
Task Assignment with Controlled and Autonomous

Agents

Florian M. Biermann

International School of Economics at Tbilisi State University, Republic of Georgia

Victor Naroditskiy

Electronics and Computer Science, University of Southampton, UK

Tri-Dung Nguyen

Schools of Mathematics & Management, University of Southampton, UK

Maria Polukarov

Electronics and Computer Science, University of Southampton, UK

Alex Rogers

Electronics and Computer Science, University of Southampton, UK

Nicholas R. Jennings

Electronics and Computer Science, University of Southampton, UK

Abstract

We analyse assignment problems in which not every agent is controlled by
the central planner. The autonomous agents search for vacant tasks guided
by their own preference orders over available tasks. The goal of the central
planner is to maximise the total value of the assignment, taking into account
the behaviour of the uncontrolled agents. Such optimisation problems arise
in numerous real-world situations, ranging from organisational economics to
“crowdsourcing” and disaster response. We show that the problem faced by
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the central planner can be transformed into a mixed integer bilevel optimisa-
tion problem. Then we demonstrate how this program can be reduced to a
disjoint bilinear program, which is much more manageable computationally.

Keywords: Assignment Problem, Stable Matching, Bilevel Optimization

1. Introduction

Problems in economic theory are traditionally analysed in terms of sta-
ble outcomes (equilibria) or efficient solutions (optima). In the former case,
the problem is considered in the context of the interaction of rational, self-
interested, autonomous agents; in the latter, the agents are assumed to follow
the instructions of the central planner who aims to optimise some objective.
Of course, in realistic economic systems autonomous agents are often placed
together with those controlled by the central planner, like public and private
sectors jointly tackling social problems or locating economic activities. Typ-
ically, the autonomous agents will act to obtain their own individual goals,
and the problem of the central planner is to coordinate the controlled agents
so as to optimise the overall performance of the system, while taking into
account the behaviour of self-motivated participants.

The present paper investigates a particular “semi-autonomous” scenario
of this kind, namely assignment problems in which some of the players are
autonomous and face private incentives to solve certain tasks. Instead of
submitting to the planner’s will, these agents strive to obtain the task that
rates most highly according to their own preference rankings.

The contribution of this paper is both conceptual and technical. On
the conceptual level we introduce a model to handle selfish behaviour in
assignment scenarios. We call this variation of the assignment problem the
Semi-Autonomous Assignment Problem (SAAP). When all agents are fully
controlled by the CP, the SAAP turns into a classical assignment problem.

In our model, the autonomous agents, amended to the classical assign-
ment problem, are assumed to have ordinal preferences over the available
tasks. This arguably increases the robustness and applicability of our model.
We neither require the central planner to form a belief about cardinal util-
ity functions of the autonomous agents, nor do we assume the autonomous
agents to be von Neumann-Morgenstern expected utility maximisers. Like-
wise, adopting ordinal preferences allows us to directly utilise results from
a branch of game theory, usually called matching theory, which originated
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with the seminal paper of Gale and Shapley (1962). From the start, matching
theory evolved without drawing on the theory of expected utility.

Part of our technical contribution is to show that the optimal solution
of an SAAP from the point of view of the central planner corresponds to a
stable matching (Gale and Shapley, 1962) in a particular marriage market1

formed by autonomous agents and tasks. In this market, the preferences of
the autonomous agents are their rankings over tasks, while the values of the
“assignment matrix” determine the preferences of the tasks. By assigning
the controlled agents, the central planner can block some tasks and in this
way essentially determine the market in which the stable matching is formed.
The seemingly strong assumption that the central planner moves first does
not affect the generality of our model. Making use of a result from matching
literature, in Section 3 we argue that the outcome will be the same if the
central planner does not move first. This is true as long as the central planner
has the prerogative to assign his controlled agents to tasks even if they were
already taken by autonomous agents (who in that case become unassigned
again).

