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Crowdsourcing offers unprecedented potential for solving tasks efficiently

by tapping into the skills of large groups of people. A salient feature of

crowdsourcing—its openness of entry—makes it vulnerable to malicious be-

haviour. Such behaviour took place in a number of recent popular

crowdsourcing competitions. We provide game-theoretic analysis of a funda-

mental trade-off between the potential for increased productivity and the

possibility of being set back by malicious behaviour. Our results show that

in crowdsourcing competitions malicious behaviour is the norm, not the

anomaly—a result contrary to the conventional wisdom in the area. Counter-

intuitively, making the attacks more costly does not deter them but leads to a

less desirable outcome. These findings have cautionary implications for the

design of crowdsourcing competitions.
1. Introduction
Numerous successful examples of the power of crowdsourcing to solve pro-

blems of extreme difficulty [1–14] have overshadowed important episodes

where elaborate sabotage derailed or severely hindered collective efforts. The

winning team in the DARPA Network Challenge obtained the locations of

the 10 balloons after spending significant efforts filtering the majority of false

submissions, including fabricated pictures containing individuals in disguise

impersonating DARPA officials [15]. A team from the University of California

at San Diego lost its lead in the DARPA Shredder Challenge after their progress

was completely wiped out by a relentless number of coordinated overnight

attacks [16,17]. The team that topped the US Department of State sponsored

Tag Challenge had to withstand a smear campaign orchestrated in Twitter

aimed at reducing its credibility [10]. Beyond crowdsourcing competitions,

Ushahidi’s collective conflict mapping for the Arab Spring had to be shut

down for long periods of time owing to suspicions that it had been infiltrated

by government officials [16].

These episodes have received a response in the form of emerging work at

the intersection of the computer and economic sciences. Recent results in this

area have elucidated that it is possible to design incentive structures and algo-

rithmic strategies to modify the efficacy and quality of the crowdsourced

solution, the vulnerability of crowdsourcing to malicious behaviour, and the

cost of undertaking it [18–41]. These three factors can attain a wide variety

of values depending on the particularities of the problem at hand, the economic

incentives at stake as well as the algorithmic platform supporting the collective

effort. For instance, the combinatorial nature of puzzle assembly in the DARPA

Shredder Challenge makes the solution very vulnerable to an attack at a low

cost—destroying puzzle progress is much easier than creating it. On the

other hand, fabricating a false balloon sighting in the DARPA Balloon Chal-

lenge is costly, as it involves a certain degree of counterintelligence skills,

more so when individuals posing in false submissions risk identifiability—

while at the same time, a false submission does not affect the validity of the

other submissions.

In this paper, we propose a formal analysis to explore the efficacy–

vulnerability trade-off of crowdsourcing in competitive scenarios. We adopt a
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scenario where two firms (players) compete against each

other to obtain a better solution to a task which can be crowd-

sourced. Our goal is to understand whether malicious

behaviour exemplified above is the norm or the anomaly,

i.e. whether we should expect players to undertake attacks

on the collective progress of competing players. We consider

the cost of attacking a crowdsourcing strategy, and investi-

gate the effect of higher costs on behaviour of the players.

We also aim to quantify how this malicious behaviour affects

the likelihood of using crowdsourcing as a strategy, and ulti-

mately how it impacts social welfare under collective

problem solving. Such an understanding will be helpful

for the design of future crowdsourcing competitions, as

well as support the decision process of institutions and

firms considering crowdsourcing.

Our main finding is that making attacks more costly per-

haps by making it more difficult to attack, does not deter the

attackers and results in a more costly and less efficient equili-

brium outcome. Paradoxically, making the cost of attacking

zero is best for the players. This suggests that care should

be used when attempting to discourage attacks by raising

the cost. In situations where damage from attacking is high,

the incentive to attack is very strong. Instead, crowdsourcing

competitions are more suited for scenarios where damage

inflicted by an attack is low.

In §2, we present a model for studying the trade-off between

higher productivity offered by crowdsourcing and the increased

vulnerability that comes with it. Then, we derive the equili-

brium of the game defined by the model. We pay particular

attention to the case where both players choose to crowdsource

and investigate the players’ incentives to attack. We also analyse

how the cost of an attack and the damage from the attack affect

the incentives of players to crowdsource.
2. The model
We study a non-cooperative situation where two players (or

firms) compete to obtain a better solution to a given task.

