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Abstract
We study the stochastic multiple-choice knapsack
problem, where a set of K items, whose value and
weight are random variables, arrive to the system
at each time step, and a decision maker has to
choose at most one item to put into the knapsack
without exceeding its capacity. The goal of the
decision-maker is to maximise the total expected
value of chosen items with respect to the knap-
sack capacity and a finite time horizon. We provide
the first comprehensive theoretical analysis of the
problem. In particular, we propose OPT-S-MCKP,
the first algorithm that achieves optimality when
the value-weight distributions are known. This
algorithm also enjoys Õ(

√
T ) performance loss,

where T is the finite time horizon, in the unknown
value-weight distributions scenario. We also fur-
ther develop two novel approximation methods,
FR-S-MCKP and G-S-MCKP, and we prove that
FR-S-MCKP achieves Õ(

√
T ) performance loss in

both known and unknown value-weight distribu-
tions cases, while enjoying polynomial computa-
tional complexity per time step. On the other hand,
G-S-MCKP does not have theoretical guarantees,
but it still provides good performance in practice
with linear running time.

1 Introduction
The class of knapsack problems is a fundamental set of NP-
hard combinatorial optimisation problems that are widely
used in many areas, ranging from finance and management
science, to computer science and artificial intelligence. The
standard (or 0-1) knapsack problem consists of a knapsack
with capacity C, and a set of items, each of which has cer-
tain value and weight. The goal of the decision maker (i.e.,
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the optimiser) is to find a set of items with maximum total
value such that the sum of the items’ weight does not ex-
ceed the capacity C of the knapsack. Other popular vari-
ants of the knapsack require different constraints, such as:
(i) choosing multiple copies of a single item is allowed
(bounded/unbounded knapsack); (ii) choosing one from each
subset of items (multiple-choice knapsack); or (iii) putting
items into multiple knapsacks (multi-knapsack) (for further
details of the knapsack problems, see, e.g., [Kellerer et al.,
2004]).

In the classical (or offline) setting of the knapsack prob-
lems, the items are typically available for the decision maker
from the beginning of the process, with deterministic and
known values and weights. However, a number of researchers
are recently focussing on the stochastic version [Lueker,
1995; Babaioff et al., 2007; Tran-Thanh et al., 2012], where
a set of new items arrive to the system at each time step in
an online manner, and the value and weight of these items
are typically randomly drawn from a distribution. The de-
cision maker then chooses (a subset of) items to place into
the knapsack without exceeding its capacity, while dispos-
ing of the others (which cannot be reused in the future).
This stochastic setting has many applications, especially in
the field of artificial intelligence and its related areas, such
as stochastic planning, sequential decision theory, and on-
line machine learning [Cohn and Mit, 1998; Lu et al., 1999;
Benoist et al., 2001; Tran-Thanh et al., 2012], as problems
within these areas typically consist of real-time processes,
where the decisions have to be made sequentially at each
time step. Despite the important role of the stochastic knap-
sacks in many research areas, and the fact that their of-
fline counterpart have been thoroughly investigated for many
years, only a small number of efficient algorithms, that re-
quire low computational costs and enjoy good theoretical per-
formance guarantees, have been proposed within this area.
In more detail, while researchers have devised approxima-
tion algorithms, that are both theoretically and practically ef-
ficient, for the stochastic 0-1 [Lueker, 1995; Kakade et al.,
2007] and bounded/unbounded knapsacks [Ding et al., 2013;
Tran-Thanh et al., 2014], similar efficient algorithms for
other stochastic knapsacks have not yet been proposed.