As we show, the optimisation problem faced by the central planner can
be represented as a mixed integer bilevel optimisation problem—a hierarchi-
cal program where the set of constraints contains a parametric optimisation
problem. Solving bilevel programs is difficult in general, and known algo-
rithms would deal with only extremely small problem instances. We then
show how to reduce this bilevel program to a disjoint bilinear program, us-
ing the special structure of the SAAP. A disjoint bilinear program is much
more manageable computationally, as it only involves a single minimisation
problem instead of a minimax problem.

The rest of the paper is organised as follows. Section 2 motivates our
work by describing several real-life situations which resemble SAAPs. The
model is then formally defined in Section 3. In Section 4 we present our
main results—the transformation of the SAAP to a mixed integer bilevel
optimsiation problem and the reduction of that problem to a disjoint bilinear
program. We conclude in Section 5 with directions for future work.

1Technically, a marriage market is a one-to-one two-sided matching problem.
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2. Real-world examples

Semi-autonomous assignment problems arise naturally in the context of
location of economic activities. In Koopmans and Beckmann (1957), for ex-
ample, the authors discuss the assignment problem in the context of choosing
locations for industrial plants under the standard assumption that the central
planner is responsible for choosing the location for all of the plants. However,
in reality such tasks are typically divided between the public and the private
sectors, where private businesses strive to maximise their own profits and the
government is concerned with the overall welfare of the society. Note also
that state institutions often have the priority over private entrepreneurs in
making their choices, consistent with the assumptions of our model.

As another example, consider private-public partnerships (PPP), where
the public party, which usually supervises the complete project, intends to
advance some public goal. In contrast, the participating private parties are
primarily interested in their own profits. This poses an obstacle for assigning
tasks in a globally optimal way. Companies will try to avoid those tasks which
are unprofitable and difficult, trying instead to obtain subprojects promising
high profits at low risk. A typical example is the provision of health care
through hospitals and doctors, which is facilitated through private-public
partnerships in many countries.2 The payment agreements between the gov-
ernment and the private partners usually do not reimburse a hospital or
doctor for exactly those costs associated with a specific patient. As a result,
patients (= “tasks”) yield different profit opportunities. Although hospi-
tals/doctors (= “agents”) participating in a PPP are not formally entitled
to pick the profitable patients and reject the others, there may be informal
ways to deter unprofitable patients.3 The model presented in this paper can
help to design policies which take the selfish behaviour of private contractors
into account.

In the internet economy, many crowdsourcing systems (see, e.g., Benkler
(2006), Brabham (2008), Howe (2008)) can be modelled as SAAPs. In a

2For an overview of private-public partnerships in the health sector, see Nikolic and
Maikisch (2006).

3By entering “hospital turns away” or a similar phrase into an internet search engine,
one gets plenty of media reports about exactly this issue. For example, UK dentists,
working for the National Health Service, arguably behaved in such a way (see Templeton
(2007)). Reports about hospitals being reluctant to examine patients with X-ray or brain
scans may straightforwardly be interpreted as avoidance of unprofitable tasks.
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crowdsourcing system, tasks which cannot satisfactorily be solved without
human expertise are assigned to a group of more or less anonymous amateur
problem solvers (the “crowd”). Yet companies making use of crowdsourcing
do not have to totally rely on the crowd. For some of the tasks or even for all
of them, they can engage professional problem solvers. These belong to their
own personnel or a contractor’s personnel who cannot reject tasks assigned
to them. In contrast, crowd members can freely choose which tasks to work
on, and they are probably not indifferent between all tasks. Hence, the firm
has to find an optimal way of distributing its tasks between professional and
amateur problem solvers.

Disaster response situations, providing prominent examples of crowd-
sourcing, can also be analysed with our model. Consider a disaster relief
situation where professional disaster responders coordinated by the govern-
ment are assisted by local residents and disaster survivors. The government
has neither the communication capabilities nor the authority to tell local
participants what to do. However, local participants are very helpful and
their efforts should not be ignored. Assuming the government can estimate
the preferences of local participants (e.g., they visit sites in order of distance
from their home), our work provides a more effective way for the government
to assign professional disaster responders.

