, the setup is similar to the previous
section, but we now assume that when providers fail, they
immediately refund both the reservation and the execution
cost of the service. This is a more realistic scenario when
services are offered by reputable companies, when some
central entity monitors the system or when contracts are
easily enforceable. Examples may include web services or
scientific Grids.
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Fig. 3. Success probability when providers increasingly defect.

TABLE 7
Summary of Empirical Results

Fig. 2. Performance when providers increasingly defect.



The results are shown in Figs. 4 and 5, and clearly
highlight mostly the same trends as in the previous
experiments for the nonflexible strategies (all achieve
slightly higher profits and tolerate higher failure probabil-
ities). The local strategy now performs better than before as
it will pay at most once for each task in the workflow, and
therefore even achieves a small positive average profit
when the failure probability is �f ¼ 0:6.

The flexible strategy performs significantly better in this
environment, achieving a high positive profit even at failure
probabilities of up to �f ¼ 0:9. More specifically, at �f ¼ 0:6,
our strategy achieves an average profit of 1,071.22, with
96.5 percent of workflows completed before tzero, compared
to the best nonflexible profit of only 34.34 with 19.1 percent
of workflows successful (an approximately 35-fold improve-
ment in utility). At �f ¼ 0:8, the flexible approach still
completes 86.1 percent of workflows successfully, while
the most successful alternative completes 1.6 percent. This
good performance is due to the considerably lower cost of
reserving services redundantly, as now the consumer pays
for only those services that succeed. Even at �f ¼ 0:9, the
flexible approach still achieves a positive profit of 114.35
and completes 31.2 percent of workflows. These results
support Hypothesis 3.

5.6 Different Market Conditions (Hypothesis 4)

Next, we test the performance of the strategies in environ-
ments where either advance or on-demand reservation is
preferred and given a discount in execution cost and a
higher reliability. Such conditions might occur, respectively,
when providers prefer to be given early notice by
consumers, so that they can plan their resource availability
in advance, or when they find their resources underutilized
and therefore offer discounted services at the last minute.
To express this preference, we vary a discount factor, d,

from �1 to 1. When negative, this indicates a preference for
advance reservation and when positive, on demand
reservation is preferred. In more detail, we use it during
offer generation to adjust the distribution means for the
execution cost and failure probability by a proportion given
by dj j. We consider all offers generated for the current time
step, t, as reserved on demand, and any offers generated for
tþ 40 and beyond as reserved in advance. Between these
two, we vary the discount factor linearly. For example,
when d ¼ �0:6, �f ¼ 0:5 and we generate an offer for tiþ30,
then the corresponding mean failure probability is
ð1� 3=4 � 0:6Þ � 0:5 ¼ 0:275. We use all other experimental
parameters as in the previous sections, but keep �f at 0.5,
and now set b ¼ 0:5 and d ¼ 5, to ensure that discounted
offers are available only at their respective time steps.

The results for this setting are given in Figs. 6 and 7.
Here, we note that the nonflexible strategies perform well
only in extreme conditions—the global approaches excel
when advance reservations are preferred, while the local
strategy performs well as d tends to 1. When neither
advance nor on-demand reservations are strongly pre-
ferred, none of the nonflexible strategies does well, because
most services in the market are unreliable. In fact, at
d ¼ �0:1, these strategies all make a net loss. In contrast to
this, the flexible strategy achieves a high profit over all
environments, and, in most cases, significantly outperforms
all others. This is because the flexible strategy adjusts its
reservation strategies to the environment—at d ¼ �1, it
reserves services, on average, 43:05
 0:72 time steps in
advance, at d ¼ 0, this drops to 14:71
 0:36 and at d ¼ 1, it
reserves only 3:57
 0:12 time steps ahead. However, we
also note that the flexible strategy is now outperformed at
d ¼ �1 (at d ¼ �0:9, there is no significant difference). In
this case, it suffers from not reserving all offers in advance
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Fig. 6. Performance when advance reservations are preferred (negative
d) and when on-demand is preferred (positive d).

Fig. 7. Success probability when advance or reservations or on demand
invocations are preferred.

Fig. 4. Performance when providers give refunds.

Fig. 5. Success probability when providers give refunds.



(and thereby producing a tight-fitting but reliable schedule).
Instead, the strategy continues to reserve only parts of the
workflow (although now reserving further ahead) and
hence sometimes exceeds tmax. Nevertheless, when aver-
aging over all values for d, the flexible strategy outperforms
the others, thus supporting Hypothesis 4.

To summarize our empirical evaluation, Table 7 shows
the average utility each strategy gained in the various
environments discussed in this chapter.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a novel workflow
execution strategy that extends the state of the art in several
ways. First, our approach reserves only part of a workflow
at a time and adapts its decisions at runtime, making the
strategy more robust and dependable in uncertain environ-
ments. Second, we consider highly dynamic systems, where
service availability changes over time and where the
consumer typically does not know what services will be
available in the future. We address this by learning high-
level strategies to predict the typical performance of certain
workflow tasks. Finally, our approach proactively considers
contingencies to deal with service failures and conflicts, but
does so by exploring only a limited number of outcomes
and by considering each workflow task in isolation, thus
increasing the efficiency of our approach.

Our proposed strategy is highly relevant in a wide range
of application areas, and we have adopted an abstract
system model that can be easily applied to web services,
Grid services, and peer-to-peer systems. We envisage that
our techniques will fit naturally on top of existing work-
flow execution engines, and in particular, those that are
already able to switch service providers dynamically at
runtime, such as the self-healing WS-BPEL workflows
described in [24]. Furthermore, although we use the
contract-net protocol, our approach is readily applicable
to other mechanisms and existing web service protocols, as
described in Section 3.2. Finally, the high-level decisions
discussed in Section 4.2 could refer to strategies for
participating in auctions, to carry out negotiations or
simply for selecting services published on a registry, and
are therefore highly versatile.

There are several ways in which we plan to extend our
work. First, we want to improve our utility estimation
technique, which sometimes overestimates the expected
utility of a workflow. Second, we will extend our contract
model to cover more complex usage models, such as
subscriptions for repeated service invocations. Finally, we
will consider workflows with conditional branches.
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