The firm with the better solution wins and receives a

reward of R. Each firm can develop an in-house solution or

crowdsource the task. The former is referred to as the

closed strategy, the latter as open. We focus on scenarios

where open strategies are likely to be more efficient even

though the exact level of efficiency is not known until after

a firm engages in crowdsourcing—this reflects a high level

of uncertainty underlying engagement processes in social

networks [42–49]. In addition, open strategies are susceptible

to attacks: a firm using an open strategy can be attacked by

the competing firm. The resulting damage from the attack

impairs the other firm, and may let the attacking firm win.

To investigate the trade-off between higher efficiency of

crowdsourcing and vulnerability to attacks, we propose a

model that isolates these two factors. In our model, a firm

decides whether or not to crowdsource, and whether or not

to attack the competitor. The nature of a crowdsourcing strat-

egy is that it is observable by everyone including the

competitors. If the competitor chooses to crowdsource, the

opponent would observe it, and can decide whether or not

to attack. Note that the decisions are sequential: the decision

about crowdsourcing is made first, whereas the decision

about attacking is made second. We model this interaction

as a sequential game.
Formally, we have a two-stage game. In the first stage, the

firms decide whether to solve the task in-house S or to crowd-

source it C. Then, the efficiencies of the firms that chose to

crowdsource are observed. Owing to the open nature of

crowdsourcing, the efficiency or productivity, of a crowdsour-

cing strategy used by player i becomes known not just to the

crowdsourcing player, but also to the opponent. We use Pi for

the random variable denoting the productivity and pi for its

realized value. The productivity of the in-house solution is

fixed and normalized to zero. We assume that the produc-

tivity of a crowdsourcing strategy is uniformly distributed

between 0 and 1: Pi � U[0,1]. In the absence of attacks, the

firm with a higher productivity wins.

The assumption that the productivity of a crowdsourcing

firm is publicly known is consistent with competitions such

as the Shredder Challenge and the Tag Challenge. In the

Shredder Challenge, the current progress of each competitor

was publicly known. In the Tag Challenge, the teams

announced the number of targets they had successfully

identified as this increased the appeal of the team.

In the second stage, the players decide whether or not to

attack the opponent (attacking is denoted by A and not

attacking by N ). An attack is costly, and the cost q [ (0,1) is

expressed as a fraction of the total reward R. This cost can

represent a range of situations: the human effort in disrupting

the opponent’s solution; the complexity of creating multiple

identities to carry out a Sybil attack; financial punishment

received when the attack is detected in a crowdsourcing

competition. The damage inflicted by the attack is denoted

by d [ (0,1), which determines how much productivity is

taken away from the open strategy (equivalently, how

much more productive the attacking firm becomes after

‘stealing’ the crowdsourced solution). The firm that has a

higher productivity at the end of the second stage wins the

prize R, which is normalized to be R ¼ 1. The parameters q
and d are publicly known. We characterize the equilibrium

of this two-stage game as a function of these parameters.
3. Equilibrium analysis
We find the subgame perfect equilibrium of the two-stage game.

Each pair of players’ decisions made in the first stage (to

crowdsource or not) result in a different second-stage game.

We first analyse each second-stage game (to attack or not).

Based on these, we then analyse how decisions are made in

the first stage.

When both players use an in-house strategy S, there is no

reason to attack, and they both choose N in the second stage.

Each one is equally likely to win, and the expected utility

of each is 1/2. We note this in the SS cell of the pay-off

matrix in table 1.

When player 1 crowdsources and player 2 does not, player

1 cannot attack, but player 2 attacks if doing so puts her

ahead of player 1. Player 2 attacks if the realized productivity

of player 1 is less than the damage p1 , d player 2 can

inflict. Recall that we normalized productivity of an in-house

solution to zero. The ex-ante utility of player 1 before her pro-

ductivity is realized is 1 2 d, i.e. she receives the pay-off of 1

when her productivity is high enough to not be attacked,

which, for uniformly distributed productivity, happens with

probability 1 2 d. The ex-ante utility of player 2 before the pro-

ductivity of player 1 is realized is d(1 2 q), i.e. the productivity



Table 1. Expected pay-off matrix for the crowdsourcing game.