Finally, autonomous task choice can even be observed in military organi-
sations, which are famous for their strict adherence to the principle of obeying
orders.4 If solving critical tasks is “prestigious” in some sense, there may be
an incentive for military officers to unilaterally go for those critical tasks,
disregarding the assignment the central planner would prefer. In military
history it regularly occurred that ambitious commanders tried to gain fame
by acting more bravely or by taking greater risks than desired by the central
command. An outstanding example is the celebrated Danish naval officer

4Situations resembling SAAPs can be found not only within military organisations. The
2011 war in Libya was fought by a coalition of NATO and loosely organised rebel troops, co-
operating in their efforts to overthrow the regime of dictator Muammar Gaddafi. While the
NATO forces were totally coordinated, it was arguably difficult to coordinate the actions
of the rebels, who were untrained, unprofessional, and lacked command chains. Conse-
quently, the NATO, as the central planner of the SAAP, had to anticipate the prospective
actions of the rebels when making its decisions on air strikes. Information about the rebels’
next steps was provided by so called liaison officers (NATO representatives assigned to
the rebel units).
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Peter Jansen Wessel (1691-1720), called Tordenskjold (Danish for “thunder
shield”). He constantly strived for the most prestigious tasks in the Great
Northern War (1700-1721), thereby notoriously disobeying orders.5 His con-
frontation with the Swedish fleet in the Battle of Dynekilen (1716) in which
his 7 ships captured 31 Swedish ships and destroyed another 13, was not
backed by orders of the admiralty.6 Wessel’s anarchistic conduct evoked con-
siderable criticism in the Danish admiralty, eventually leading to a trial at a
court-martial. Yet he was acquitted and even made an admiral later.7 His
disobedience yielded huge personal prestige, as can be seen from the fact that
Wessel is praised in the national anthems of both Denmark and Norway (the
country he originated from).

3. The Model

Before formally defining our model, we recall the definition of a classical
Assignment Problem (AP). An AP is defined by a triple (A, T, v), where A is
a set of agents, T is a set of tasks, and v is an evaluation function which maps
A×T into R+∪{0}. The problem is to find an assignment (or, matching) of
agents to tasks for which the sum of the values of pairs matched is maximised.
Formally, an assignment µ is a subset of A×T such that no two distinct pairs
in µ share a player or a task, that is:

(a, t), (â, t̂) ∈ µ : (a, t) 6= (â, t̂)⇒ a 6= â ∧ t 6= t̂.

The objective of the central planner is then given by

max
µ∈µ

∑
(a,t)∈µ

v(a, t),

with µ being the set of all assignments which can be formed from the set
A× T .

We now generalise the AP model to what we call the Semi-Autonomous
Assignment Problem (SAAP). An SAAP is defined by a tuple

(C ∪ F, T, v,�F ),

5For an account of his deeds, see Chapter 1 (“A Knight Errant of the Seas”) in Riis
(2007).

6“He could not go back and ask for permission, and one may shrewdly guess that he
did not want to, for it would certainly have been refused.” (Riis (2007), p. 10).

7Cf. Riis (2007), pp. 6 and 9.
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where C and F are two disjoint sets, and we set A := C ∪ F . As before,
we refer to the elements of A as agents, while the members of C are termed
coordinated (or, controlled), and the members of F are referred to as free
(or, autonomous). The function v is defined as before, and �F is a strict8

preference profile which contains for each free agent f ∈ F a linear preference
order �f defined over T . Given this, the central planner of an SAAP aims
to find

max
µ∈µSAAP

∑
(a,t)∈µ

v(a, t),

where µSAAP is the set of SAAP-feasible assignments defined later. First we
specify the behavior of the free agents.

We now specify a search process such that keeping to this process is a
(weakly) dominant strategy for each free agent.

