
On the Existence of Pure Strategy Nash Equilibria in Integer–Splittable
Weighted Congestion Games

Long Tran-Thanh1, Maria Polukarov1, Archie Chapman2, Alex Rogers1, and Nicholas R. Jennings1

1 School of Electronics and Computer Science,
University of Southampton, UK

{ltt08r,mp3,acr,nrj}@ecs.soton.ac.uk
2 The University of Sydney Business School,

Sydney, Australia
a.chapman@econ.usyd.edu.au

Abstract. We study the existence of pure strategy Nash equilibria (PSNE) in integer–splittable weighted conges-
tion games (ISWCGs), where agents can strategically assign different amounts of demand to different resources,
but must distribute this demand in fixed-size parts. Such scenarios arise in a wide range of application domains,
including job scheduling and network routing, where agents have to allocate multiple tasks and can assign a num-
ber of tasks to a particular selected resource. Specifically, in an ISWCG, an agent has a certain total demand (aka
weight) that it needs to satisfy, and can do so by requesting one or more integer units of each resource from an
element of a given collection of feasible subsets.1 Each resource is associated with a unit–cost function of its level
of congestion; as such, the cost to an agent for using a particular resource is the product of the resource unit–cost
and the number of units the agent requests.
While general ISWCGs do not admit PSNE (Rosenthal, 1973b), the restricted subclass of these games with linear
unit–cost functions has been shown to possess a potential function (Meyers, 2006), and hence, PSNE. However, the
linearity of costs may not be necessary for the existence of equilibria in pure strategies. Thus, in this paper we prove
that PSNE always exist for a larger class of convex and monotonically increasing unit–costs. On the other hand, our
result is accompanied by a limiting asumption on the structure of agents’ strategy sets: specifically, each agent is
associated with its set of accessible resources, and can distribute its demand across any subset of these resources.
Importantly, we show that neither monotonicity nor convexity on its own guarantees this result. Moreover, we give
a counterexample with monotone and semi–convex cost functions, thus distinguishing ISWCGs from the class of
infinitely–splittable congestion games for which the conditions of monotonicity and semi–convexity have been
shown to be sufficient for PSNE existence (Rosen, 1965). Furthermore, we demonstrate that the finite improvement
path property (FIP) does not hold for convex increasing ISWCGs. Thus, in contrast to the case with linear costs, a
potential function argument cannot be used to prove our result. Instead, we provide a procedure that converges to
an equilibrium from an arbitrary initial strategy profile, and in doing so show that ISWCGs with convex increasing
unit–cost functions are weakly acyclic.

1 Introduction

The study of interaction of multiple self–interested parties (“agents”) sharing commonly–available facilities (“re-
sources”) is central to computational game theory. Such settings naturally arise in a wide range of typical application
domains, from traffic routing in networks (e.g. roads, air traffic or information and communication networks (Rosen-
thal, 1973a; Roughgarden and Tardos, 2002)), to competition in job scheduling problems (e.g. for computational
services or machine scheduling (Koutsoupias and Papadimitriou, 1999)).

In many real–world scenarios in these domains, agents may find it beneficial to assign different amounts of demand
to different resources, but may have restrictions on the size of units in which this demand is distributed. For example,
consider a job scheduling problem, comprised of n agents and m independent machines, where each agent has several
indivisable jobs to be executed. To each selected machine, an agent pays a usage cost, which is equal to the number of
jobs the agent allocates to that machine multiplied by the unit–cost per job, typically depending on the total level of
demand on the machine (i.e., its congestion). A similar situation arises in communication networks (e.g. the Internet),
where agents send packets (or, messages) and have to decide how many packets to route on each path in the network

1 Additionally, strategy sets are restricted by certain domain–specific constraints—for instance, in network routing, an agent’s
strategy must define a feasible flow between its given pair of source and target nodes.



to minimise possible delays. Additional examples for a problem of this kind may include procuring factor inputs for
manufacturing processes or purchasing transport capacity for logistics networks. Importantly, in all these situations,
the agents cannot split their demands in arbitrary ways, but must do so in integer units.

Problems of this kind are addressed in the literature as integer–splittable weighted congestion games (ISWCGs),
where agents strategically choose from a common set of resources, and are allowed to assign multi–unit requests to
each of their selected resources; however, they are constrained to make their allocations in fixed-size parts (particularly,
integer units). Each resource is equipped with a “unit–cost function” that indicates the cost that each agent pays per
unit of request, depending on the aggregate level of congestion on that resource (i.e., the total number of units the
users contribute to the resource). Since the agents may have different congestion impacts, the cost each agent has to
pay for the use of a particular resource is the product of the amount of units it requests from that resource and the
corresponding unit–cost. For example, in a computational services setting, if an agent were to purchase four units of
processor time from a particular service provider, it would pay the same unit–cost for all four units, with the unit–
cost determined by the total demand from all agents for that resource. The overall agent’s cost is given by the sum
of its costs for each resource it uses. In a ISWCG, each agent has a certain integer demand (or, weight) for resource
units it needs to satisfy, and its aim is to minimise the total cost of the units by distributing its weight across the
available resources. Unit–cost functions are resource–specific, but are the same for all agents (i.e., resource providers
cannot discriminate between users), while demands for resource units can vary across the agents. Note that the above
examples are captured in the ISWCG model by identifying the set of resources with the set of machines or network
links, respectively, where differences in their technical parameters and performance factors, such as efficiency, or
speed, are reflected by resource–dependent costs per unit (e.g. job, or data packet). An agent’s demand represents the
amount of resources (job, or data traffic) each agent has, and the set of feasible assignments (task allocations, traffic
routes) corresponds to the set of feasible strategy profiles.

1.1 Related Work

Much of related work deals with a traditional congestion game model by Rosenthal (1973a), where agents have to
choose from a given finite set of resources, and where the possible choices of an agent are given by the subsets of
resources that satisfy its goals. The cost of a resource is determined by the total number of its users, and an agent’s
overall cost is given by the sum of resource costs over the set of the agent’s selected resources. In a variant setting of
network congestion models, agents have to choose subsets of edges on a graph forming a path from the agent’s origin
to destination, in order to route their demand (i.e. flow) through the network, and the cost (e.g. latency) of each edge
varies with the number of agents traversing that edge.

