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Abstract
We study equilibrium dynamics in candidacy games, in
which candidates may strategically decide to enter the
election or withdraw their candidacy, following their own
preferences over possible outcomes. Focusing on games
under Plurality, we extend the standard model to allow
for situations where voters may refuse to return their
votes to those candidates who had previously left the
election, should they decide to run again. We show that
if at the time when a candidate withdraws his candidacy,
with some positive probability each voter takes this can-
didate out of his future consideration, the process con-
verges with probability 1. This is in sharp contrast with
the original model where the very existence of a Nash
equilibrium is not guaranteed. We then consider the two
extreme cases of this setting, where voters may block a
withdrawn candidate with probabilities 0 or 1. In these
scenarios, we study the complexity of reaching equilibria
from a given initial point, converging to an equilibrium
with a predermined winner or to an equilibrium with a
given set of running candidates. Except for one easy
case, we show that these problems are NP-complete, even
when the initial point is fixed to a natural—truthful—
state where all potential candidates stand for election.

1 Introduction
The number of situations where people—and more recently,
electronic agents—use voting mechanisms to make collective
decisions, is hard to overestimate. Indeed, they get to vote in
political elections on different levels, in selecting committees
in professional and other organizations, choosing winners
of various competitions, rating services and products they
had consumed, scheduling meetings, allocating resources and
planning joint actions, as well as expressing their opinion on
all possible matters in surveys and polls.

Notoriously, most voting mechanisms (a.k.a. rules) are
susceptible to various sorts of strategic behavior, shown ei-
ther by voters misreporting their preferences (manipulation)
or by a third party, typically the chair, trying to control the sets
of voters or candidates (voter/candidate control, cloning), in-
fluence the votes (bribery and lobbying) or affect the voting
rule (agenda control). Finally, the candidates themselves may
also have preferences about the outcome of the election and

try to affect it by strategically choosing whether to stand for
election or not. This latter issue of strategic candidacy we
address in our work.

Most of the literature in computational social choice,
though, focuses on strategic behaviors by voters and, in par-
ticular, on evaluating voting rules by their resistance to such
behaviors, using computational complexity as a barrier to
them (see, e.g., [Faliszewski et al., 2010] for a survey of these
works). Another natural approach is to analyse voting sce-
narios from a game-theoretic perspective, viewing strategic
parties as players and examining possible stable outcomes of
their interaction (i.e., Nash equilibria).

However, even though the first model for games with
strategic voters dates back to the 1960’s [Farquharson, 1969],
this line of research only in recent decades has received seri-
ous attention in the algorithmic game theory and the social
choice communities. A few works, in particular, consider
Plurality voting games, characterizing their Nash equilibria
(although under the restrictive assumption of single-peaked
preferences) [Feddersen et al., 1990], and examining their
dominant strategy equilibria [Dhillon and Lockwood, 2004].
In [Messner and Polborn, 2007], the authors suggest a vari-
ation of a strong equilibrium and explore conditions for its
existence and uniqueness. The most relevant to our work,
however, is the paper by Meir et al. [Meir et al., 2010] that
studies equilibrium dynamics, based on myopic improving
moves by single voters. The authors, in particular, demon-
strate that convergence to equilibrium is guaranteed from any
initial state, if players choose their best possible moves at ev-
ery step and ties are broken lexicographically.

The literature on strategic candidacy is even more scarce.
It starts with the works by Dutta et al. [Dutta et al., 2001;
2002], who formulate the game and show that no reasonable
(i.e., non-dictatorial and unanimous) voting rule can guaran-
tee stability of the truthful1 state where all candidates enter
the election. The authors also demonstrate examples of vot-
ing trees, where candidacy games may have no pure strategy
Nash equilibrium. Going further in this direction, Lang et
al. [Lang et al., 2013] prove more general results on the ex-
istence of equilibria in candidacy games, both positive and
negative. Specifically, they show that in the case of 4 candi-

1Under the self-supporting candidate preferences assumption
(defined in Section 2).



dates a pure strategy equilibrium always exists for Condorcet-
consistent rules; however, in the case of more than 4 can-
didates these rules may (Copeland) or may not (Maximin)
admit such equilibria. Importantly, and particularly relevant
to our paper, for Plurality voting with 4 or more candidates,
there are candidacy games without pure equilibria.