Against this background, this paper aims to fill the gap
by introducing new efficient algorithms for the stochastic
multiple-choice knapsack problem (S-MCKP), an important



variant of the stochastic knapsack, which occurs in many
sequential decision making problems. In particular, in S-
MCKP, a set of K items, whose value and weight are ran-
domly drawn from stationary value-weight distributions, ar-
rive to the system at each time step, and a decision maker has
to choose at most one item to put into the knapsack, in or-
der to maximise the total expected value of the chosen items,
before the true value and weight of each item are revealed to
her. This problem is motivated by many real-world applica-
tions. For example, consider the search and rescue domain in
robotics, where an autonomous rescue robot has to decide at
each round (i.e., time step) where to go. To reach different
locations, the robot has to consume a certain amount of en-
ergy (i.e., weight) from its limited battery (i.e., capacity), and
receives a certain utility (i.e., value) when it executes the task.
Since it can have access to the observations of the other first
responders and searchers, it can also evaluate the cost and
utility of other actions it did not choose (i.e., all the value-
weight pairs are revealed) at the end of each round. The goal
of the robot is then to maximise its total utility over a finite
time horizon, with respect to its limited battery.

While the S-MCKP has been studied as a special case of a
more generic model [Badanidiyuru et al., 2013], or with sim-
plified settings [Zhou and Naroditskiy, 2008], state-of-the-
art algorithms are still computationally expensive and do not
have good performance guarantees, and thus, cannot be used
in real-world applications (see Section 2 for more details). In
addition, other existing stochastic knapsack algorithms, that
are designed for different settings, are not suitable for effi-
ciently handling the multiple-choice constraint, and thus, they
will not provide good performance in S-MCKP either. To
this end, our main goal is to develop fast algorithms that can
provide good theoretical performance guarantees for the S-
MCKP. In particular, we consider two settings that together
cover all the possible scenarios, namely: (i) when the value-
weight distribution functions are known; and (ii) when this
distribution functions are not known a priori. Given these
two settings, we first introduce OPT-S-MCKP, an algorithm
which is provably optimal (i.e., provides the best expected
performance) for the case of known value-weight distribu-
tions. We also show that its performance loss (i.e., the differ-
ence between an algorithm’s performance to that of the best
possible) in the case of having unknown value-weight distri-
butions is at most Õ(

√
T ) where T is the finite time horizon,

and the logarithmic terms are hidden in the Õ notation. Note
that the sub-linear (e.g, squared root) performance loss im-
plies that the average performance loss per time step is con-
verging to 0 as T tends to infinity. Thus, the behaviour of
the algorithm with a sub-linear performance loss converges
to that of an optimal algorithm. However, as S-MCKP is
NP-hard, this optimal algorithm cannot be computationally
efficient. To overcome this issue, we additionally propose
two novel approximation algorithms, FR-S-MCKP; and G-S-
MCKP, respectively. These algorithms represent two domi-
nant classes of approximation techniques within the knapsack
literature. In particular, the former follows a fractional relax-
ation approximation approach, and enjoys a poly(K) com-
putational cost per time step (K is the number of items per

time step), while the latter applies a greedy approximation
method, and achieves linear computational complexity. In
addition, we also prove that FR-S-MCKP provably achieves
performance loss of at most Õ(

√
T ) for both cases of known

and unknown value-weight distributions. In contrast, while
similar performance guarantees do not exist for G-S-MCKP,
we demonstrate through extensive numerical evaluation that
it can achieve similar performance, compared to that of the
other two methods, with significantly lower computational
cost. In summary, we extend the state of the art as follows:

• We provide the first comprehensive theoretical analy-
sis for a stochastic knapsack problem, S-MCKP, that is
widely used in many real-world applications. In partic-
ular, we propose OPT-S-MCKP, the first method that is
optimal when the value-weight distributions are known,
and can achieve performance loss guarantee of Õ(

√
T )

when the distributions are not given a priori.

• We also propose two novel approximation algorithms,
R-S-MCKP, and G-S-MCKP, that can achieve efficient
performance with low computational costs, and we show
that FR-S-MCKP can provably achieve Õ(

√
T ) perfor-

mance loss guarantee for both cases of known and un-
known distributions.

In the remainder of the paper, we first provide a review of the
related work (Section 2). We then describe S-MCKP (Section
3) and the algorithms in more detail (Sections 4 and 5). We
also provide the theoretical analysis (Theorems 1, 2, and 3)
and numerical evaluation of the algorithms (Section 6).