The important property of congestion games shown by Rosenthal (1973a) is the existence of a Nash equilibrium
in pure strategies (PSNE)—a profile where each agent plays a certain (non–randomised) strategy and no one has an
incentive to unilaterally change it. Such solutions are highly desirable, since, from a system–wide perspective, they
imply that a system has a deterministic stable state. This is necessary in a range of control problems where randomised
strategies are not appropriate (e.g. in industrial processing or transport applications). Also, unlike mixed strategy and
correlated equilibria, PSNE do not rely on the assumption that agents have the capacity to accurately randomise their
actions according to an equilibrium prescription.

Moreover, congestion games are also known to possess a stronger charateristic, called the “finite improvement path
property” (FIP), implying that any sequence of unilateral improvement deviations (i.e., strategy changes that decrease
an agent’s total cost) will converge to a PSNE in finite time. This is implied by the existence of a “potential function”
that decreases along any such improvement path (Monderer and Shapley, 1996). Given this, the players can use a
variety of simple potential–based search processes to find a PSNE in a distributed fashion, such as fictitious play or
weighted regret monitoring (Leslie and Collins, 2006; Marden et al., 2007).

The traditional model has been generalised to a variety of related situations. Such generalisations, for exam-
ple, include player–specific congestion games (Milchtaich, 1996) where an agent’s payoff depends on its identity,
weighted congestion games (Milchtaich, 1996), in which agents may have different (although fixed) congestion im-
pacts (weights), local–effect games (Leyton-Brown and Tennenholtz, 2003) with an agent’s cost for a particular re-
source being also affected by a congestion on its neighbouring resources, congestion games with failures (Penn et al.,
2009a) and random-order congestion games (Penn et al., 2009b) modelling faulty or asynchronous resources, and
congestion–averse games (Byde et al., 2009; Voice et al., 2009) where the agents’ utilities are determined by general
real–valued functions of congestion vectors. Note that in all these settings, agents are restricted to request only a single
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or a fixed number of units from each particular chosen resource; that is, in terms of the network congestion model,
they have to unsplittably route their flow within the network.

At the other extreme, infinitely–splittable congestion game models assume that agents have divisible demand,
which can be fractionally split acroos an arbitrary number of resources (paths), in any proportion. For this setting, a
result from Rosen (1965) implies that PSNE are guaranteed to exist if resource cost functions are semi–convex2 and
monotone increasing. As an intermediate concept between splittable and unsplittable games, the model of k–splittable
network congestion models was introduced by Beier et al. (2004) to capture scenarios where agents are restricted to
split their demand across at most k different paths. However, the portion of the demand that an agent allocates to a
single path can be fractional. Beier et al. (2004) showed that it is NP–hard to decide whether a PSNE exists within
such settings. In addition, Shachnai and Tamir (2002); Krysta et al. (2003) obtained similar results for k–splittable
congestion games in the job scheduling domain.

More relevant to our work is the paper by Meyers (2006) where the k–splittable model is modified so that agents
are only allowed to allocate integer amounts of demand to each chosen resource (or, path). The authors showed that
the restricted subclass of these games where the unit–cost functions are linear, possesses a potential function, and
hence, the FIP holds and a PSNE is guaranteed to exist. For a general case, Rosenthal (1973b) gave an example of an
asymmetric weighted network congestion game that does not have an equilibrium in pure strategies. More recently,
Dunkel and Schulz (2008) strengthened this result by showing that the problem of deciding whether a weighted
network congestion game with integer–splittable flows admits a PSNE is strongly NP–hard.

1.2 Our Contribution

In this paper, we extend positive results on the existence of a pure strategy equilibrium in integer–splittable congestion
games to a larger class of unit–cost functions which are monotonically increasing and convex. From a practical point
of view, this class is important as convex increasing costs occur in a wide range of application domains. Indeed, in
many real–world systems, marginal costs typically increase as total demand increases (e.g. energy cost in smart grids
or delay in multi–server systems). Furthermore, such systems are often regarded as overloaded, if the total demand
exceeds a certain threshold. In this case, the users often have to pay extremely higher costs for using the resources (in
smart grids, for example, each power plant has a finite production limit, and if the total demand exceeds the sum of
these limits, additional expensive peaking plant must supply the excess). We note that our result is accompanied by a
limiting asumption on the structure of agents’ strategy sets. Specifically, we assume that each agent is associated with
its set of accessible resources, wich is a part of a given superset, and can distribute its demand across any subset of
these resources. For sake of brevity, in what follows we slightly abuse the notation and use the term ISWCG to define
a game with such restricted strategy set structures.

The above assumption implies that negative results by Rosenthal (1973b) and Dunkel and Schulz (2008) do not
apply to our setting. However, as we show, the existence of PSNE is still violated. Moreover, PSNE are not guaranteed
to exist in games with either non–monotone or non–convex unit–costs, implying the necessity of these conditions for
PSNE existence. Interestingly, our examples show that even functions which are monotone and semi–convex result in
games with no pure strategy equilibria, thus distinguishing between the classes of ISWCGs and infinitely–splittable
congestion games.

Following this, our main result proves that a pure strategy equilibrium is guaranteed for ISWCGs with mono-
tonically increasing and convex unit–costs. Importantly, as we show, PSNE exist in these games despite of the non–
existence of a potential function and the FIP. Consequently, in contrast to the case with linear costs (Meyers, 2006),
potential–based methods cannot be used for proving PSNE existence and finding such equilibria. Based on this, we
provide a search algorithm that returns a PSNE of a given game in finite time. Finally, we note that our algorithm
shows convergence from an arbitrary initial strategy profile, thus showing that convex increasing ISWCGs possess the
weak acyclicity property (Monderer and Shapley, 1996).

The remainder of the paper unfolds as follows. First, in Section 2 we formally define the model for ISWCGs. Then,
in Section 3 we show that no guarantees on PSNE existence can be made if the unit–cost functions are not convex
or monotone increasing. Following this, in Section 4 we study the case of ISWCGs with convex increasing costs.
We show that these games do not generally possess a potential function by giving an example of an improvement
cycle. Nonetheless, we prove that they are guaranteed to possess PSNE if the cost function is convex and monotone

2 A function f(x) is semi-convex if x · f(x) is convex.
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increasing, and devise an algorithm for computing them. Due to space limitations, some of the proofs are ommited
from this version of the paper.