Against this background, in this work we combine the
study of equilibrium dynamics and strategic candidacy under
Plurality. Indeed, the fact that pure strategy equilibria may
not, in general, exist in these games, raises the question of
whether one exists for a given preference profile and how (if
at all) it can be reached dynamically from a given initial state.
In practice, such dynamic processes often occur in online art,
photo, literature or similar competitions, where each contes-
tant has to present examples of their work, and can remove or
replace any of them at any time by a given deadline. Other
examples include sale campaigns where online shops choose
items to be advertised on the main page and can replace or re-
move them at any time during the sales period, competitions
among service providers for a public project, deciding on a
team working plan, and so on.

In such scenarios, one may care not only about converging
to some equilibrium point, but reaching one where a particu-
lar candidate wins the election or a certain set of candidates
still run. For instance, in many common scenarios where
the candidates, once left, cannot enter the election again, the
question of convergence becomes trivial as any sequence of
improving moves is finite. However, reaching a state with
predetermined characteristics appears computationally hard.

Interestingly, the two scenarios where the candidates are
free to leave and enter the election any time, or only can
leave once and never enter again, can be viewed as two
extreme cases of a more general setting where voters may
feel discouraged by candidates leaving the election and only
return their votes to them, should they renew their candidacy,
with some probability. It turns out that even assuming
some arbitrarily small positive probability for each voter
to refuse re-voting for a once withdrawn candidate, is suf-
ficient to achieve convergence to equilibria with probability 1.

Contribution. The paper makes the following contributions:
1. We introduce a dynamic candidacy game model with re-

fusing voters, where, with probability pv , a voter v re-
jects a candidate who withdraws his candidacy. We show
these games converge with probability 1, for any pv > 0.

2. We define three decision problems, termed NE, WIN-
NER and SET, which, given a profile of preferences and
an initial state, decide whether there exists an improve-
ment path leading to a Nash equilibrium, to an equilib-
rium with a predetermined winner or to one with a given
set of running candidates, respectively.

3. For each of the three problems above, we consider its
computational complexity in two variants, indexed 1 and
0, corresponding to refusing probabilities pv = 1 and
pv = 0, ∀v. Except for NE1 where convergence is triv-
ial, we show that these problems are NP-hard.

4. Finally, we establish NP-hardness of deciding the exis-
tence of an equilibrium with a predetermined winner in a

static game, the problem that we term ∃WINNER. This
is in contrast with games with strategic voters where this
problem is trivially solvble.

Some proofs are omitted due to space limitations.

2 Model and preliminaries
We first recall some basic notions from voting theory and
define candidacy games, following notation in [Lang et al.,
2013]. We then describe the dynamic setting based on im-
provement moves by single candidates.

2.1 Candidacy games
There is a set of voters electing from a set of candidates. A
single vote is a strict ranking of the candidates. A voting
rule takes all the votes as input, and produces an outcome—a
candidate that wins the election. Although voting rules are
usually defined for a fixed number of candidates, for strategic
candidacy settings the definition is naturally extended to an
arbitrary finite number of candidates.

Formally, we have a set C = {c1, c2, . . . c|C|} of potential
candidates, and a set V = {v1, v2, . . . v|V |} of voters. It is
assumed that C and V are disjoint. Each voter v ∈ V has a
preference relation, Pv ∈ L(C), over the candidates, where
for any finite set X , L(X) denotes the set of all strict linear
orders on X . For any order L ∈ L(X) and x, x′ ∈ X we
write x �L x′ if L ranks x higher than x′. The combination
PV = (Pv)v∈V of all the voters’ preferences defines their
preference profile. Furthermore, each candidate c ∈ C also
has a preference ordering over the candidates, Pc ∈ L(C).
It is often assumed that the candidates’ preferences are self-
supporting—that is, the candidates rank themselves at the top
of their ordering.2 Let PC = (Pc)c∈C denote the candidates’
preference profile, and P = (PV , PC) represent the full pro-
file of preferences of both the voters and the candidates.

Following PC , the potential candidates may decide to enter
the election or withdraw their candidacy. Thus, the voters will
only need to express their preferences over a subset A ⊆ C
of actual candidates that will have chosen to participate in
the election, and we denote by P ↓A ∈ L(A) the restriction of
PV to A. Each voter v submits a vote (or ballot) b↓Av ∈ L(A).
For time being, we assume that the voters are sincere, that is,
b↓Av = P ↓Av .3 A voting profile b↓A = (b↓Av )v∈V is a vector
of votes, one for each agent.