2 Related Work
[Lueker, 1995] was the first to investigate knapsack problems
in the stochastic setting. In particular, he proposed a greedy
approach to approximate the stochastic 0-1 knapsack prob-
lem, and he proved that the algorithm can guarantee a per-
formance loss of at most O(lnT ). His results were later ex-
tended by [Kakade et al., 2007], who described an approx-
imation technique with Õ(

√
T ) performance loss guarantee

for the online 0-1 knapsack problem with adversarial values
and weights (i.e., here the sequence of values and weights is
not randomly drawn from a distribution, but is set a priori by
an adversary). These approaches, however, are specifically
designed for the 0-1 knapsack, and thus, cannot be applied to
our settings, as they heavily rely on the fact that the decision
space at each time step is binary.

More similar to our paper are the works on bounded and
unbounded stochastic knapsacks (which are in fact special
cases of the multiple-choice version, with the time horizon
set to be infinite). More specifically, [Tran-Thanh et al., 2010;
2012; Ding et al., 2013] investigated the unbounded setting,
and proposed algorithms that can achieve O(lnT ) perfor-
mance loss, compared to that of the best possible. On the
other hand, existing algorithms for bounded (i.e. there is a
limit on the number of copies we can choose from each single
item) knapsack are less efficient. In particular, [Tran-Thanh
et al., 2014] proposed an algorithm with O(T 2/3) perfor-
mance loss guarantee, while the algorithm developed by [Ho



and Wortman-Vaughan, 2012] can achieve a performance ap-
proximation with a comparative ratio (i.e., the performance
loss is linear). Nevertheless, the abovementioned algorithms,
both for unbounded and bounded knapsacks, cannot be ap-
plied to our settings as they are designed for special cases
of our model, that does take the finite time horizon T into
account. Thus, they may put into a knapsack a sequence of
items that contains significantly larger items than T , which is
the maximal number of items we can put into the knapsack
(as at most one item can be chosen per time step). More re-
cently, [Badanidiyuru et al., 2013] investigated the stochastic
multi-dimensional knapsack, that can be regarded as a gener-
alisation of many knapsack problems, and proposed two ap-
proximation algorithms with guaranteed performance losses.
However, these algorithms are designed for very generic set-
tings, and thus, are computationally very involved, with inef-
ficient performance guarantees, compared to our results. In
particular, their results guarantee a Õ(

√
OPT) upper bound

on the loss, where OPT is the performance of the optimal
solution, which is typically significantly larger than Õ(

√
T ).

Apart from this, S-MCKP was also studied by [Zhou and Nar-
oditskiy, 2008] with a modified setting, where all the value-
weight pairs are revealed before each decision. However,
their algorithm does not have any performance guarantees.

It is worth mentioning that a special case of our setting,
where all the weights are set to be equal and deterministic,
is a well studied topic in the online machine learning lit-
erature, known as the problem of learning with expert ad-
vices [Cesa-Bianchi et al., 1997; Cesa-Bianchi and Lugosi,
2006]. Within this area, state-of-the-art algorithms typically
enjoy a constant performance loss, compared to that of the
best fixed solution on hindsight. However, as these algorithms
do not take the weights into account, they are not suitable to
tackle S-MCKP, where the role of the weights are essential.
More recently, [Amin et al., 2015] introduced weights (as ad-
vice costs) into this domain of learning with expert advice.
However, their model only considers fixed and deterministic
weights, with a per time step capacity, which is refilled after
each time step. Given these differences in the model, their
proposed method does not fit into our setting, and thus, will
not be suitable for providing efficient performance.