2 The Model

Consider a congestion domain with a set N = {1, . . . , n} of agents, where each agent i ∈ N has a set Ri of mi ∈ N
accessible resources, which is a subset of a finite superset R = {r1, . . . , rm}. An agent i needs to execute Xi ∈ N task
units, and can distribute this demand (or, weight) arbitrarily among its resources. Note that each agent can use more
than one integer unit from a single selected resource. An agent i’s (pure) strategy is given by xi =

(
xi
r

)
r∈R, where

xi
r ∈ N is the number of units that agent i demands from resource r ∈ R, such that xi

r = 0 for all r /∈ Ri and∑
r∈R

xi
r =

∑
r∈Ri

xi
r = Xi (1)

Every combination of strategies (a strategy profile) x =
(
xi
)
i∈N corresponds to a congestion vector h(x) = (hr(x))r∈R,

where
hr (x) =

∑
i∈N

xi
r (2)

indicates the congestion—the total number of assigned tasks (or, demanded units) on resource r ∈ R in profile x.
From the perspective of agent i, a strategy profile x can be viewed as

(
xi, x−i

)
, where x−i stands for the joint

strategy of other agents. Similarly, for r ∈ R we denote by

h−i
r (x) =

∑
j 6=i

xj
r = hr (x)− xi

r (3)

the congestion on resource r incurred by the collective demand of the agents, excluding agent i.
Each resource r ∈ R is associated with a unit–cost (or simply, a cost) function cr : N→ R defining the cost for a

unit of demand on resource r as a function of the total congestion on the resource. For simplicity, it is convenient to
assume that cost functions are non–negative, although our results do not rely on this assumption.

Given this, the payoff function of an agent is defined as follows. The overall cost agent i has to pay in a strategy
profile x is

Ci(x) =
∑
r∈R

xi
rcr (hr(x)) (4)

Furthermore, the total cost of the system is given by

C (x) =
∑
i∈N

Ci (x) =
∑
r∈R

hr (x) cr (hr(x)) (5)

Definition 1. An integer–splittable weighted congestion game (ISWCG) Γ =
(
N,R,

(
Xi
)
i∈N , (cr(·))r∈R

)
consists of

a set N of n ∈ N agents, a set R of m ∈ N resources, a unit–cost function cr for each resource, and for each agent
i a set of accessible resources Ri ⊆ R and a total demand (aka weight) Xi. The strategy set for each agent i ∈ N is
the set of m-dimensional vectors

{(
xi
r

)
r∈R ∈ Nm

}
, such that

∑
r∈R xi

r = Xi, xi
r = 0 ∀r /∈ Ri, and the cost to the

agent for a combination of strategies x is Ci(x) =
∑

r∈R xi
rcr (hr(x)), where hr(x) is the vector of congestion as

determined by x.

3 Non-existence of PSNE

In this section, we show that general ISWCGs do not necessarily admit pure strategy Nash equilibria (PSNE). We
provide two examples, based on which we reason about conditions that would guarantee PSNE existence.

Example 1. Consider a two–player ISWCG with demands X1 = 2 and X2 = 1, and two resources with the following
unit–cost functions:

cr1 (1) = 12, cr1 (2) = 5, cr1 (3) = 7

cr2 (1) = 10, cr2 (2) = 6, cr2 (3) = 10

The payoff matrix of the game is presented in Table 1. One can easily verify that there is no PSNE in this game.
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(0, 2) (1, 1) (2, 0)
(0, 1) 10, 20 6, 18 10, 10
(1, 0) 12, 12 5, 15 7, 14

Table 1. No PSNE in ISWCGs with non-monotone unit–costs.

Note that the cost functions in Example 1 are not monotone, but convex. That is, the convexity condition on its
own is not sufficient for the existence of a pure strategy equilibrium. The next example demonstrates that neither is
monotonicity sufficient.

Example 2. Consider a two–player ISWCG with demands X1 = 3 and X2 = 1, and two identical resources with a
unit–cost function cr1(·) = cr2(·) = cr(·) given by:

cr (1) = 3, cr (2) = 8, cr (3) = 10 cr (4) = 12

The payoff matrix of the game is presented in Table 2. Inspection shows that there is no PSNE in this game.

(0,3) (1,2) (2,1) (3,0)
(1,0) 3, 30 8, 24 10, 23 12, 36
(0,1) 12, 36 10, 23 8, 24 3, 30

Table 2. No PSNE in ISWCGs with non-convex cost functions.

As mentioned above, Example 1 is convex, while Example 2 is monotone–increasing, implying that if either property
of the cost functions is violated, a PSNE is not guaranteed. Furthermore, the cost function cr(x) in Example 2 is
semi–convex (i.e., x · cr(x) is convex). It implies that the conditions of monotonicity and semi-convexity, which have
been shown to be sufficient for PSNE existence in infinitely–splittable congestion games, do not apply to the integer–
splittable case! Based on this, in the following section we prove that a pure strategy equilibrium always exists in the
ISWCGs whose resource unit–cost functions are monotone–increasing and convex.

4 Convex Increasing ISWCGs

In this section, we investigate the subclass of ISWCGs with convex and monotonically increasing cost functions
(henceforth, convex increasing ISWCGs). Our main result proves that pure strategy Nash equilibria always exist in
such games. Importantly, as we show in 4.1, an arbitrary sequence of myopic improving deviations may cycle even
in this case; hence, the FIP property does not hold and a potential function argument is not applicable. Against this
background, in 4.2 we propose a special dynamic procedure, that reaches an equilibrium from any starting point. This
shows that convex increasing integer–splittable congestion games possess the weak–acyclicity property and implies
an algorithm for finding PSNE in these games.