C S

C 1=2� (d � (d2=2))q, 1=2� (d � (d2=2))q 1 2 d, d(1 2 q)1 2 q, 0

S d(1 2 q), 1 2 d 1/2, 1/2
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of player 1 is low enough to be overtaken after an attack

(which happens with probability d), so player 2 attacks and

receives the reward minus the cost: 1 2 q. Note that player 2

attacks for any cost of an attack q [ [0, 1): attacking brings a

positive utility while not attacking results in zero utility. The

case when player 2 crowdsources, and player 1 does not is

symmetric. We summarize this in the CS and SC cells of the

pay-off matrix in table 1.

The most interesting case is when both players crowd-

source. Let p1 and p2 denote their productivities, which are

known before they decide on attacking. Consider the case

when p1 . p2. The other case is symmetric.

If the difference in productivities p1 2 d . p2 of the players

is so large that the attack by player 2 does not let her reach

player 1, then attacking does not change the outcome and

neither player attacks. In this case, player 1 receives the utility

of 1, whereas player 2 receives the utility of 0.
3.1. Crowdsourcing and attacking
We analyse the game when both players crowdsource and a

unilateral attack by the weak player (i.e. player 2) will bring

her ahead of the strong player (i.e. player 1). This is the

case when p1 2 d , p2. In this case, player 2 would like to

attack if player 1 does not. At the same time, player 1

would like to attack in order to keep its lead only if player

2 is attacking. Consequently, there is no pure strategy equili-

brium of this game. The pay-off matrix showing utilities for

each player appears in the following table.
A
 N
A
 1 2 q, 2q
 1 2 q, 0
N
 0, 1 2 q
 1, 0
The game possesses a unique mixed equilibrium. Let

l1,l2 denote the probabilities that, respectively, players 1

and 2 attack. For player 1, attacking results in the expected

utility of

l2(1� q)þ (1� l2)(1� q) ¼ 1� q, (3:1)

whereas non-attacking gives the expected utility of

l2 � 0þ 1 � (1� l2) ¼ 1� l2: (3:2)

In a mixed equilibrium, a player’s expected utility from

choosing either action must be the same. This is satisfied

for player 1 when

1� q ¼ 1� l2, (3:3)

that is for

l2 ¼ q: (3:4)

Similarly, for player 2, the expected utility from attacking is

l1(�q)þ (1� l1)(1� q) ¼ 1� q� l1: (3:5)
The expected utility from not attacking is 0, yielding the

equilibrium condition

l1 ¼ 1� q: (3:6)

Thus, in the mixed equilibrium, player 1 attacks with prob-

ability l1 ¼ 1 2 q, and player 2 attacks with probability

l2 ¼ q leading to the following observation.

Finding 1. The higher the cost, the more likely the weak player
(i.e. player 2) will attack and the less likely the strong

player will attack.

This behaviour contradicts the intuition that making attacks

more costly helps prevent them, that is, the costlier it is to

attack, the less either player should attack. We explain why

this does not hold by looking into the reasons for players’

attacks. Player 1 attacks only to counteract a possible attack

of player 2. Player 2 attacks in the hope that the attack is not

counteracted by player 1 allowing player 2 to get ahead. Cru-

cially, the incentive of player 1 to attack increases in the

likelihood that player 2 attacks, whereas the incentive of

player 2 to attack decreases in the likelihood that player 1

attacks. This relationship becomes clear when we observe that

l1 ¼ 1� l2:

The cost of attacks increases the likelihood that player 2

attacks, because player 1 attacks less when the cost is higher.

Whenever both players attack, player 1 wins with certainty,

and player 2 would have preferred to avoid the useless and

costly attack. Thus, the less player 1 is likely to attack (i.e. the

higher the cost), the more eager player 2 is to attack. For

example, when attacking is free, player 1 always attacks and

always wins obtaining the utility of 1. When the cost is the

same as the prize, q ¼ 1, player 2 always attacks taking the

prize away from player 1 who does not attack resulting in

zero utility for both. Formally, player 2 wins when he attacks

and player 1 does not, which occurs with probability

l2(1� l1) ¼ q(1� (1� q)) ¼ q2:

Consequently, player 1 wins with probability

1� q2:

The higher the cost of an attack, the more likely the weak

player is to win!

Finding 2. Instead of protecting the better crowdsourcing strategy,
a higher cost of an attack increases the probability of the weaker
crowdsourcing strategy winning.