Given a set of actual candidates A ⊆ C, a voting rule
F : L(A)|V | → 2A takes a voting profile as input, and pro-
duces an outcome—a nonempty subset of candidates, called
the winners of election. Here we consider resolute voting
rulesF : L(A)|V | → A, which always return a single winner.
That is, given their irresolute version, we assume that ties are

2Even though our results do not rely on this assumption, we
find it rather natural. For instance, our hardness proofs are valid,
in particular, for the case where the initial state is fixed to be one
with all potential candidates standing for election, which under self-
supporting preferences correponds to the truthful state.

3In Section 3, we extend the model to scenarios where a voter—
while still not being strategic—may feel discouraged, if his favored
candidates leave the election, and would refuse to vote for them
again, should they decide to re-enter the election.



broken according to a fixed tie-breaking rule. Specifically,
we assume lexicographic tie-breaking—i.e., ties are broken
according to some predermined priority relation over the can-
didates. Since a voting rule is applied to varying sets of ac-
tual candidates, it is assumed that the tie-breaking rule is de-
fined for the whole set of potential candidates, and projected
to smaller sets of candidates; in other terms, if x has priority
over y when all potential candidates run, this will still be the
case for any set of candidates that contains x and y. In this
paper, we particularly focus on Plurality voting rule, which
decides the winner to be the candidate that is ranked first by
most voters. Hence, we can simplify notation by restricting
each ballot to specify only a single candidate—a voter’s top
choice candidate among all the running candidates.

Each such voting setting induces a natural game form,
where the set of players is given by the set of potential candi-
dates C, and the strategy set available to each player is {0, 1}
with 1 corresponding to entering the election and 0 stand-
ing for withdrawal of candidacy. A state s of the game is a
vector of strategies (sc)c∈C , where sc ∈ {0, 1}. The out-
come of a state s is F

(
b↓A

)
where c ∈ A if and only if

sc = 1. Coupled with candidates’ preferences, this defines a
normal form game with |C| players, Γ = 〈C,P,F〉, where
P = (PV , PC). Here, player c prefers outcome F(∫) over
outcome F(∫ ′) if PC

c ranks F(∫) higher than F(∫ ′).

2.2 Equilibrium dynamics
Having a normal form game defined, we can now apply stan-
dard game-theoretic solution concepts. Let Γ = 〈C,P,F〉
be a candidacy game, and let s be a state in Γ. A player
c ∈ C has an improving move in s if there is s′c such that c
prefers Γ(s−c, s

′
c) over Γ(s). A (pure strategy) Nash equi-

librium [Nash, 1951] is a state that has no such improving
moves.

A path in {0, 1}|C| is a sequence (s0 → s1 → · · · ) of
states such that for every k ≥ 1 there exists a unique player,
say candidate c, such that sk = (s′c, s

k−1
−c ) for s′c 6= sk−1c in

{0, 1}. It is an improvement path if for all k ≥ 1 it holds that
sk−1

c→ sk is an improvement move, where c is the unique
deviator at step k. The setting of dynamic candidacy is based
on myopic improvement dynamics as above: the candidates
start by announcing some initial state, and then proceed and
change their candidacy status in turns, one at a time, up until
no one has an objection to the current outcome. We neither
make assumptions on the initial profile s0, nor restrict the
order, in which the players apply their moves, or the number
of times for each candidate to change his status.

2.3 Reachable states
While it is known that a Nash equilibrium may not, in gen-
eral, exist for candidacy games under Plurality [Lang et al.,
2013], the question remains of whether one is guaranteed for
a given profile of preferences, and how it can be obtained.
In particular, it is interesting to know whether an equilibrium
state can be reached by a natural dynamic process based on
improvement moves by single candidates as above. We call
such a state reachable. What is even more important though,
is to find out what candidates would still stand for election in
the end of the process, or just who would be the final winner.

To this end, here we define and investigate the computa-
tional complexity of the following decision problems:
• NE. Given a candidacy game and its initial state s0, is

there an equilibrium state, reachable from s0?
• WINNER. Given an initial state s0 of a candidacy game

and a fixed candidate c, is there an equilibrium state,
reachable from s0, in which c wins the election?
• SET. Given an initial state s0 of a candidacy game and

an equilibrium state s, is s reachable from s0?
For each of these problems, we consider two of its variants

depending on whether a candidate believes or not getting his
previous votes back again, should he re-enter the election af-
ter having left it once. These are two extreme cases of a more
general model, which we present next, where a voter refuses
to re-vote for such a candidate with some known probability.