4.1 Violating the Finite Improvement Property

Given a pure strategy profile of a game, consider an arbitrary sequence of unilateral moves, where at each step a
deviating agent improves its payoff with respect to the current one it gets from the game. If such a sequence of myopic
improvement steps terminates, the resulting strategy profile is a Nash equilibrium. Now, if every such path leads to
a PSNE, it is said that the game has the finite improvement path property (FIP). Importantly, the FIP is equivalent to
the existence of a generalised ordinal potential (Monderer and Shapley, 1996)—a real-valued function over the set
of pure strategy profiles that strictly decreases along any improvement path. Thereby, if the FIP holds for a particular
game, then the agents only need to search for a local minimum point of the potential, in order to find a pure strategy
equilibrium. It is known that Rosenthal’s congestion games always possess a potential function and the FIP and, in
fact, are a central class of games with this property (see Monderer and Shapley (1996) for a detailed discussion).

Below, we demonstrate that convex increasing ISWCGs do not fall within the framework of congestion games,
as these games generally violate the FIP property. Specifically, we provide an example of the convex increasing
ISWCG that contains an improvement cycle, as follows.
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Example 3. Consider a convex increasing ISWCG game with 2 agents N = {1, 2} and 5 resources R = {r1, r2, . . . , r5},
where both agents have access to all of the resources. Agent 1 requires 14 units of resources, and agent 2’s demand is
36. The unit–cost functions have the following particular values:

cr1 (1) = 39

cr2 (1) = 350

cr3 (35) = 5, cr3 (36) = 8, cr3 (37) = 21

cr4 (1) = 150

cr5 (13) = 16, cr5 (14) = 22, cr5 (15) = 52

Consider profile x = (x1, x2), where x1 = (1, 0, 10, 0, 3) and x2 = (0, 1, 25, 0, 10), with a corresponding congestion
vector h(x) = (1, 1, 35, 0, 13). Accordingly, the vector of unit–cost values as determined by x is (39, 350, 5, 0, 16),
and the agents’ overall costs are C1(x) = 1 · 39+ 10 · 5+ 3 · 16 = 137 and C2(x) = 1 · 350+ 25 · 5+ 10 · 16 = 635.
We construct an improvement cycle that starts at x and consists of simple improvement steps at which an agent moves
a single task unit from one resource to another. First, agent 1 moves 1 unit from r1 to r3. The resulting cost to agent
1 is then given by 11 · 8 + 3 · 16 = 136, which is less by 1 than what the agent paid before. Following this, agent 2
moves a unit from r2 to r3 and gets 26 · 21+10 · 16 = 706, thus reducing the cost of 1 · 350+25 · 8+10 · 16 = 710 it
paid after the first improvement step by agent 1. The whole sequence of moves and the corresponding cost reductions
to deviating agents is listed in Table 3. Note that after 7th step the system turns back to the initial strategy profile, and
so the improvement path cycles.

Step Deviator Move Improvement
1 Agent 1 1 unit r1 → r3 137 - 136 = 1
2 Agent 2 1 unit r2 → r3 710 - 706 = 4
3 Agent 1 1 unit r3 → r4 279 - 278 = 1
4 Agent 2 1 unit r3 → r5 368 - 367 = 1
5 Agent 1 1 unit r4 → r5 266 - 258 = 8
6 Agent 2 1 unit r5 → r2 697 - 695 = 2
7 Agent 1 1 unit r5 → r1 138 - 137 = 1

Table 3. Improvement cycle in ISWCGs with convex increasing unit–cost functions.

However, the non-existence of the FIP and a potential function in a class of games does not generally contradict
the existence of an equilibrium in pure strategies. Thus, in the following section, we prove that convex increasing
integer–splittable congestion games do always possess such an equilibrium, despite of the non–existence of the FIP.
Our proof is constructive and yields a natural procedure that achieves an equilibrium point in a finite number of
steps. Importantly, the convergence is guaranteed, regardless of the initial strategy profile, and so convex increasing
congestion games with multi–unit resource demands are weakly–acyclic.

4.2 Nash equilibria

We start with the following Lemma 1, introducing a useful property of convex increasing functions that we will employ
in proving results within this section.

Lemma 1. Let c : N → R be a convex and monotonically increasing function. Then, for any 0 ≤ x ≤ y integer and
h ≥ 0, the following holds:

• yc (h + y)− xc (h + x) ≥ (y − x) [(x + 1) c (h + x + 1)− xc (h + x)]

• yc (h + y)− xc (h + x) ≤ (y − x) [yc (h + y)− (y − 1) c (h + y − 1)]

Moreover, the inequalities are strict if y > x+ 1.

We now turn to prove our main result. In doing so, we first provide a useful characterisation of best response strategies
in ISWCGs with convex increasing costs (Theorem 1). We then use this characterisation to prove PSNE existence
(Theorem 2) and define a special type of improvement dynamics (Algorithm 1) that converges to a Nash equilibrium
from an arbitrary starting point (Theorem 3).
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Distances between Strategies

Definition 2. The modified Hamming distance between agent i’s strategies xi =
(
xi
r

)
r∈R and yi =

(
yir
)
r∈R is

defined as
H
(
xi, yi

)
=
∑
r∈R

∣∣∣xi
r − yi

r

∣∣∣ (6)

Now, since equation (1) must hold for any strategy of agent i, from Definition 2 we easily derive the following lemma.

Lemma 2. In an integer–splittable congestion game, if xi 6= yi are different strategies of agent i, then H
(
xi, yi

)
≥ 2.

Based on this lemma, if the modified Hamming distance between two strategies xi and yi is exactly 2, we will refer to
them as neighbours. The next lemma then states that an improving deviation from a particular strategy (if one exists)
can always be found among its neighbours.

Lemma 3. Let x =
(
xi, x−i

)
be a strategy profile of a given ISWCG with convex increasing costs. If xi is not agent

i’s best response against x−i, then there exists a strategy yi, such that H
(
xi, yi

)
= 2 and Ci

(
yi, x−i

)
< Ci (x).

Single Unit Moves Given this, it will be useful to identify best improving deviations within the set of neighbouring
strategies.

Definition 3. Let Di
max (x) denote the value of maximal improvement that agent i can achieve by deviating to a

neighbouring strategy from profile x. That is,

Di
max (x) = max

yi:H(xi,yi)=2

{
C (x)− C

(
yi, x−i

)}
(7)

Obviously, if x is a Nash equilibrium profile, then for any i ∈ N we have Di
max (x) ≤ 0. Otherwise, if for some agent

i its strategy xi is not a best response against x−i, then by Lemma 3, there exists a strategy yi for agent i such that
H
(
xi, yi

)
= 2 and Di

max (x) ≥ U (x)− U
(
yi, x−i

)
> 0. This implies the following theorem.