This is a striking observation. Making attacks more costly should

help the society by ensuring the stronger strategy wins. This

does not occur owing to a higher likelihood that the weak

player attacks unilaterally, which would lead her to victory. Fur-

thermore, the players spend more resources on attacking each
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other: making attacks more costly results in a lower total utility

of the players. To show this, we first note that the expected

number of attacks does not change with the cost of an attack.

Raising the cost results in a lower probability of attack by the

strong player and in a higher probability of attack by the weak

player: the weak player attacks with probability q and the

strong player attacks with probability 1 2 q.

Finding 3. The expected number of attacks1 is one, regardless of
the cost of an attack q.

A direct consequence is the following:

Finding 4. Increasing the cost of an attack decreases (not increases)

the total utility of the players.

We now look at the competition from the point of view of what is

socially optimal. Benefit to the society is proportional to the final

quality of the solution as well as to the total utility of the players.

We intentionally leave the exact definition of social welfare open.

Combining findings 2 and 4, we conclude that

Finding 5. Increasing the cost of an attack results in lower social
welfare.

This finding suggests that increasing the cost of an attack is dama-

ging rather than helping. Setting the costs to zero would be

optimal from the social welfare point of view: the strong player

would attack and win with probability 1, the weak player

would not attack, and the cost of attacking would be zero. With-

out an attack of the weak player, the final solution—that of the

strong player—would be of the highest possible quality.

Finding 6. Free attacks maximize social welfare.

3.1.1. Uncertain attacks
We assumed that an attack inflicts a known damage of d. In this

section, we extend the results to uncertain attacks. Let s denote

the probability that an attack is successful at inflicting damage d.

Otherwise, no damage is inflicted. Setting s ¼ 1 results in the

game discussed above. At the end of the section, we interpret

the results when s is proportional to the difference in the

productivities of the players.

The pay-off matrix given the probability of success s is
A
 N
A
 1 2 q 2 (s 2 s2), (s 2 s2) 2 q
 1 2 q, 0
N
 1 2 s, s 2 q
 1, 0
When both players attack, the weak player wins if his attack

is successful, and the attack of the strong player is unsuccess-

ful. This occurs with probability s(1 2 s) ¼ s 2 s2. The utility

of the strong player is

(1� (s� s2))� q ¼ (1� q)� (s� s2):

Other entries in the pay-off matrix are computed in a similar

manner.

We derive the equilibria of this generalized game. As

before, for player 1, attacking results in the expected utility of

l2(1� q� sþ s2)þ (1� l2)(1� q)

¼ 1� q� l2sþ l2s2, (3:7)
whereas non-attacking gives the expected utility of

l2(1� s)þ (1� l2) ¼ 1� l2s: (3:8)

In a mixed equilibrium, a player’s expected utility from

choosing either action must be the same. This is satisfied

for player 1 when

1� q� l2sþ l2s2 ¼ 1� l2s, (3:9)

that is for

l2 ¼
q
s2
: (3:10)

For player 2, the expected utility from attacking is

l1(s� s2 � q)þ (1� l1)(s� q) ¼ �l1qþ l1s� l1s2

þ s� q� l1sþ l1q ¼ �l1s2 þ s� q:

The expected utility from not attacking is 0, yielding the

equilibrium condition

l1 ¼
s� q

s2
¼ 1

s
� q

s2
¼ 1

s
� l2:

Our main conclusion regarding uncertain attacks is that

the mixed equilibrium has the same structure as with certain

attacks, and the lessons learned for certain attacks continue to

hold. Specifically, the structure of the mixed equilibrium

in both cases is l1 ¼ constant 2l2. Interestingly, a higher

probability of success makes, the weak player attack less

often.2 This finding is similar to finding 2: making attacks

more costly or less certain does not help the strong player.

The expected number of attacks3 is 1/s.

Finding 7. The lower the probability of the success of an attack, the
more attacks occur.

The equilibrium utility of the weak player is zero, whereas

from equations (3.9) and (3.10), the equilibrium utility of

the strong player is 1 2 (q/s). Therefore, the more effective

the attacks are, the higher the utility of the strong player.

This is a counterintuitive result similar to finding 5.

Finding 8. The equilibrium utility of the strong player (and the
total utility of the players) increases in s.