3 Refusing voters
Here we extend the dynamic candidacy setting to scenarios
where withdrawals may cause the voters to ignore their once
favorite candidates in the future. This is because the voters
may either feel discouraged by and lose their trust and in-
terest in the candidates who “let them down” by leaving the
election, or simply stop updating their information about the
withdrawn candidates and hence avoid making uninformed
decisions. As we show, in this case convergence is guaran-
teed with probability 1.

Formally, we assume that each time that a candidate c with-
draws his candidacy from the election, each voter v decides
to block this candidate with probability pv ∈ [0, 1], indepen-
dently of other voters (unless he already blocked this candi-
date in previous steps).4 The only case, in which a voter v
may return his vote to such a banned candidate c, is when
the candidate for whom v has been currently voting decides
to leave the election, and the voter also finds himself to have
banned all the remaining candidates still standing for election,
so he must reconsider and vote for one of them (that he prefers
the most) again. We assume though that even in this case can-
didate c is formally considered as “banned” by voter v—that
is, as soon as another candidate that had not been previously
blocked by v enters the election, voter v moves his vote away
from c.5 Importantly, the voters’ decisions are not strategic,
that is, the voters always follow their true preferences, even if
restricted to only a subset of available candidates.

We term a pair (Γ, (pv)v∈V ), where Γ is a candidacy game
and pv , for v ∈ V , are probabilities as above, a candidacy
game with refusing voters. Note that a state in this game,
as well as a voting ballot and hence, a game outcome, are
determined not only by the set of actual candidates, but also
by the sets of banned candidates, one for each voter. That
is, state S is a tuple (A,B), where A ⊆ C is a set of actual

4Alternatively, one could consider a model where only those vot-
ers who currently support a given candidate, may decide to block
him after his withdrawal. All our results hold for both these variants
of the setting.

5Alternatively, one could assume that when voter v returns his
vote to candidate c, he formally “unbans” him. All our results hold
for both these variants of the setting.



candidates and B = (Bv)v∈V where ∀v ∈ V , Bv ⊆ C is a
subset of potential candidates, which are banned by voter v.
The corresponding ballot b↓A,B

v ∈ L(A) is then obtained by
placing subset A \ Bv in the top positions of the ballot, and
subset A∩Bv—in the bottom positions (i.e., ∀x ∈ A\Bv and
∀y ∈ A∩Bv we have x �b↓A,B

v
y), while the internal order of

candidates in each of the two subsets is determined by the true
preference order Pv: i.e., ∀x, x′ ∈ A \ Bv , x �b↓A,B

v
x′ ⇔

x �Pv
x′ and ∀y, y′ ∈ A ∩ Bv , y �b↓A,B

v
y′ ⇔ y �Pv

y′.
The outcome of a state S is F

(
b↓A,B

)
.

Next, we demonstrate that for any positive probabilities pv ,
this game converges with probability 1 from any initial state.
Our proof involves constructing a Markov chain that corre-
sponds to a stochastic process based on the candidates’ im-
provement moves and the voters’ blocking actions, and show-
ing that this chain is absorbing6.

Theorem 1. Let (Γ, (pv)v∈V ) be a candidacy game with re-
fusing voters under Plurality. If pv > 0, ∀v ∈ V , then with
probability 1 any improvement path is finite.

Proof. Consider a Markov chain over a set of states S =
{S1, S2, . . . , S|S|} of the candidacy game with refusing vot-
ers. The process starts in one of these states and moves from
one state to another at each step. Given a current state Si, let
pij denote the transition probability of moving from state Si

to state Sj at the next step; with probability pii the process
remains in the same state Si. Let us now determine these
transition probabilities.