Theorem 1. Given a convex increasing ISWCG, a strategy xi is a best response to agent i ∈ N against s−i if and
only if Di

max (x) ≤ 0.

Thereby, a strategy profile x is a PSNE if and only if the condition in Theorem 1 holds for each agent i ∈ N . We
seek such a profile by constructing an improvement path, where at each step an agent deviates to a best neighboring
strategy. Let us now characterise these improving moves.

From Lemma 2, it is easy to see that xi and yi are neighboring strategies of agent i ∈ N if and only if there are
p, q ∈ Ri such that yip = xi

p − 1 and yiq = xi
q + 1. That is, agent i deviates from xi to yi by moving exactly one task

unit from resource p to resource q. Hereafter, we refer to such deviations as single unit moves.
Let Di

p→q (x) denote agent i’s value of improvement by taking a single unit move p→ q from profile x. That is,

Di
p→q (x) = Ci (x)− Ci

(
yi, x−i

)
(8)

where yi is such that yip = xi
p−1, yiq = xi

q+1 and yir = xi
r for all r ∈ R\{p, q}. Given this, we can rewrite Di

max (x)
as follows:

Di
max (x) = max

p 6=q∈Ri

Di
p→q (x) (9)

Now, let us calculate

Di
p→q (x) =

[
xi
pcp (hp (x))−

(
xi
p − 1

)
cp (hp (x)− 1)

]
+
[
xi
qcq (hq (x))−

(
xi
q + 1

)
cq (hq (x) + 1)

]
(10)

and consider
(11)pi∗ ∈ arg max

r∈Ri: xi
r>0
{xi

rcr (hr (x))−
(
xi
r − 1

)
cj (hr (x)− 1)}
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That is, resource pi∗ guarantees to agent i a maximal cost reduction if it removes one unit of demand from that
resource. Similarly, resource

(12)qi∗ ∈ arg min
r∈Ri

{
(
xi
r + 1

)
cj (hr (x) + 1)− xi

rcj (hr (x))}

guarantees a minimal increase in cost when i adds one unit of demand to qi∗.
Obviously, for any pair of resources p and q with xi

p > 0 we have that Di
p→q (x) ≤ Di

pi∗→qi∗ (x). That is, if
pi∗ 6= qi∗ then Di

max (x) = Di
pi∗→qi∗ (x), and if Di

max (x) > 0 then pi∗ → qi∗ is a best single unit move to agent i
from x. Otherwise, if pi∗ = qi∗, then the following lemma implies that xi is a best response strategy to agent i.

Lemma 4. Given a convex increasing ISWCG and a strategy profile x, if for agent i ∈ N there exist pi∗ and qi∗ (as
defined in equations (11) and (12), respectively) such that pi∗ = qi∗, then Di

max (x) ≤ 0.

Best Response Dynamics Let x be an arbitrary strategy profile of a given ISWCG with convex increasing costs. As
we concluded before from Theorem 1, if Di

max (x) ≤ 0 holds for every agent i ∈ N then x is a Nash equilibrium
strategy profile. So assume otherwise, and let i be an agent with Di

max (x) > 0. By Lemma 4, we have that pi∗ 6= qi∗,
and let Bi(x) denote the number of best single unit moves of i from x. We prove the following.

Theorem 2. Given an ISWCG with convex increasing costs, let x be a strategy profile which is not in equilibrium.
Then, there exists a profile y, such that for each agent i ∈ N , one of the following three conditions is satisfied:

1. Di
max (x) > Di

max (y)

2. Di
max (x) = Di

max (y) and Bi(x) > Bi(y)

3. Di
max (x) = Di

max (y) and Bi(x) = Bi(y)

Moreover, for at least one agent either 1. or 2. holds.

Corollary 1. Given an ISWCG with convex increasing costs and a strategy profile x, let

(13)P (x) = L ·
∑
i∈N

Di
max(x) +

∑
i∈N

Bi(x)

where L is a large number satisfying L ≥ nm(m−1)
minp,q,k,l |cp(k)−cq(l)| . Then, if x is not a Nash equilibrium, then there exists

a profile y, such that P (x) > P (y).

Note that function P (·) in (13) does not decrease along any improvement path, and so the FIP does not follow.
Nonetheless, Theorem 2 and Corollary 1 imply the existence of pure strategy Nash equilibria in convex increasing
integer–splittable congestion games. To prove Theorem 2 we need the following auxiliary lemma.

Lemma 5. Given a convex increasing ISWCG, assume there is a sequence (x1, x2, . . . xT ) of strategy profiles such
that:

– x1 is not a pure strategy Nash equilibrium, and x2 is obtained from x1 by a best single unit move of some agent i
with Di

max (x1) > 0

– ∀1 < t < T,∃r+t , r−t ∈ R , such that h
r+t

(xt) = h
r+t

(x1) + 1, h
r−t

(xt) = h
r−t

(x1) − 1. Furthermore, ∀r ∈
R \ {r+t , r−t }we have hr (xt) = hr (x1)

– ∀1 < t < T , ∃jt ∈ N with Djt
max (xt) > Djt

max (x1) or Djt
max (xt) = Djt

max (x1) ∧ Bjt(xt) > Bjt(x1), and ∃r ∈ Rjt ,
such that either Djt

max (xt) = Dj

r+t →r
(xt) or Djt

max (xt) = Djt

r→r−t
(xt) . Furthermore, xt+1is obtained from xt by

the corresponding best single unit move by agent j, that removes a unit from r+t (or adds one to r−t ). Moreover, if
r = r+t or r = r−t (i.e., Dj

max (xt) = Dj

r+t →r−t
(xt)), then t+ 1 = T .