The mixed equilibria derived above holds only for 0 � l1,

l2 � 1, i.e. when

q � s2

q � s� s2:

This region is denoted by ‘mixed’ in figure 1. When these

conditions do not hold, there is a unique pure strategy equi-

librium. Specifically, for q . s, not attacking is the unique

equilibrium for both players. For q , s and q . s2, the

strong player does not attack, whereas the weak player

does. For q , s2 and q , s 2 s2, both players attack.

In more detail, if the cost of an attack is above s, then no

attacks occur—the best possible outcome from the social wel-

fare point of view. Thus, higher q is beneficial, but only if it is

above s. If q falls below s but remains above s2, an undesirable

equilibrium arises: the weak player attacks unilaterally,

resulting in a high chance of the weak player winning. For

relatively low values of q, both players choose to attack (see

the AA region in figure 1). Observe, the case when s ¼ 1.
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Figure 1. Equilibrium strategies in the second-stage game when both players
crowdsource and p1 2 d , p2. (Online version in colour.)
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As we discussed in §3.1, for certain attacks, higher values of q
do not increase social welfare (findings 2 and 5).

We characterized the equilibria from all values of s. We now

explain how these results can be interpreted when the success of

an attack is proportional to the distance between the players. An

attack is successful from the weak player’s point of view if it

allows the weak player to overtake the strong player who

does not attack. The closer the current solution qualities of

the weak and the strong players, the easier it is for the weak

player’s to get ahead of the strong one. To model this, we set

s ¼ 12( p12 p2/d) which denotes the probability that a unilat-

eral attack takes the weak player ahead of the strong one.

Note that s linearly increases from zero to one as the distance

in productivities decreases from d to zero.

Knowing that the weak player may attack successfully, the

strong player may want to attack to reduce the chances that

the weak player gets ahead of the strong player. We use the

same parameter s to denote the probability that the attack of

the strong player is successful, i.e. that the strong player remains

ahead of the weak player, thanks to its own attack.

The reader may find it counterintuitive that the success

of the strong player’s attack is inversely proportional to

how much better his solution is relative to the weak player.

However, the success here is defined as setting back the strat-

egy of the weak player to prevent an otherwise successful

attack of the weak player. It is easier to attack a solution

that is of high quality. Indeed, at the extreme case of zero

quality solution, an attack is not possible at all. The more

the weak player has achieved in its solution, the more

the strong player can take away from him. The parameter

s ¼ 12( p1 2 p2/d ) is consistent with this relationship.

The model where attacks are successful with probability s
allows insight to be gained into a situation where a player

does not know the exact productivity of the opponent. The

probability s can be viewed as a player’s estimate that an

attack is going to let her overtake the opponent whose

productivity she does not know.

The analysis and interpretations of this section point to

the robustness of our main results to the assumptions of

observability of the opponent’s productivity and known

damage of the attack.
3.2. To crowdsource or not
In §3.1, we computed expected utilities in the second-stage

game when both players crowdsource and p1 2 d , p2. We

now take a step back and compute expected utilities when
both players crowdsource, but before their productivities

become known. To avoid confusion, we refer to these utilities

as ex-ante utilities. We focus on the case of s ¼ 1, i.e. the case

where the mixed equilibrium is played for all values of q
(figure 1). The ex-ante utility of player 1 (and symmetrically

of player 2) is

u1 ¼ Pr (P2 , P1 , P2 þ d)(1� q)þ Pr (P2 þ d , P1):

The first term corresponds to the utility of player 1 in the

mixed equilibrium of the game described above, and the

second term corresponds to player 1 winning with certainty

when player 2 cannot reach her even after attacking. Under

the assumption that P1 and P2 are uniformly distributed

between zero and one, we derive

Pr(P2 ,P1 ,P2þd)¼
ð1

0

ð1

0

1{p2,p1,p2þd}dp2dp1

¼
ð1

0

ðmin(p2þd,1)

p2

1dp1dp2

¼
ð1

0

(min(p2þd,1)�p2)dp2

¼
ð1�d

0

ddp2þ
ð1

1�d
(1�p2)dp2

¼ (1�d)dþ 1�1

2

� �
� 1�d�(1�d)2

2

 !
¼d�d

2

Pr(P2þd,P1)¼
ð1

0

ð1

0

1{p2þd,p1}1dp2dp1

¼
ð1

d

ðp1�d

0

1dp2dp1¼
ð1

d
(p1�d)dp1

¼ 1

2
�d� d2

2
�d2

� �
¼d2

2
�dþ1

2

The ex-ante utility of either player is

u1 ¼ u2 ¼ d� d2

2

� �
(1� q)þ d2

2
� dþ 1

2

� �
1

¼ 1

2
� d� d2

2

� �
q:

The utility of the players decreases in both q and d. At the

extreme case when both q and d are 1, the utility is zero.