After the coordinated agents were assigned to tasks by the central planner,
each free agent f approaches his most preferred task t := max�f

T . If f finds
t to be vacant, f takes over t. If f finds that a coordinated player already
occupies t, f proceeds to the task which is second according to the preferences
�f , namely t′ := max�f

T \ {t}. Again, f checks the availability of t′ and
either takes it or continues with the subsequent item in its priority list. If
there are no tasks left on f ’s priority list which were not yet approached,
f stays idle. If k ≥ 2 free agents f1, . . . , fk approach the same task t, we
assume that the agent best at performing the task, i.e.

arg maxa∈{f1,...,fk} v(a, t)

keeps to t, while the other free agents continue the search process. This
is a realistic assumption for scenarios in which free players, though being
uncoordinated, have an interest in a high-valued solution of the problem
(like in the disaster response application outlined in Section 2). We make
the restriction that v(a, t) 6= v(a′, t) if a 6= a′.9 With these assumptions,
the central planner affects the outcome of the search process because tasks
assigned to the controlled agents are unavailable to the free agents.

8The assumption of strict preferences is common in matching literature (e.g., see Chap-
ter 2 in Roth and Sotomayor (1990)). In deriving our results, we make use of one of the
standard results in matching theory (Corollary 2.14, p. 33, in Roth and Sotomayor (1990))
which holds only for strict preferences.

9In the marriage market we define, this restriction will ensure that “preferences of
tasks” are strict. This assumption is needed for our results (see also Footnote 8 above).
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If the behavior of the free agents is modeled in this way, the search pro-
cess coincides with the Deferred Acceptance Algorithm of Gale and Shapley
(1962) with men proposing, where:

• The free agents in F are the men and the tasks in T are the women.

• The men’s preferences are given by �F .

• The women’s preferences are given by the valuation function v, i.e. for
each t ∈ T we have

f �t f ′ ⇔ v(f, t) > v(f ′, t). (3.1)

• Some tasks are blocked, namely those that are occupied by controlled
agents.

We call this procedure the Deferred Acceptance Algorithm with Blocked Tasks
(DAB).

The Deferred Acceptance Algorithm of Gale and Shapley (1962) con-
structs a stable matching in a marriage market. A marriage market is de-
fined as a triple (M,W,�), where M is the set of “men” and W is the set of
“women”. A preference profile � maps each m ∈M into a linear preference
order defined over W ∪ {m}, and each w ∈ W into a linear preference order
defined over M ∪ {w}.10,11

From the fact that the deferred acceptance algorithm is finite and pro-
duces a unique output (Gale and Shapley (1962)), it follows that the DAB
search process is finite and produces a unique output.

It is a dominant strategy equilibrium for each agent from the male side
to reveal its preferences truthfully (see Theorem 5 in Roth (1982)). In our
model, revealing preferences is done via the order in which tasks are ap-
proached. Since our search process specifies that tasks are approached in the
order given by agent’s preferences and since our search process coincides with
the deferred acceptance algorithm, it means that straightforwardly following

10It is a common notation that the item m in the domain of a man’s preference order
and the item w in the domain of a woman’s preference order stand for remaining single.

11For a comprehensive discussion of marriage markets, see Roth and Sotomayor (1990),
Chapter 2.
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their preferences is a dominant strategy for the agents, i.e. the free agents
cannot improve their outcome by changing the order in which they approach
tasks.

McVitie and Wilson (1971) modified the original algorithm of Gale and
Shapley (1962) so as to let men propose to women in a random sequence (in
Gale and Shapley (1962), the men propose simultaneously at each stage).
They proved that the matching resulting from their algorithm is identical
to the one generated by the standard deferred acceptance algorithm. This
finding of McVitie and Wilson (1971) implies that the outcome of the DAB
algorithm is not affected by our assumption that the central planner assigns
the coordinated agents first; in the DAB search process, the output matching
would be the same even if the CP would assign the controlled agents when
the free agents were already searching in the market. This is true as long
as the coordinated agents could take away any task already occupied by a
free agent, an assumption we consider reasonable for those applications we
described in Section 2.

We define a coordinated assignment to be a matching µC ⊆ C × T (no
free player f is a member of any pair in µC). We denote by (F, T,�F )µC a
marriage market formed by free agents and those tasks which are not matched
under µC . Formally,

(F, T,�)µC = (F, T \ {t | (c, t) ∈ µC},�). (3.2)

Here � is a preference profile which assigns to each t ∈ T a linear order �t
according to (3.1) and to each free agent the order �f . Given this, the set
µSAAP consists of the following assignments:

Definition 1. An assignment µ is SAAP-feasible for a semi-autonomous
assignment problem (C ∪ F, T, v,�F ) if µ = µF ∪ µC and the matching µF
is the outcome of the DAB in the market (F, T,�F )µC .