Then, for all 1 < t < T we have Djt
max (xt+1) < Djt

max (x1) or Djt
max (xt+1) = Djt

max (x1) ∧Bjt(xt+1) < Bjt(x1).
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That is, at each step t in the sequence, we have an agent jt, whose current maximal improvement is higher than the
value it had in the initial strategy profile x1 (or the number of best single unit moves available to i at step t is greater
than that it had at the first step). Furthermore, the congestion levels in xt differ from congestion levels in the initial
profile x1 for only two resources r+t and r−t , plus/minus one unit each. A best move of agent jt is to either move a
unit from r+t to some resource r (and so r = r+t+1, unless r = r−t ), or to take one from some r and add to r−t (in
which case, r = r−t+1, unless r = r+t ). This best move by jt then results in the subsequent strategy profile xt+1, and if
r = r−t or r = r+t (i.e., agent jt’s best move is from r+t to r−t ), then this is the last move in the sequence. Now, if such
a sequence exists in a given game, then at each iteration, the value of maximal improvement for the corresponding
deviator (or the number of its available best single unit moves) decreases comparing to what it had in the initial point
of the sequence x1.

Proof (of Theorem 2). We construct a finite sequence of best single unit moves that results in a strategy profile y for
which the theorem holds. In particular, we first prove that during the sequence, if we reach a certain congestion level
profile twice, then we can leave out the in between steps. Using this result, we then show that we cannot infinitely
continue the sequence without reaching a strategy profile for which the theorem holds.

In doing so, we define a particular order of moves, as follows. Let {x1, x2, . . .} denote the sequence of strategy
profiles resulted from a sequence of best single unit moves xt → xt+1, t ≥ 1, as defined in Lemma 5. We refer to the
moves r+t → r and r−t → r as forward and backward moves, respectively (moves r+t → r−t can be both, but we will
make it clear in the context). Note that by Lemma 5, if at step t some agent i violates the conditions of the theorem,
then there is always either a forward or a backward move that it can apply. Given this, we start the sequence with a
series of forward moves, and when no such move is available, we switch to backward moves if any exist. We prove
that this construction leads to a desired strategy profile in any case. The steps involved within the proof are described
below.

Step 1: By definition, we move from x1 to x2 with some agent i who applies its best single unit move. From x2,
we only allow agents to make forward moves (if exist); that is, for now, backward moves are out of consideration.
Let {rf1 , rf2 , rf3 , . . .} denote the sequence of such forward moves, where rft → rft+1 denotes a forward move from
resource rft to rft+1

at step t. For the sake of simplicity, we assume that the first move, that deviates x1 to x2, is also
a forward move (i.e., that move is rf1 → rf2 , and we start the sequence from the initial strategy profile).

Now, consider the case where ∃u, v, u < v, such that rfu = rfv , and none of them is equal to rf1 ; that is, the se-
quence of forward moves creates a loop by turning back to a previously visited resource, which is not the first resource.
We show that if the sequence is {rf1 , rf2 , . . . , rfu , . . . , rfv , rfv+1

, . . .}, then if agent i is the one who makes the move
rfv → rfv+1

, then it can make the move rfu → rfv+1
as well; and thus, the sequence {rf1 , rf2 , . . . , rfu , rfv+1

, . . .} is
also a feasible sequence of forward moves. That is, we can leave out the loop {rfu+1 , . . . , rfv}, without violating the
conditions of Lemma 5.

Let xfu and xfv denote the profiles that result from subsequences {rf1 , rf2 , . . . , rfu} and {rf1 , rf2 , . . . , rfu , . . . , rfv},
respectively. Now, suppose that agent i makes the move rfv → rfv+1

from xfv . We show that this move is available to
i at xfu as well. Indeed, consider the congestion level and the demand of agent i on resource rfu in xfu and xfv . Since
all the moves are forward moves, it is easy to see that the congestion level in both profiles is given by hrfu

(x1) + 1

(this is since rfu = r+fu = r+fv ). Furthermore, it can be shown that the demand of agent i on rfu in xfv is at most as
high as it was in xfu . One exceptional case is when agent i is the one who makes the move rfv−1

→ rfv , and thus its
demand on rfu may be increased by one. However, Lemma 5 implies that whenever an agent makes a best unit move
(either forward or backward), at next step of the sequence it satisfies the conditions of the theorem. Hence, it cannot
be the one who makes the subsequent move. Given this, if agent i is the one who makes the move rfv−1

→ rfv , then
it cannot make the move rfv → rfv+1 , which is a contradiction. This implies that the demand of agent i on rfu cannot
be greater in xfv than that it has in xfu .

Now, if the demand of agent i on resource rfv+1 in xfv is smaller than its demand on the same resource in xfu , then
we show that this results in a contradiction. We prove this by indirection; that is, suppose that it is true. This implies
that there exists u < z < v, such that rfz = rfv+1

, and agent i moved a unit from rfz to rfz+1
within the sequence.

Furthermore, the demand of agent i on rfz = rfv+1 after the move is decreased by 1, compared to its demand in xfu .
That is, since the demand of agent i on rfv+1

in xfv is smaller than in xfu , agent i must move some units from that
resource in between. Thus, we focus on the first move among these, which decreases agent i’s demand by 1. Note
that, by definition of the sequence, rfv+1 → rfz+1 is a best single unit move of agent i in xfz . Now, let a denote the
amount of agent i’s decreased cost by removing one unit from rfv+1

in xfz , and b denote the agent’s increased cost by
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adding one unit to rfz+1 , also in xfz . Thus, the improvement that agent i gets by making rfv+1 → rfz+1 is a− b > 0.
Similarly, let c denote the amount of agent i’s decreased cost by removing one unit from rfv in xfv , and d denote the
agent’s increased cost by adding one unit to rfv+1

(i.e. rfz ), also in xfv . Since rfv → rfv+1
is also a best single move,

c − d > 0. It is easy to see that both the congestion level and the demand of agent i on rfv+1 remain the same after
the move rfv → rfv+1

, and before the move rfv+1
→ rfz+1

. Thus, we have d = a; and thus, c− b > a− b > 0. This
implies that in xfz , the best single move is not moving from rfv+1

to rfz+1
, but from rfv (since both the congestion

level and agent i’s demand on rfu is not modified between xfu and xfv ; that is, it stays unchanged within the loop).
This, however, is a contradiction, since rfv+1

→ rfz+1
is supposed to be the best single move in xfz .

Given this, the demand of agent i on resource rfv+1
in xfv is at least as its demand on the same resource in xfu .