Whenever either of the parameters is at its minimum value

of zero, the utility is at its maximum value of 1/2. Observe

that the ex-ante utility decreases in the cost of an attack.

This is a consequence of the number of attacks being indepen-

dent of q when both p1 2 d , p2 as we noted in finding 3 and

a related finding 4.

In the Prisoner’s Dilemma [50–53], the unique equili-

brium for both players is to choose the action that hurts the

other player, i.e. to defect. In the resulting equilibrium, both

players are hurt. A similar situation (although in mixed strat-

egies) arises in the crowdsourcing game. Both players choose

to attack (in equilibrium, the expected number of attacks is 1),

incurring unproductive costs. When both players attack, the

outcome is the same as when neither player attacks except

that each player incurs the cost of an attack. When only the

strong player attacks, the outcome does not change, but the

player incurs the cost of an attack. When only the weak

player attacks, the outcome changes for a less efficient out-

come (the weaker player wins), and the weak player incurs
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the cost of an attack. Only when neither player attacks, there

is no loss to social welfare.

Having analysed the second-stage games, we can now

describe the entire pay-off matrix for the game played in

the first stage. Note that in the first stage, the players are

unaware of their productivities, should they choose crowd-

sourcing. Thus, the pay-off matrix contains their ex-ante

utilities, depicted in table 1.

We ask the question of how q and d affect the equilibria.

For any choice of parameters, only CC and SS can be pure

strategy equilibria. Higher damage from an attack and low

cost of attacking corresponds to the crowdsourcing strategy

being more risky. Indeed, as we detail below, for d . 1/2

and q , ((2d 2 1)/d2), SS is the only equilibrium strategy

(figure 2). When the damage is low (d , 1/2), crowdsourcing

is the only equilibrium strategy, regardless of the cost of

attack. For the remaining range of parameters d � 1/2 and

q � ((2d 2 1)/d2), both CC and SS are equilibrium strategies.

Crowdsourcing CC is a unique equilibrium when the

damage inflicted by an attack is low d , 1/2. Indeed, when

both firms use closed strategies, deviating to a crowdsourcing

strategy provides a higher pay-off (12d . 1/2); the pro-

ductivity of a crowdsourcing strategy will make the

crowdsourcing firm outside the reach of the in-house compe-

titor even after being attacked. Crowdsourcing for one firm

and not crowdsourcing for the other is not stable, as the

non-crowdsourcing firm is better off switching to crowdsour-

cing 1=2� (d� (d2=2))q . d(1� q): This holds regardless of

the cost of an attack 0 , q , 1.

For d � 1/2, CC remains an equilibrium only if the cost of

an attack is high enough: q � ((2d 2 1)/d2). Intuitively,

players crowdsource when attacking costs a lot (higher q)

and is not effective (lower d ).

How does the cost of an attack influence the likelihood of

players to crowdsource? Intuitively, we would expect that

high costs prevent attacks and make crowdsourcing more

appealing. Our model provides reasoning against this intui-

tion. Figure 2 reveals that q has a limited effect on the

choice of the equilibrium strategy. Cost of attacking matters

only when the level of damage is high (d � 1/2). In this

case, high costs enable CC to be an equilibrium; however,

SS still remains an equilibrium.

The damage from an attack has a strong effect on the

equilibrium. Low damage corresponds to fewer attacks on a

crowdsourcing firm: when both players crowdsource, the likeli-

hood that the strong player is within reach of the weak player is

proportional to the level of damage, Pr(P2 , P1 , P2 þ d).