4. Solution

In this section, we first state the problem as a mathematical program. We
then transform the program so that it becomes computationally manageable.
Let binary variables xij indicate whether a controlled agent i ∈ C is assigned
to task j ∈ T , i.e. if xij = 1, then i is assigned to j, and if xij = 0, then
this is not the case. Likewise, variables yij indicated whether a free agent
i is matched to task j. x and y are matrices with |C| rows and |F | rows,

9



respectively. Both of them have |T | columns and their elements are either 0
or 1.

Theorem 1. The solution to the Semi-Autonomuous Assignment problem

(C ∪ F, T, v,�F ),

coincides with the solution to the optimization problem12

max
x

∑
(i,j)∈(C×T )

vijxij + g(x), (4.1)

s.t.
∑
j∈T

xij ≤ 1 ∀i ∈ C (4.2)∑
i∈A

xij ≤ 1 ∀j ∈ T (4.3)

xij ∈ {0, 1} ∀(i, j) ∈ (C × T ) (4.4)

where g(x) is the value of the allocation of free agents to the tasks not assigned
to controlled agents by x, i.e.

g(x) = min
y

∑
(i,j)∈(F×T )

vijyij (4.5)

s.t.
∑
j∈T

yij ≤ 1 ∀i ∈ F (4.6)∑
i∈F

yij ≤ 1−
∑
i∈C

xij ∀j ∈ T (4.7)

yij +
∑
k�ij

yik +
∑
l�ji

ylj ≥ 1 ∀(i, j) ∈ (F × T ) (4.8)

yij ∈ {0, 1} ∀(i, j) ∈ (F × T ) (4.9)

Proof. First of all, we show that the solution of the mathematical program
above corresponds to a matching. Constraint (4.2) requires each controlled
agent to be assigned at most one task and constraint (4.3) requires each task
to be allocated to at most one controlled agent. Likewise, constraint (4.6)

12In the optimization problems we use the notation vij instead of v(i, j) to denote the
value of the assignment of agent i to task j.
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requires each free agent to be assigned at most one task and constraint (4.7)
requires a controlled task to be allocated to no free agent if it is already
occupied by a controlled agent, or to at most one free agent otherwise. Con-
straints (4.4) and (4.9) ensure that all variables xij and yij are binary.
Next, we show that the matrix y determined in the solution of the program
corresponds to the outcome of the DAB procedure when only those tasks
are available which are not occupied by controlled agents. As mentioned,
(4.7) ensures that no free agent is matched to a task assigned to a controlled
agent. As we showed in Section 3, the DAB procedure converges to a stable
matching in a marriage market (F, T,�F )µC (cf. (3.2) above). We now have
to show that the matrix y in a solution of the program above corresponds (1)
to a stable matching in the market (F, T,�F )µC , where µC is determined by
the matrix x, and (2) that this stable matching corresponds to that stable
matching chosen by the free agents in the DAB search process.
For ensuring that y corresponds to a stable matching in the market
(F, T,�F )µC , we include the so called blocking pair constraint (4.8). This
constraint is taken from Roth et al. (1993), who develop stable matching
theory in a mathematical programming framework. If (4.8) is fulfilled, there
can be no blocking pairs.
Finally, we have to show that the matching y derived from the solution of the
above program is not just stable, but it is indeed the same stable matching
as the one constructed through the DAB procedure. In DAB, free agents
represent the proposing side, and the procedure converges to a stable match-
ing that is optimal for the free agents: each free agent prefers this stable
matching to any other stable matching (see Gale and Shapley (1962)). The
optimal stable matching for the proposing side coincides with the worst sta-
ble matching of the responding side (Roth and Sotomayor (1990), Theorem
2.13 and Corollary 2.14, p. 33), which means that each task that is not oc-
cupied by a controlled agent prefers any other stable matching in the market
(F, T,�F )µC over the matching selected through DAB. Let t be a task which
is not occupied by a controlled agent and let (t, f ∗) be the pair formed un-
der the matching constructed through the DAB algorithm. Moreover, let
B(t) ⊆ T × F be the set

B(t) := {(t, f) | (t, f) ⊆ µ, µ is a stable matching in (F, T,�F )µC}.