In this case, rfu → rfv+1
is feasible for agent i from xfu as well. Indeed, since rfu → rfv+1

is feasible for agent
i in xfv , such that the demand of agent i on rfu in xfv is not higher than in xfu , and its demand on rfv+1 in xfv is
not smaller than in xfu . That is, by choosing rfw = rfv+1

, we get that {rf1 , rf2 , . . . , rfu , rfw , . . .} is also a feasible
sequence, without the {rfu+1 , . . . , rfv} loop.

Thus, in summary, we can say that if there’s a loop within the sequence, that does not return to rf1 , then we can
leave that loop out of the sequence.

Step 2: Now, we will show that if the sequence does not return to rf1 , then it has to be finite. We prove this
by contradiction as follows: Suppose that the sequence is infinite and never returns to rf1 . Given this, there is an
infinite subsequence of moves rfu(t)

→ rfu(t)+1
applied by a particular agent i, such that rfu(1)

= rfu(2)
= . . . and

rfu(1)+1
= rfu(2)+1

= . . .. That is, agent i makes the same move rfu(t)
→ rfu(t)+1

infinitely many times within the
sequence. Furthermore, the demand of i on resources rfu(t)

and rfu(t)+1
are the same for every t. That is, if agent i’s

demands on rfu(1)
and rfu(1)+1

are a and b, respectively, then they are a and b for any t.
Now, consider the move rfu(1)

→ rfu(1)+1
of agent i. After this move, agent i’s demand on rfu(1)

and rfu(1)+1

becomes a− 1 and b+ 1, respectively. However we know that when agent i makes the move rfu(2)
→ rfu(2)+1

, these
values return to a and b again. That is, before applying rfu(2)

→ rfu(2)+1
, agent i had to make a move rfv → rfv+1

,
where rfv+1 = rfu(1)

= rfu(2)
, to increase its demand on rfu(2)

back to a. Now, note that u (1) < v < u (2)− 1. This
implies that the subsequence {rfv+2

, . . . , rfu(2)
} forms a loop, and thus, according to the claim we stated in Step 1, we

can leave this loop out from the sequence. That is, the moves rfv → rfv+1
and rfu(2)

→ rfu(2)+1
become subsequent

moves within the sequence. However, as Lemma 5 implies, none of the agents can subsequently make more than one
move within the sequence, and thus, this situation is not possible. This contradicts the initial assumption, and hence,
sequence {rf1 , rf2 , . . .} either returns to rf1 , or it is finite.

Step 3: Based on the results described in Step 2, if {rf1 , rf2 , . . .} (i.e. the sequence of forward moves) is not finite,
then it has to return to rf1 . That is, ∃v such that in {rf1 , rf2 , . . . , rfv}, rfv = rf1 . If there is an inner loop within
this sequence, then we can remove that loop (as proved in Step 1). Thus, we can assume that the sequence does not
contain any inner loops (note that the sequence itself is also a loop). Let xfv denote the resulting strategy profile by
making this sequence of forward moves. We show below that xfv satisfies the conditions of the theorem; that is, it is
the strategy profile we are looking for.

Note that by returning to rf1 , the congestion level on all the resources in xfv is the same as it is in x1. Since
the sequence does not contain any inner loops, it is easy to see that for any agent i, there is a set of disjoint pairs of
resources rfu(k)

, rfu(k)+1
such that agent i makes the move rfu(k)

→ rfu(k)+1
within the sequence. This indicates that

in xfv , agent i’s demand on rfu(k)
is decreased by 1, compared to that it has on that resource in x1 (since agent i

removes one unit from that resource). On the other hand, agent i’s demand on rfu(k)+1
is increased by 1, compared to

that it has on that resource in x1.
In order to prove the claim above, we show that the value of a best unit move of agent i in xfv is decreased,

compared to that it has in x1 (or the number of such moves is decreased). Since the congestion level is the same on all
the resources in the two strategy profiles, we just need to consider the cases where agent i makes a move from rfu(k)+1

(where the demand is increased) to rfu(l)
(where the demand is decreased) for a particular pair of k, l.

If k = l, then rfu(k)
→ rfu(k)+1

is a forward move of agent i. Let xfu(k)
and xfu(k)+1

denote the strategy profiles
before and after the move. If rfu(k)

→ rfu(k)+1
is not the first move in the sequence, then the congestion levels on

resources rfu(k)
and rfu(k)+1

in xfu(k)
and xfu(k)+1

are: hrfu(k)

(
xfu(k)

)
= hrfu(k)

(x1) + 1 , hrfu(k)+1

(
xfu(k)

)
=

hrfu(k)
(x1), and hrfu(k)

(
xfu(k)+1

)
= hrfu(k)

(x1) , hrfu(k)+1

(
xfu(k)+1

)
= hrfu(k)

(x1)+1, respectively. Thus, after the
move, the congestion level on rfu(k)

in xfu(k)+1
is the same as in xfv , while the congestion on rfu(k)+1

is greater by 1
than in xfv . Since rfu(k)

→ rfu(k)+1
is a best unit move at xfu(k)

, reversing this move (i.e., moving back from xfu(k)+1
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to rfu(k)
) in xfu(k)+1

) is not possible. Given this, since the congestion on rfu(k)+1
in xfv is decreased, compared to that

in xfu(k)+1
, the move xfu(k)+1

→ rfu(k)
is also not feasible. Note that the proof above also works for the case where

rfu(k)
→ rfu(k)+1

is the first move of the sequence (although the values of congestion levels are slightly different).
Now let k 6= l. Again, we first consider the case where none of the moves rfu(k)

→ rfu(k)+1
and rfu(l)

→ rfu(l)+1

is the first move of the sequence. If k < l (i.e. the agent makes rfu(k)
→ rfu(k)+1

earlier), then consider the move
rfu(l)

→ rfu(l)+1
, and let xfu(l)

and xfu(l)+1
denote the strategy profiles before and after this move, respectively.

Since agent i makes this move later, in xfu(l)+1
, the congestion level of rfu(k)+1

and rfu(l)
is the same as they have

in xfv . Given this, the improvement value of move xfu(k)+1
→ rfu(l)

is exactly the same as it is in xfu(l)+1
. Since

rfu(l)
→ rfu(l)+1

is a best unit move in xfu(l)
, resource rfu(l)

belongs to the set defined in (11) (i.e. set of p∗); that is,
reducing a unit from rfu(l)

guarantees a maximal cost reduction to agent i in strategy profile xfu(l)
. This implies that

the cost reduction by reducing a unit from rfu(k)+1
is not greater than the cost reduction by reducing a unit from rfu(l)

.
Given this, it is easy to see that the reverse move xfu(k)+1

→ rfu(l)
in strategy profile xfu(l)+1

cannot be positive (i.e.,
it is not a feasible move). The proof for k > l works in a similar way.