For each state Si, let Ci ⊆ C be the set of candidates
who have an improving move from Si. Note that every can-
didate c has exactly one possible move at each step, when the
preference profile P and the vector of banned candidate sets
(Bi

v)v∈V define whether this move is improving for c.
Assume first that Ci is non-empty. Then, one of the play-

ers in Ci will apply his improving move, and the process will
move to another state Sj ; that is, pii = 0. To calculate pij ,
for each c ∈ Ci, let pic = 1

|Ci| be the probability that c is
randomly selected to move from state Si; we have pic > 0,
∀c ∈ Ci, and

∑
c∈Ci pic = 1. If c /∈ Ai then c enters the

election at this step, and the process moves to state Sj where
Aj = Ai ∪ {c} and Bj

v = Bi
v , for each v ∈ V . The cor-

responding transition probability is pij = pic. Otherwise,
if c ∈ Ai, then c withdraws his candidacy, and the process
moves to state Sj where Aj = Ai \ {c} and for each v ∈ V ,
either Bj

v = Bi
v or Bj

v = Bi
v∪{c}. The corresponding transi-

tion probability is pij = pic
∏

v∈V pijv where for each v ∈ V

the probabilities pijv are given as follows. If c is banned by
voter v in Si, that is, if c ∈ Bi

v , then pijv = 1 for Bj
v = Bi

v
(note that Bi

v ∪ {c} = Bi
v in this case). Otherwise, if c is

not banned by voter v in Si, then for Bj
v = Bi

v we have

6That is, it has at least one absorbing state (which transits to itself
with probability 1), and it is possible to reach some absorbing state
from every state in the chain.

pijv = 1− pv , and for Bj
v = Bi

v ∪ {c} we have pijv = pv .7,8

Finally, if Ci = ∅ then the process stays in Si with proba-
bility pii = 1 (i.e., state Si is absorbing). The other transition
probabilities are zeroes. Observe that these probabilities do
not depend upon which states the chain was in before the cur-
rent state Si, so the Markov property does indeed hold.

We now turn to show that this chain is absorbing. That is, it
has at least one absorbing state, and it is possible to reach such
a state from every state in the chain. To this end, from any ini-
tial state S0, we construct a path (S0 → S1 → · · · → St)
with an absorbing terminal state St and positive transition
probabilities. At each step i = 1, . . . , t on this path, if there
exists a candidate c in Ai−1 who wants to withdraw his can-
didacy, let Si be the state with Ai = Ai−1 \ {c} where as
many voters as possible have banned c after his withdrawal. If
no candidate wants to leave the election in Si−1 then choose
any candidate c ∈ Ci−1 \ Ai−1 who would like to enter the
election and let Si be the state with Ai = Ai−1 ∪ {c} and
Bi

v = Bi−1
v for each v ∈ V . From above, the transition

probability pi−1,i is positive (unless there are no improving
moves from state Si−1, in which case we are done). Now,
note that any time that a candidate enters the election, he
gets some votes (otherwise, he cannot change the outcome
and this is not an improving move). However, by our path
definition, if/when he withdraws his candidacy, all the voters
block him, so he cannot get any more votes should he enter
the election again and so will stay aside. Indeed, such a candi-
date could only hope to get votes from those voters who have
banned all the candidates by this step, but, as we mentioned
before, the only case, in which a voter may return his vote
to a banned candidate, is when another candidate whom this
voter has been currently supporting (who is also his last un-
banned candidate) decides to leave the election, and the voter
has to moves his vote to those currently standing for elec-
tion. However, the candidate that re-enters the election can-
not get his vote. Thus, each candidate can enter the election at
most once (and only if he was not running in the initial state),
and will never re-enter again since having left it (which also
can happen at most once).9 Since we only have |C| potential
candidates, after at most 2|C| steps10 (each with a positive
probability), the path will reach its terminal state St where

7If for some voter v the withdrawing candidate c was his last
unbanned candidate, v must return his vote to candidate c′ whom
he prefers the most in Aj . In the setting where v unbans c′ in such
a scenario, the process moves to state Sj with Bj

v = Bi \ {c′} or
Bj

v = Bi ∪ {c} \ {c′}, with the same transition probabilities (that
is, pijv = 1− pv and pijv = pv , respectively).

8In the case where only those voters who support candidate c
in Si can block him after his withdrawal, the probability pijv also
depends on whether v votes for c or not.

9In the case where only those voters who support a given candi-
date in the current state can block him after his withdrawal, a candi-
date can re-enter the election at most |V | times on our path. Indeed,
by our path definition, if/when he withdraws his candidacy, all the
voters who can block him will do so, and there is always at least
one such voter. That is, after |V | entrances, the candidate gets to the
point where he is banned by all the voters.