3 The S-MCKP Model

In this section we describe the stochastic multiple-choice
knapsack problem (S-MCKP) in more detail. The S-MCKP
model consists of a knapsack with capacity C. At each time
step t ∈ {1, . . . , T}, we have to choose one from a set of K
items Kt = {(vt(k), wt(k))|1 ≤ k ≤ K} where vt(k) and
wt(k) are the value and the weight of the kth item from Kt,
respectively. Let Vt = {vt(k)}Kk=1 and Wt = {wt(k)}Kk=1
denote the vectors of values and weights of the items at time
step t, respectively. In our setting, we assume that these value
and weight vectors are drawn from stationary value-weight
distributions. Moreover, let DV and DW denote the marginal
distribution of value vector Vt and weight vector Wt, re-
spectively. For now, we assume that DW is discrete, that is,

wt(k) are discrete values1. We also assume that there exist
V,W > 0 such that for each 1 ≤ k ≤ K and 1 ≤ t ≤ T ,
vt(k) ≤ V and wt(k) ≤ W with probability 1. Now, let
pk(w) denote the probability that wk(t) = w. In addition, let
µk = E[vt(k)] denote the expected value we can get if we
choose the kth item of Kt. Since Kt is drawn from a sta-
tionary joint value-weight distribution, E[vt(k)] remains the
same for all t and thus, we can leave the time index out from
µk. Let µ = {µk}Kk=1 be the vector of these expected values.

In our model, the concrete value and weight of each item
in Kt is only revealed after we have chosen an item from Kt

(these values are also revealed if we decide not to choose any
items). Our goal is to choose at most one item from each
Kt and put it into the knapsack such that the total weight
cannot exceed the capacity C and the expected total value
of the chosen items is maximised. More formally, let xt ∈
{0, 1}K denote a binary vector that represents our item choice
at time step t. That is,

∑K
k=1 xt(k) ≤ 1. Our objective is to

find a sequence of xt for t = 1, 2, . . . , T such that we achieve
the optimal solution for the following constrained problem:

maxE
[ T∑
t=1

xtVt

]
s.t.

T∑
t=1

xtWt ≤ C a.s. (1)

In what follows, we will discuss two cases, that covers all the
possible scenarios of the problem, in more detail, namely: (i)
we know in advance the joint value-weight distribution of the
items (Section 4); and (ii) we do not have prior knowledge
about this joint value-weight distribution (Section 5).

4 S-MCKP with Known Distributions
In this section, we assume that we have accurate prior knowl-
edge about the joint value-weight distribution, and thus, both
DV and DW are known in advance. To tackle this version of
S-MCKP, we first propose an optimal solution (Section 4.1),
which is computationally involved. To overcome the compu-
tational issues, we propose two near-optimal heuristics, each
of which is taken from a popular class of approximation al-
gorithms within the knapsack literature, that are computation-
ally efficient (Sections 4.2 and 4.3).

4.1 An Optimal Solution
We first provide an optimal solution of the S-MCKP model.
To do so, we introduce the following terms. Let G∗(c, t) de-
note the maximal expected total value that we can achieve
from time step t, with remaining budget c. Note that what
we want to calculate is G∗(C, 1). In addition, let G∗(c, t, k)
denote the maximal expected total value we can achieve if
we choose the kth item from Kt, with remaining budget c.
To formalise the fact that we can decide not to choose any of
the items at time step t, we introduce a new item indexed by

1This assumption can be easily relaxed to real-value weights. In
fact, the main purpose of having this assumption is that it is easier to
describe the main idea of OPT-S-MCKP on discrete weights, while
FR-S-MCKP and G-S-MCKP can work with real-value weights
without modification. To adopt OPT-S-MCKP to the case of real-
value weights, we only have to replace the Bellman equations de-
scribed in Section 4.1 with their differential equation counterparts.



k = 0 such that it always returns value and weight 0. This
implies that µ0 = w0 = 0. Now we turn to the description of
the Bellman equations. Note that when t ≥ T + 1 (i.e., we
exceed the time horizon), for any c > 0, we have:

∀t ≥ T + 1 : G∗(c, t) = G∗(c, t, k) = 0 (2)

where 0 ≤ k ≤ K. In fact, this indicates that when we
reach the time horizon, no additional item (and thus, value)
can be added to the knapsack. Furthermore, for any c ≤ 0,
1 ≤ t ≤ T , and 0 ≤ k ≤ K, we have:

∀c ≤ 0 : G∗(c, t) = G∗(c, t, k) = 0 (3)

That is, we cannot achieve any improvements if we exceed
the capacity. We now have the following recursion. For each
1 ≤ t ≤ T , and 0 ≤ k ≤ K, we have

G∗(c, t, k) = µk +

W∑
w=1

pk(w)G
∗(c− w, t+ 1) (4)

This implies that G∗(c, t) = max0≤k≤K G
∗(c, t, k). We can

also identify the item which we have to choose from Kt (in-
cluding the fake item k = 0) in the optimal solution. In par-
ticular, let k∗(c, t) denote this optimal item at time step t with
the remaining capacity is c. We have:

k∗(c, t) = arg max
0≤k≤K

G∗(c, t, k) (5)

Note that k∗(c, T + 1) = 0 for any c. It is known that the so-
lution of this set of Bellman equations (or dynamic program-
ming) provides the optimal solution of S-MCKP [Kellerer
et al., 2004]. Indeed, with this recursion, we can identify
k∗(C, 1), which is the first item of the optimal solution. Given
this, the optimal algorithm, OPT-S-MCKP, is as follows:
Initialisation: We set t = 1 and ct = C, respectively.
Solving the equations: We solve the Bellman equations de-
scribed in Eqs (2) - (5) for each t and ct, from which we
obtain k∗(ct, t), the optimal item to be chosen at each time
step t and residual capacity ct.
Iterative steps:

1. We put k∗(ct, t) into the knapsack and observe its value
and weight. Let wk∗(ct,t) denote the latter.

2. We set ct+1 = ct − wk∗(ct,t) and t = t + 1. We repeat
Step 1 with the new time and capacity values.

This algorithm, however, is computationally involved, as we
have to solve a set of O(KTC) Bellman equations. This
will lead to heavy computational cost in case of large T and
C, which is typical in many real-world applications(see our
experiments for more details). Given this, we next discuss
two computationally more efficient approximation algorithms
(i.e., with polynomial computation cost) for the S-MCKP.

4.2 Fractional Relaxation-based Approximation
We start with the description of FR-S-MCKP, a fractional
relaxation-based approximation method for S-MCKP. In par-
ticular, the approach relies on the following idea. One way to
overcome the computational complexity of OPT-S-MCKP is
to relax the original problem described in Eq (1). In partic-
ular, let νk = E[wk] denote the expected weight of item k.

Let vector ν = {νk}Kk=1 denote by the set of these expected
weights. Similarly to the case of OPT-S-MCKP, we also add
a dummy item with index k = 0, fixed value 0, and fixed
weight 0, respectively. We consider the following fractional
relaxation of the S-MCKP:

maxE
[ T∑
t=1

xtVt

]
= max

T∑
t=1

xtµ s.t.

T∑
t=1

xtν ≤ C

∀t, k : 0 ≤ xt(k) ≤ 1 and

K∑
k=0

xt(k) ≤ 1 (6)

That is, we allow xt(k) to be fractional (and not binary as
in the original S-MCKP). In addition, we also relax the ca-
pacity constraint so that instead of restricting the total sum
of weights has to be smaller than C for almost surely (as
it is the case in the original problem), we only require the
average total weight to be smaller than the capacity of the
knapsack. This relaxation enjoys the advantage of having
a polynomial (in the number of items) computational cost
to calculate its optimal solution [Bagchi et al., 1996]. Sup-
pose that {x∗t }Tt=1 = {{x∗t (k)}Kk=0}Tt=1 denote the optimal
solution of the abovementioned relaxed problem. Since by
modifying the contribution of the dummy item to this solu-
tion does not violate the capacity constraint at all, we can
increase x∗t (0) until we exceed 1. That is, we set the new
x∗t (0) := 1−

∑K
k=1 x

∗
t (k). By doing so, we can always guar-

antee that the sum of the elements within the optimal solution
{x∗t }Tt=1 is always T (this will play an important role in the
proofs). Thus, FR-S-MCKP can be described as follows:
Initialisation: We set t = 1 and ct = C, respectively.
Iterative steps:

1. We solve the relaxed knapsack problem described in
Eq (6) with residual capacity ct and remaining time
T −t+1 (i.e., we replace C and T with ct and T −t+1,
respectively). Let {x∗τ}T+1−t

τ=1 denote the optimal solu-
tion, where x∗τ = {x∗τ (k)}Kk=0.