By definition of the “preferences” of the tasks (see (3.1) above) the fact that
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the constructed matching is the task-worst implies that

(t, f ∗) = argmin(t,f)∈B(t)v(t, f).

Put differently, if Ft denotes the set of free agents that perform task t in some
stable matching in the market (F, T,�F )µC , then, in the free-agent-optimal
matching, task t is performed by the least-qualified among these agents—
arg minf∈Ft v(t, f).
It follows that the objective function for the assignment of free agents, which
corresponds to the matching chosen by the DAB algorithm in the market
(F, T,�F )µC , is given by (4.5).

The integrality constraint (4.9) can be relaxed as has been shown by
Vande Vate (1989, Theorem 16), allowing to replace it with a nonnegativity
constraint.

The SAAP can thus be fully specified as the following bilevel mixed in-
teger linear program SAAP(2LMILP):

max
x

∑
(i,j)∈(C×T )

vijxij +
∑

(i,j)∈(F×T )

vijyij

s.t.
∑
j∈T

xij ≤ 1 ∀i ∈ C∑
i∈C

xij ≤ 1 ∀j ∈ T

xij ∈ {0, 1} ∀(i, j) ∈ (C × T )

y solves min
∑

(i,j)∈(F×T )

vijyij∑
j∈T

yij ≤ 1 ∀i ∈ F∑
i∈F

yij ≤ 1−
∑
i∈C

xij ∀j ∈ T

yij +
∑
k�ij

yik +
∑
l�ji

ylj ≥ 1 ∀(i, j) ∈ (F × T )

yij ≥ 0 ∀(i, j) ∈ (F × T )

Formally, we have a mixed integer bilevel optimisation problem—a hier-
archical program in which the set of constraints contains a parametric opti-
misation problem. Solving bilevel programs is difficult in general, let alone
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solving one with binary variables, and applying known algorithms to the
program at hand would yield solutions only for extremely small problem in-
stances. The most popular method for solving bilevel programs is to replace
the second level with a set of Karush-Kuhn-Tucker optimality conditions and
then add these constraints to the first level to form a Mathematical Program
with Equilibrium Constraints (MPEC) (Luo et al. (1996)). However, this in-
troduces a set of complementary constraints that are difficult to deal with.13

In fact, solving a linear bilevel program in which all functions are linear is
already strongly NP-hard (Marcotte and Savard (2005)).14 In our case, the
upper level contains binary variables and hence the problem is even more
difficult.
For devising a way how to practically solve the SAAP problem, we will show
that (SAAP(2LMILP)) is equivalent to a disjoint bilinear program, which
is much more manageable computationally,15 as stated in the following the-
orem:

Theorem 2. The SAAP bilevel mixed integer linear programming model
(SAAP(2LMILP)) is equivalent to the following disjoint bilinear program

13The complementary constraints can then be transformed into a new set of constraints
that involve integer variables using a Big-M method. Alternatively, nonlinear programming
relaxation can be used to approximate these complementary constraints.

14Even checking local optimality in linear bilevel programming is NP-hard, cf. Marcotte
and Savard (2005).

15Although solving bilinear programs is still NP-hard (Audet et al. (1999)), the mathe-
matical programming formulation is in a much nicer form, i.e. we only have to deal with
a single minimisation problem instead of a minimax problem. Notice that not all linear
bilevel programs can be transformed into a bilinear problem. However, a disjoint bilinear
program can be transformed into a linear bilevel program.
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SAAP(DBL):

max
x,λ,β,γ

∑
i∈C,j∈T

vijxij +
∑
i∈F

λi +
∑
j∈T

βj(1−
∑
i∈C

xij) +
∑

(i,j)∈(F×T )

γij

s.t.
∑
j∈T

xij ≤ 1 ∀i ∈ C∑
i∈C

xij ≤ 1 ∀j ∈ T

xij ≥ 0 ∀(i, j) ∈ (C × T )

λi + βj + γij +
∑
k≺ij

γik +
∑
l≺ji

γlj ≤ vij ∀(i, j) ∈ (F × T )

λ ≤ 0,β ≤ 0,γ ≥ 0.