102|V ||C| steps, in the case with only supporting voters being
able to block a candidate.



no candidate wishes to join or leave the election, and hence,
ptt = 1 (that is, St is absorbing).

Finally, knowing that in an absorbing Markov chain, the
probability for the process to be absorbed is 1 (see e.g., [John
G. Kemény and Snell, 1976]), completes our proof.

In the following section, we consider the two extremes of
Plurality candidacy game with refusing voters (Γ, (pv)v∈V ),
where pv = 0 or pv = 1, ∀v ∈ V . These cases correspond
to two natural instances of the game; the former coincides
with the original model where voters follow no other consid-
erations but their preference orders; in the latter, since all the
voters block each withdrawn candidate, no one has incentives
to ever renew their candidacy. For these two cases, we study
the compputational complexity of NE, WINNER and SET.

4 Complexity of reaching equilibria
We start by showing that the WINNER problem is NP-hard
in both cases. Our proofs involve reducing from Exact 3-Set
Cover (X3C) and Restricted Exact 3-Set Cover (RX3C). We
note that our reductions hold, in particular, for the special
case where the initial state is truthful. In addition, in case
of WINNER0, the winner in an equilibrium state that corre-
sponds to a solution of the reduced problem, is unique. The
latter then implies the computational hardness of NE0 and of
the problem of deciding the very existence of a Nash equi-
librium with a predetermined winner, regardless of dynamic
processes, which we denote ∃WINNER.

For completeness, we first define X3C and RX3C:
• X3C. Given a set U = {u1, . . . , u3m} and a family Z =
{z1, . . . , zn} of triples zj = {uj1 , uj2 , uj3} ⊆ U , j =
1, . . . , n, is there a subfamily Z ′ of Z such that every
element in U is contained in exactly one triple of Z ′?
• RX3C. Same as X3C, with the additional restriction that

each element of U appears exactly in three triples.
We are now ready to state our results.
Theorem 2. WINNER1 is NP-complete.

Proof. First, observe that the problem is in NP. Indeed, hav-
ing a state s coupled with a path (s0 → . . . → s), it takes
polynomial time to check whether s is an equilibrium state
with a given winner and whether (s0 → . . . → s) is an im-
provement path that leads from the initial state s0 to s. Note
that each valid improvement path may only contain with-
drawals, and so is of polynomial length.

To show hardness, we reduce from X3C with n ≥ 3m,
by constructing an instance of WINNER1 as follows. Let
C = Z ∪Q ∪ U ∪D ∪ {w0, w1, w} be the set of candidates
where Z and Q each contains n elements as the number of
triples in X3C, U is a set of 3m candidates corresponding to
the ground set in X3C, D is a (large) set of dummy players,
and w0, w1, w are single distinguished candidates. The can-
didates’ preferences are in Table 1.

There is a set V of voters, divided into 7 blocks. As can
be seen from the voters’ preference profile in Table 2, Blocks
1 and 4 each contain n voters, Block 2 has 2n voters, and
Block 3 has 3n. Furthermore, there are 3m(f − 1) voters
in Block 5, n(f − 1) + 2f − 3m voters in Block 6, and f

voters in Block 7, where f is a large constant (it is sufficient
to have f > 7(n3 + m)). For any subset X ⊆ C, by Xcycle
we denote a fragment of preference lists where members of
X appear in the same cycling order, with the starting point
being alternated—that is, for X = {x1, x2, . . . , xk}, we have
(x1x2 . . . xk), (x2 . . . xkx1), and so on.

The tie-breaking rule prioritizes w over all other candi-
dates, who can be ordered arbitrarily between them.

Let the initial state be s0 = (1, 1, . . . , 1) where all the can-
didates run. We show that if X3C has a solution, then there
exists an improvement path from s0 to an equilibrium state s
where the winner is w. Otherwise, there is no such reachable
equilibrium state. At s0, the winner is w0 with f points. Note
that since candidates never have an incentive to re-enter the
election after having left it once (as p = 1), the score of the
winner cannot decrease along an improvment path, as leaving
candidates only give their points to remaining candidates and
never take them back.