2. We then randomly choose item k with probability
qt(k) =

∑
τ x
∗
τ (k)∑

τ

∑
k x
∗
τ (k)

. Let k∗(ct, t) denote the chosen
item with weight wk∗(ct,t). If t ≥ T (we exceed the
time limit) or wk∗(ct,t) > ct (we exceed the capacity
limit) then STOP. Otherwise put item into knapsack.

3. We set ct+1 = ct − wk∗(ct,t) and t = t + 1. We repeat
Step 1 with the new time and capacity values.

The intuition behind this algorithm is that by choosing an
item with probability qt(k), we can guarantee that the ex-
pected value of the chosen item is actually 1

T of the optimal
solution of the relaxed knapsack. Thus, by summing up over
T time steps, the performance of FR-S-MCKP converges to
the relaxed optimal solution, which is an upper bound of the
optimum of the original S-MCKP. In fact, regarding the per-
formance of FR-S-MCKP, we state the following:

Theorem 1 Let K∗ = argmaxk
µk
νk

. Recall that W denotes
the upper bound for all the possible weights. The perfor-
mance loss of FR-S-MCKP, defined of the difference between



its expected performance and that of OPT-S-MCKP, is at most

µK∗

νK∗
W
(√

2T ln (2T ) + lnT
)
+ V

That is, we can guarantee that the expected performance of
FR-S-MCKP is at most Õ(

√
T ) less than that of the optimal

solution, where all the logarithmic terms are hidden in the no-
tation Õ. In terms of computational cost, at each time step t,
FR-S-MCKP solves the relaxed knapsack problem defined in
Eq (6) with poly(K) cost (where the degree of the polynom is
strictly larger than 1), it is clearly faster than OPT-S-MCKP.

Due to space limitations, we omit the proof. However, the
main steps of the proof can be sketched as follows. We de-
compose the total performance loss of FR-S-MCKP into step-
wise losses. We then provide an upper bound for each step-
wise loss with a function f , which is linear to the difference
between the current remaining capacity ct of FR-S-MCKP
and the average capacity of the optimal solution at the current
time step t. We then provide a martingale in which the dif-
ferences between the consecutive elements are upper bounds
of the abovementioned capacity differences. By applying the
Azuma-Hoeffding inequality on this martingale, we provide
an upper bound on how large these differences can be. Fi-
nally, by summing up these bounds over T , we obtain the
desired performance loss bound.

4.3 Greedy Approximation
We now turn to the discussion of G-S-MCKP, a greedy heuris-
tic for S-MCKP. In this heuristic, at each time step t, we
greedily choose the item that, if we are only allowed to solely
choose that item in the remaining time steps, will provide the
highest total value w.r.t. the remaining capacity. In particular,
the item we choose at time step t is the one that satisfies:

k∗(ct, t) = arg max
1≤k≤K

max
t≤T ′≤T

{
µk(T

′ + 1− t)|ct

≥ (T ′ + 1− t)
W∑
w=1

wpk(w)
}

(7)

That is, at each time step t, we consider all the indices that on
average can still fit into the remaining capacity ct if we have
to consecutively choose that single index in the remaining part
of the process. We then choose the index that provides highest
total expected value in the remaining time steps. Hence, the
algorithm can be described as follows:
Initialisation: We set t = 1 and ct = C, respectively.
Iterative steps:

1. We calculate k∗(ct, t) according to Eq (7) and choose
this item. If t ≥ T (we exceed the time limit) or
wk∗(ct,t) > ct (we exceed the capacity limit) then
STOP. Otherwise put item k∗(ct, t) into the knapsack
and GOTO Step 2.