At a high level, the transformation of (SAAP(2LMILP)) into a bilin-
ear program involves three steps. First, we replace the linear program on
the second level with its dual. Since the primal was a minimisation prob-
lem, the dual is a maximisation problem. Having maximisation in both first
and second stages lets us combine the objectives and reduce the problem
to a single-stage optimisation. The resulting problem belongs to the class
of mixed integer non-convex quadratic programming problems and is still
quite difficult to solve. We then exploit the special structure of the problem
to note that the integrality constraints on x can be dropped obtaining a
bilinear program. The details follow in the proof.

Proof. Let λi, βj and γij be dual variables for constraints (4.6)-(4.8) for all
(i, j) ∈ (F × T ). The dual problem is formulated as:

max
λ,β,γ

∑
i∈F

λi +
∑
j∈T

(1−
∑
i∈C

xij)βj +
∑

(i,j)∈(F×T )

γij

s.t. λi + βj + γij +
∑
k≺ij

γik +
∑
l≺ji

γlj ≤ vij ∀(i, j) ∈ (F × T )

λ ≤ 0,β ≤ 0,γ ≥ 0.

Plugging the dual into the original problem and combining two max op-
erators, we obtain the following problem:
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max
x,λ,β,γ

∑
i∈C,j∈T

vijxij +
∑
i∈F

λi +
∑
j∈T

βj(1−
∑
i∈C

xij) +
∑

(i,j)∈(F×T )

γij

s.t.
∑
j∈T

xij ≤ 1 ∀i ∈ C∑
i∈C

xij ≤ 1 ∀j ∈ T

xij ∈ {0, 1} ∀(i, j) ∈ (C × T )

λi + βj + γij +
∑
k�ij

γik +
∑
l�ji

γlj ≤ vij ∀(i, j) ∈ (F × T )

λ ≤ 0,β ≤ 0,γ ≥ 0.

The objective function contains linear terms on (x,λ,β,γ) and a bilinear
term −(

∑
(i,j)∈(C×T ) βjxij). Without this bilinear term, the problem will be

equivalent to two separate optimisation problems: an assignment problem
and a (dual of a) stable matching problem. Due to the presence of the
bilinear terms together with the integrality constraint on xij, this problem
belongs to the class of mixed integer non-convex quadratic programming
problems and is quite difficult to solve. However, once we fix (λ,β,γ), the
objective function is linear on x. The problem becomes:

max
x

∑
i∈C,j∈T

(vij − βj)xij

s.t.
∑
j

xij ≤ 1 ∀i ∈ C∑
i∈C

xij ≤ 1 ∀j ∈ T

xij ∈ {0, 1}

This is an assignment problem,16 and hence the integrality constraint can
be relaxed (see, for example, Bertsimas and Tsitsiklis (1997), Corollary 7.2).

16In the variant of the assignment problem stated here, the number of tasks may be
different from the number of agents and tasks/agents may be left unassigned. One can
convert this version to the standard assignment problem by adding dummy tasks/agents.
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Thus, for every solution λ,β,γ (or equivalently, for every y) to the agent-
optimal stable matching problem, there is an integer solution x that is opti-
mal. In other words, there is always an integer solution x that is optimal, and
we can drop the integrality constraints in SAAP. This leads to the disjoint
bilevel program SAAP(DBL).