Consider now the first n steps of the process. We show
that only candidates zj ∈ Z can move at these steps. Indeed,
look at the first leaving candidate who is not in Z. It cannot
be any dummie player di ∈ D, as there are no dummies in
the top of the preference profile, and only those in the top for
at least some of the voters can pass their points to remain-
ing candidates and change the outcome. Now, anyone of the
players qj ∈ Q, ui ∈ U , w0, w1 or w, can only give a point
to a dummie player (or to w1 in Blocks 1-4, in case they have
been previously “opened” (i.e., got to the top of the prefer-
ence list) by some zj that withdrawn his candidacy). But all
of them prefer dummie players the least, so they wouldn’t
make a move (in fact, the dummies even have no chances to
win the election, so there’s no point to do it for them at all.)
As for w1, he is also of low priority for qj’s and ui’s—he only
beats w0, but the latter stops being a winner after the very first
improving move, so in the later moves changing the winner to
w1 cannot be beneficial for qj’s and ui. Hence, only zj ∈ Z
can move at first n steps, making their favourite qj’s or ui’s
win the election.

As we have just mentioned, after the first such step, w0

loses and can’t become a winner ever again, but he keeps
its f points, so a new winner must receive at least f points.
Now look at step m, where both w1 and w reach f points.
In the next n − m steps (if there are such steps) w will be
getting 1 additional point at each step, and w1 will be receiv-
ing 2 points. Hence, w will never become a winner, unless
the process stops at step m where w wins the election with
f points (by the tie-breaking with w1). Note though, that at
each of the first m steps, a withdrawn candidate zj was giv-
ing a point to some candidate ui, initially having the score
of f − 1. That is, if w is the winner after step m, then no
ui has received more than one additional point—i.e., exactly
m of them have been opened exactly once, and we have an
exact cover in X3C. The reverse direction is trivial: take a
cover, and let the corresponding zj’s leave one after another,
in descending order.

We now turn to the case with pv = 0, ∀v ∈ V . Since
now the candidates may not only leave, but also re-enter the
election, our proof requires a much more involved hardness



Z block Q block U block D block w0 w1 w
z1 . . . zn q1 . . . qn u1 . . . u3m d1 . . . d|D| w0 w1 w
q1 . . . qn w w w w1 w w1

w U U \ {ui} w1 U U U
U Z Z U Z Z Z

Z \ {zj} Q \ {qj} Q Z Q Q Q
Q \ {qj} w1 w1 Q w w0 w0

w1 w0 w0 w0 D D D
w0 D D D \ {di}
D

Table 1: WINNER1. Candidates’ preferences.

Block 1 Block 2 Block 3 Block 4
z1 z2 . . . zn z1 z1 z2 z2 . . . zn zn z1 z1 z1 . . . zn zn zn z1 z2 . . . zn
w w . . . w w1 w1 w1 w1 . . . w1 w1 u11 u12 u13 . . . un1 un2 un3 q1 q2 . . . qn
w1 w1 . . . w1 w1 w1 w1 . . . w1 w1 w1 w1 w1 . . . w1

D cycle D cycle D cycle D cycle
Z \ {zj} cycle Z \ {zj} cycle Z \ {zj} cycle Z \ {zj} cycle

U cycle U cycle U \ {uji
} cycle U cycle

Q cycle Q cycle Q cycle Q \ {qj} cycle
w0 w0 . . . w0 w0 w0 w0 w0 . . . w0 w0 w0 w0 w0 . . . w0 w0 w0 w0 w0 . . . w0

w w w w . . . w w w w w . . . w w w w w . . . w

Block 5 Block 6 Block 7
u1 . . . u1︸ ︷︷ ︸

f−1

. . . u3m . . . u3m︸ ︷︷ ︸
f−1

q1 . . . q1︸ ︷︷ ︸
f−1

. . . qn . . . qn︸ ︷︷ ︸
f−1

w1 . . . w1︸ ︷︷ ︸
f−2m

w . . . w︸ ︷︷ ︸
f−m

w0 . . . w0︸ ︷︷ ︸
f

D cycle D cycle D cycle
Z cycle Z cycle Z cycle

U \ {ui} cycle U cycle U cycle
Q cycle Q \ {qj} cycle Q cycle Q cycle

w1 . . . w1 . . . w1 . . . w1 w1 . . . w1 . . . w1 . . . w1 w1 . . . w1 w1 . . . w1

w0 . . . w0 . . . w0 . . . w0 w0 . . . w0 . . . w0 . . . w0 w0 . . . w0 w0 . . . w0

w . . . w . . . w . . . w w . . . w . . . w . . . w w . . . w w . . . w

Table 2: WINNER1. Voters’ preferences.

reduction. Specifically, we reduce from RX3C, building on
the counterexample for the existence of equilibria under Plu-
rality presented in [Lang et al., 2013], using it as a sub-block
in our constructed preference profile, to help us lead the pro-
cess into a cycle when the reduced problem has no solution.