2. We set ct+1 = ct − wk∗(ct,t) and t = t + 1. We repeat
Step 1 with the new time and capacity values.

The intuition behind this heuristic is, that in many cases, by
solely choosing a fixed item, we can still achieve a good ap-
proximation solution for the knapsack problem (see [Kellerer

et al., 2004] for more details). Following this idea, this algo-
rithm chooses the best fixed-item strategy that can maximise
the total value in the remaining time steps, in order to achieve
better approximation. This algorithm is computationally very
efficient, as evaluating Eq (7) only requires O(K) complex-
ity at each time step. Thus, it is significantly more efficient
in terms of computational costs, compared to OPT-S-MCKP
and FR-S-MCKP, respectively. On the other hand, unlike FR-
S-MCKP, we do not have theoretical guarantees on the perfor-
mance of G-S-MCKP. However, as we will demonstrate later,
that G-S-MCKP can provide good performance in practice.

5 S-MCKP with Unknown Distributions
In this section, we investigate the case when the value-weight
distributions are unknown. That is, we do not have the full in-
formation about the distribution function of the value-weight
pairs of the items. Instead, we can only observe a realisa-
tion of these pairs at each time step. In this setting, achiev-
ing the optimum is impossible, as it requires the full knowl-
edge of the distribution functions. Given this, the main goal
is shifted to the minimisation of the performance loss. As
such, we aim to develop algorithms with sub-linear losses.
To achieve this goal, we provide a solution that combines the
previously proposed algorithms with distribution estimation
in order to efficiently fit this case of S-MCKP. In particular,
we describe how to maintain an approximate of the unknown
value-weight distributions at each time step and how to ap-
ply OPT-S-MCKP, FR-S-MCKP, and G-S-MCKP to this se-
quence of approximated distributions. We then provide rigor-
ous theoretical performance guarantees for these solutions.

5.1 Approximated S-MCKP
We start with the approximation of the value-weight distribu-
tion. As we can observe the K value-weight pairs of each
item k at every time step, we can use the empirical distri-
bution of the value-weight distribution, generated by the ob-
served data, to approximate the parameters that are needed for
us. In particular, we are interested in the mean of the value
and the marginal distribution of the weight of each item, as all
the proposed algorithms, (i.e., OPT-S-MCKP, FR-S-MCKP,
and G-S-MCKP) use them in order to calculate the next item
to choose. Given this, let µ̂k,t denote the average of the val-
ues observed for item k at time step t (not including the value
that is revealed at time step t). In addition, let p̂k,t(w) denote
the empirical probability. Having these approximations, the
algorithms proposed in Section 4 can be applied to the setting
of unknown value-weight distribution as follows:
Initialisation: We set t = 1 and ct = C. Let ALG denote
either OPT-S-MCKP, FR-S-MCKP, and G-S-MCKP, respec-
tively. We randomly choose one item to put in to the knap-
sack. If we exceed either the time or capacity constraint then
STOP, otherwise we update t = t+ 1 and ct = C −w where
w is the weight of the randomly chosen item. We also update
µ̂k,t and p̂k,t(w) for each k and w, and GOTO next phase2.
Iterative steps:

2Note that FR-S-MCKP also needs to maintain ν̂k,t, the average
weight of each item k. However, this can be easily calculated from
p̂k,t(w) by taking the weighted average of the weights.
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Figure 1: Numerical results for S-MCKP with 50 items.

1. We run ALG with the current set of {µ̂k,t}Kk=1 and
{p̂k,t(w)}k,w.

2. If ALG stops (due to exceeding a constraint) then STOP,
otherwise t = t + 1 and ct = ct − w where w is the
weight of the currently chosen item, update {µ̂k,t}Kk=1
and {p̂k,t(w)}k,w, and GOTO Step 1.