This implies that none of xfu(k)+1
→ rfu(l)

is feasible in xfv . Thus, xfv satisfies the conditions of the theorem,
where x1 replaces x and xfv replaces y.

Step 4: Next, consider the case where the sequence of forward moves, {rf1 , rf2 , . . . rfK}, is finite (i.e. K <∞). At
this point, we allow agents to make backward moves (i.e., moves that add a unit to r−t at each step t). Let {rb1 , rb2 , . . .}
denote the sequence of backward moves, where ∀t, rbt+1

→ rbt is the backward move made by some agent i. Note that
here rb1 = rf1 . Similarly to the case of forward moves, one can show that if there is a loop within {rb1 , rb2 , . . .}, then
we can leave that loop out from the sequence. Furthermore, one of the following must hold for {rb1 , rb2 , . . .}: (i) apart
from rb1 , {rb1 , rb2 , . . .} also contains a resource rfu from the sequence of {rf1 , rf2 , . . . rfK}; that is, ∃v > 1, u > 0
such that rbv = rfu ; or (ii) it does not contain such resource, but then it must be finite. The proof is also based on
contradiction, and is similar to the proof described in Step 2.

Now, if {rb1 , rb2 , . . .} contains a resource from the sequence of forward moves, then consider the following se-
quence of moves: {rf1 , rf2 , . . . rfu , rb1 , rb2 , rbv}. That is, we leave out all the moves after rbv in the sequence of
backward moves, and all the moves after rfu in the sequence of forward moves. It is easy to see that this sequence is
also feasible, that is, all of the moves are best unit moves of some agent i who violates the conditions of the theorem.
Now, if the sequence contains inner loops from the backward moves side (the subsequence of forward moves is loop-
less), we leave these loops out. This way, we obtain a loop similar to the loop described in Step 3. Let xbv denote the
strategy profile resulted by the sequence of moves within {rf1 , rf2 , . . . rfv , rb1 , rb2 , rbv}. We show that xbv satisfies
the conditions of the theorem (the proof is similar to the one described in Step 3).

Finally, in the case where {rb1 , rb2 , . . . , rbL} is also finite (i.e. L <∞), let xT denote the resulting strategy profile
by making the moves of the combined sequence {rf1 , rf2 , . . . rfK} and {rb1 , rb2 , . . . , rbL}. One can easily see that the
conditions of the theorem hold for xT . This completes the proof. �

ISWCG Algorithm The proof of Theorem 2 suggests a particular dynamic procedure that consists of best single unit
moves (Algorithm 1) and arrives at a pure strategy Nash equilibrium from any starting point in finite time. This implies
that convex increasing congestion games ISWCG are weakly–acyclic (Monderer and Shapley, 1996)—that is, possess
an improvement dynamics whose convergence is guaranteed from an arbitrary initial strategy profile.

Theorem 3. Algorithm 1 finds a pure strategy Nash equilibrium in a given convex increasing ISWCG.

Proof. The algorithm constructs a sequence of strategy profiles, {x1, x2, . . .}, such that ∀t, xt+1 satisfies Theorem 2
with respect to profile xt (steps 4− 19). Then, Corollary 1 implies that ∀t, P (xt) > P (xt+1), where P (x) is defined
in equation (13). That is, sequence {P (x1) , P (x2) , . . .} is strictly decreasing. Hence, since the game is finite, the
algorithm terminates in a PSNE after a finite number of steps. �

5 Conclusions

In this paper, we explore the conditions for PSNE existence in integer–splittalbe congestion games. Although these
games do not necessarily admit such an equilibrium, we prove that it is guaranteed to exist in an important subclass
of ISWCGs with convex increasing unit–cost functions. Furthermore, we demonstrate that although convex increasing
ISWCGs do not have the FIP property, they do possess weak acyclicity, and we provide a natural procedure that
achieves an equilibrium from an arbitrary initial strategy profile.
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Algorithm 1 ISWCG Algorithm.
1: Initialisation: Let t = 1, xt = x
2: If 6∃ i : Di

max > 0→ STOP
3: while PSNE not found do
4: xt ← starting position
5: {rf} ← sequence of forward moves, k = 1
6: while forward move is feasible do
7: make a forward move: rfk → rfk+1 , k := k + 1
8: if there is an inner loop then leave out the loop
9: if rfk = rf1 then xt+1 ← resulting resource profile of {rf1 , rf2 , . . . rfk} from xt, GOTO STEP 20

10: end while
11: {rf1 , rf2 , . . . rfK} ← resulting sequence of forward moves
12: {rb} ← sequence of backward moves, l = 1
13: while backward move is feasible do
14: make a backward move: rbl+1 → rbl , l := l + 1
15: if there is an inner loop then leave out the loop
16: if ∃rfv ∈ {rf} such that rbl = rfv then xt+1 ← resulting resource profile of {rf1 , rf2 , . . . rfu , rb1 , rb2 , rbv} from xt,

GOTO STEP 20
17: end while
18: {rb1 , rb2 , . . . , rbL} ← resulting sequence of backward moves
19: xt+1 ← resulting resource profile of {rf1 , rf2 , . . . rfK} and {rb1 , rb2 , . . . , rbL} from xt

20: if xt+1 = PSNE then STOP
21: t := t + 1

22: end while

Our results suggest several directions for future research. Specifically, given PSNE existence and convergence, it
is important to address further properties of integer–splittable congestion games, such as completeness of the model,
quality of solutions and computational complexity. To this end, we aim to (i) investigate how far the assumptions on
the agents’ strategy sets and payoff functions can be relaxed while still guaranteeing the existence of pure strategy
equilibria, (ii) characterise the efficiency of PSNE in terms of prices of anarchy and stability, and (iii) provide a
complexity analysis of the problem of finding equilibria and develop efficient algorithmic solutions, if applicable.
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