Theorem 3. WINNER0 is NP-hard.

Note that both Theorem 2 and Theorem 3 use the truthful
state s0 = (1, 1, . . . , 1) as initial point, so their results hold,
in particular, for this important special case. Also, from the
proof of Theorem 3 we derive another useful observation.

Lemma 1. There is an instance of WINNER0 with a fixed
candidate, w, who wins the election in any equilibrium state
if and only if there is an exact cover of the reduced RX3C.

Now, let ∃WINNER denote the following decision prob-
lem: Given a preference profile P and a fixed candidate c, is
there an equilibrium state s, in which c wins the election? The
following Theorem 4 is then a direct corollary of Lemma 1.

Theorem 4. ∃WINNER and NE0 are NP-hard.

Note that for NE, this result is in contrast with the case of
pv = 1 where a stable state is easy to reach.

Theorem 5. NE1 always returns “yes”. Moreover, a stable
state is reachable in linear time.

Finally, we modify our reductions for the WINNER prob-
lem to show NP-hardness of SET.

Theorem 6. SET0 and SET1 are NP-hard.

5 Discussion and Future Work

In this paper, we initiate the study of equilibrium dynamics
in candidacy games. While such dynamic processes have re-
cently been in the focus of active research in the context of
strategic voting, the case where candidates behave strategi-
cally remained unexplored so far. Naturally, we first focus on
the simple Plurality rule.

Remarkably, solution sets for voting and candidacy games
possess very different properties, which also imply differ-
ences between their corresponding dynamic processes. Thus,
voting games have multiple equilibria, some of which are
highly undesirable (e.g., where all the voters select the
same—and least preferred by all—candidate). However, re-
stricting the set of equilibria to only those, reachable dynami-
cally from the truthful state, appears useful in excluding such
bad equilibria [Branzei et al., 2013]. In contrast, for candi-
dacy games the very existence of an equilibrium is not guar-
anteed under Plurality rule, thus implying the need of study-
ing the existence and reachability of equilibria for given pro-
files of preferences. Also, in this context, besides seeking a
state with a particular winner, it is sensible to look for a state
with a certain set of running candidates. The main difference
though, is in that equilibrium dynamics here have no aim of
eliminating equilibria but merely finding them.

Importantly, adding dynamics to searching for equilibria,
also has different impact on the complexity of the problem.
Thus, finding any stable state is easy in voting games, while
checking that a given equilibrium is reachable is NP-hard; on
the other hand, for truth-biased voters (who always vote truth-



fully unless can change the outcome in their favour by deviat-
ing), the complexity of these two problems gets reversed [Ra-
binovich et al., 2014]. In contrast, as this paper shows, in
candidacy games the problems of finding a stable state with a
given winner, or reaching such a state dynamically, are both
NP-hard.

On the other hand, notice that converging to a state with a
given set of actual candidates, which is NP-hard in the orig-
inal case with no refusing voters, becomes polynomial time
solvable when voters refuse to return their votes to witdrawn
candidates with probability 1. The question is then whether
the problem can be efficiently solved with high probability
for any refusing probability pv > 0. In other words, (when)
is it possible to circumvent this computational hardness in the
model with refusing voters.

We thus believe that our work makes a first step in sev-
eral exciting directions. First, we hope that studying dynamic
processes can shed light on the properties of candidacy games
under Condorcet-consistent rules, which all admit equilibria
for 4 candidates, but split as the number of candidates grows.
Second, given the hardness results we presented here, one
may seek opportunities for getting positive results in terms
of computational complexity, e.g., by restricting the space
of preference profiles to single-crossed or single-peaked do-
mains. Furthermore, the model with refusing voters should
be further extended (e.g., to scenarios where voters can block
a candidate for only a period of time or unblock them with
some probability at each step). Finally, it is interesting to in-
vestigate equilibrium dynamics in the setting with both can-
didates and voters being strategic [Brill and Conitzer, 2015
forthcoming]. While there are multiple equilibrum states in
this case, the quesiton of whether they (and which of them)
are reachable remains open.
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