Crowdsourcing is the unique equilibrium strategy for low
levels of damage (d , 1/2). This leads to the conclusion that

competitions where the maximal damage on a crowdsourcing

opponent is limited are more likely to promote crowdsourc-

ing than competitions where the designer attempts to make

attacking more costly.
4. Discussion
Our results bear resemblance to the Prisoner’s Dilemma but

paint an even starker picture. When both players crowd-

source (i.e. choose a more efficient way of performing the

task) and are close to each other in terms of solution quality

(specifically, within the damage inflicted by attacking, as was

the case in the DARPA Shredder Challenge), the expected

number of attacks is one, regardless of the cost of an attack.

Increasing the cost of an attack offers no deterrence. There-

fore, under our basic model, malicious behaviour is the

expected behaviour, not the anomaly. Given this result and

the examples of malicious behaviour in competitions, more

emphasis should be given to the issue. There has been signifi-

cant academic interest towards filtering misinformation;

however, models of malicious behaviour in crowdsourcing

scenarios have been absent until this work.

Our model applies more generally than malicious behav-

iour in competitive crowdsourcing. The same strategic

considerations arise when instead of attacking the opponent

a player can improve her own solution by d by investing q.

The salient feature is that there is only one winner in the com-

petition. Our results are for two competitors, however, they

provide insight into strategies of two top competitors in a

multi-competitor competition.

The finding that raising costs of attack is harmful for the

players is striking and warrants further empirical investi-

gation. Our model predicts that higher costs of attacks lead

to more attacks by the weak player resulting in a higher prob-

ability that the weak player would win. Furthermore, the

expected number of attacks remains the same, resulting in

higher costs incurred by the players orchestrating attacks.

We also find that making attacks less likely to succeed does

not help prevent them (within the mixed equilibrium).

On the contrary, a lower probability that an attack is success-

ful results in a higher expected number of attacks.

Confirming these findings in a laboratory or field experiment

is a direction for future work.

We made a number of modelling choices: two firms, per-

fect observability of productivities, risk-neutrality of the

players, and provided the analysis for a uniform distribution

of productivities. These choices were guided by simplicity

and the goal to isolate the factors relevant to the trade-off

between higher productivity of open strategies and higher

vulnerability. Owing to the simplicity of our model, we

believe that our results capture the fundamental features of

the trade-off between the productivity/vulnerability.

Indeed, we showed that the results continue to hold when

we allow attacks to be uncertain. Having said this, we

acknowledge that our conclusions rely on the assumptions

made, and that their broader applicability must be confirmed

on a case-by-case basis.

We considered the relative performance of the firms while

ignoring the absolute quality of the solution. This explains

why the highest expected social welfare is obtained when

neither firm crowdsources, and therefore, neither firm attacks
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(see the pay-off of the (S,S) strategy in table 1). This is suitable

for many competition settings where only relative perform-

ance is important (such as the aforementioned DARPA

Network Challenge, DARPA Shredder Challenge or Tag

Challenge). Requiring a certain minimum solution quality

and modelling the cost of effort are interesting extensions

for future work. For example, one could model effort as

time required to find a solution, with the time being inversely

related to productivity (e.g. t ¼ 1 2 p). Competitions may

also mitigate aggression by using reward mechanisms

where the reward received by the winner depends on the

global progress of all teams—linking crowdsourcing games

to public good games [54–57].

Repeated encounters in crowdsourcing competitions may

provide opportunities for the emergence of a richer set of

socially desirable strategies as in the iterated Prisoners Dilemma

[58–60]. It would also be interesting to study how the presence

of more than two players affects the behaviour displayed.

Our results emphasize that despite crowdsourcing being a

more efficient way of accomplishing many tasks, it also a less

secure approach. In scenarios of ‘competitive’ crowdsourcing,

where there is an inherent desire to hurt the opponent, attacks

on crowdsourcing strategies are essentially unavoidable.

We expect these surprising results derived in our stylized

model to hold in a variety of more complicated scenarios that
exhibit the fundamental tension between openness, efficiency

and vulnerability.
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End notes
1Note that in this one-shot game the number of attacks is limited to
one per player. Therefore, the total number of attacks ranges from
zero to two.
2A higher probability of attack makes the strong attack more often for
s . 2q and less often for s , 2q. In the former case, a higher s decreases
the deterrence power of l1 on the weak player, and a higher probability
of attack is needed. In the latter case, the reverse is true.
3The highest possible number of attacks is one per player, or two in
total. Indeed, the relevant range of the parameter s is above 1/2 as we
will see in figure 1.
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