There is an extensive literature on bilinear programming. In particular, a
simple greedy approach, such as ‘hill climbing’ (see, e.g., Russell and Norvig
(2003)), may obtain high-quality solutions in little time. This is done by iter-
atively solving an LP for optimal (λ,β,γ) for each fixed x and then solving
another LP for an optimal x by fixing the newly found (λ,β,γ). This pro-
cess is repeated until the optimal value does not improve. At that point we
obtain a locally optimal solution. It is noted also that the disjoint constraint
sets in the SAAP problem are quite nice. The constraints on x define an
assignment polyhedron with known extreme points and the constraints on
(λ,β,γ) correspond to a dual feasible space of the stable matching problem.
This means the LP problems can be solved very efficiently and the algorithm
converges very fast to a local optimal solution. White (1992) converts a bi-
linear program into a big LP whose constraints are generated sequentially
through solving smaller LPs. This methods promises finite convergence and
can be used to solve SAAP(DBL) as the assignment problem and the sta-
ble matching problem can be solved very efficiently. The bilinear program
can also be reduced to a concave minimisation problem where an outer ap-
proximation algorithm can be applied (Thieu (1988)). More recent advanced
methods for solving disjoint bilinear programming can be found in Alarie
et al. (2001) who apply cutting plane methods to produce global optimal
solutions. Alarie et al. (2001) show that cutting plane methods can be used
to solve disjoint bilinear programming problems with up to 500 variables in
each disjoint set and with 100 constraints.

5. Conclusions

Our work introduces assignment problems in which autonomous agents
are placed together with those fully controlled by a central planner. The
autonomous agents act to obtain their own individual goals. The central
planner coordinates the controlled agents with the aim to optimise the over-
all performance of the system, while taking into account the behaviour of
the self-motivated participants. This scenario resembles many economic sit-
uations, some of which were outlined in Section 2.
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Clearly, the search process assumed for the free agents in SAAP is not the
only reasonable model. Indeed, there are many other possibilities for how one
could model the behaviour of the free agents. For example, many real-world
scenarios could be better described with a stochastic search process. One
might also consider search strategies taken from cognitive psychology, like
the famous satisficing heuristic of Simon (1957) or the take-the-best heuristic
of Gigerenzer and Goldstein (1996). It may be a worthwhile effort to perform
a similar analysis like the one presented in this paper, but with alternative
behavioural assumptions for the free agents.

Despite of its various reasonable alternatives, we want to stress that the
search process modelled in this article has some intriguing features. Firstly,
it is quite natural to assume that the free agents check for free tasks accord-
ing to some linear order. Secondly, the outcome assignment does not hinge
on the assumption that controlled agents are assigned first. This follows
from McVitie and Wilson (1971), as discussed in Section 3. Thirdly, in the
deferred acceptance algorithm of Gale and Shapley (1962) there is no incen-
tive for the proposing side, in our case the free agents, to misrepresent their
preferences (cf. Dubins and Freedman (1981), Roth (1982)). In our context,
this means that the free agents cannot improve their outcome by changing
the order in which they approach tasks. So, even if free agents would have
enough information and computing power to act strategically, it would not
be worthwhile doing so. In contrast, alternative models of search behaviour
would have to take care of strategic manipulations on the free agents’ parts.
Admittedly, the latter two points make handling our model merely conve-
nient, while they provide no support for the empirical validity of the DAB
assumption.

Other modifications to our model come to mind. It may be interesting
to change the informational assumptions of the model. What if the produc-
tivities of the autonomous workers for different tasks is private knowledge of
that worker?17 Would there be a way to make the free agents reveal their
private information? Could they even be incentivised to pick the task which
would be best from the central planner’s point of view? Designing a transfer
scheme to achieve such goals would demand the free agents to be modelled
with cardinal preferences. Arguably, this would reduce the robustness of
the model, but it might lead to economically interesting dynamics similar to

17We thank Ulrich Pferschy for suggesting this modification.
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those which can be found in the famous labour market adjustment models
of Crawford and Knoer (1981) and Kelso and Crawford (1982).

The idea of introducing autonomous agents in scenarios where the cen-
tral planner normally has full control is not limited to assignment problems.
Many other standard problems could be extended to include autonomous
agents. Transportation or network flow with some transfers performed by
autonomous agents, knapsack where autonomous agents are able to add their
own items to the knapsack, and graph colouring with some nodes coloured
by the agents are just a few examples.
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