5.2 Performance Analysis of the Algorithms
We now turn to the performance analysis of the algorithms
within the setting of unknown value-weight distributions. Let
K∗ = argmaxk

µk
νk

, and recall that V and W are the upper
bounds of all the values and weights, respectively. We state
the following theorems:
Theorem 2 The performance loss of OPT-S-MCKP without
the prior knowledge of the value-weight distribution, com-
pared to that of a best possible algorithm, is at most

V
(
2
√
T ln 2T + 2K + 1

)
Theorem 3 The performance loss of FR-S-MCKP without
the prior knowledge of the value-weight distribution is at most

µK∗

νK∗
W lnT +

√
T ln 2T

(
V + (

√
2 + 2)

W 2µK∗

2νK∗

)
+(K + 1)2V

Again, we omit the proofs due to space limitations. How-
ever, they can be sketched as follows. By using the Azuma-
Hoeffding and Dvoretzky-Kiefer-Wolfowitz inequalities, we
can provide upper bounds on the estimation error of µ̂k,t
and p̂k,t(w), respectively. Using similar techniques from the
proof of Theorem 1 with some other technical algebrae, we
get an upper bound on the step-wise losses. By summing
these bounds, we obtain the desired results.

As we can see, both OPT-S-MCKP and FR-S-MCKP can
achieve Õ(

√
T ) performance loss (again, the logarithmic

terms are hidden in the notation Õ), which is sub-linear. This
guarantees the desired efficiency of the algorithms. On the
other hand, similarly to the case of having full knowledge
of the value-weight distributions, we do not have any perfor-
mance guarantees for G-S-MCKP when it is applied to the
setting of unknown value-weight distributions. However, as
we will demonstrate in the next section, this algorithm can
still perform well in practice, compared to its counterparts.

6 Numerical Evaluations
Given the theoretical analysis of the algorithms, we now turn
to the empirical evaluation of the proposed algorithms. The
main reason behind having this is that we want to investigate
whether G-S-MCKP, which does not have theoretical perfor-
mance guarantees, can provide good performance, compared
to that of the other two methods. To do so, we conduct a
set of numerical simulations. In these simulations, the values
of each item are sampled from the set {10, 15, 20, · · · , 55}
and the weights of each item are from {5, 10, 15, · · · , 50}.
We set the number of items per time step to be 50, and
we generate the value-weight distributions as follows. We
take the following block of 10 value-weight distributions:
Pk{vt(k) = 5(k + 1)} = p, Pk{wt(k) = 5k} = p,
Pk{vt(k) = 5(i + 1)} = 1−p

9 , Pk{wt(k) = 5i} = 1−p
9

∀i ∈ {1, 2, · · · , 10}\{k}, where k = 1, 2, . . . 10. By varying
the value of p over the set {0.6, 0.5, 0.4, 0.3, 0.25}, we get
50 pairs of value-weight distributions. The capacity of the
knapsack is 10000, and we run each experiment 100 times3.

Figure 1 depicts the results of the algorithms. In particular,
Figures 1a and 1b show the performance of the algorithms in
the cases of known and a priori unknown value-weight distri-
butions, while Figure 1c shows the running time of the algo-
rithms, respectively. As we can see, OPT-S-MCKP performs
the best, while FR-S-MCKP and G-S-MCKP achieve very
close performance to that of OPT-S-MCKP in both cases. In
particular, we can observe that FR-S-MCKP is slightly bet-
ter than G-S-MCKP. This is due to the fact that the fractional
relaxation technique typically provides better approximation,
compared to the fixed item greedy approach [Kellerer et al.,
2004]. As FR-S-MCKP converges to the former and G-S-
MCKP converges to the latter, FR-S-MCKP indeed has better
performance. We can also observe that the performance of the
algorithms in the unknown distributions case is slightly worse
than in its known distributions counterpart. This is due to the
estimation errors of the distributions. However, as these er-
rors typically converge to 0 in a fast manner, the performance
loss we obtain by moving from known distributions to the
unknown case is also small. In terms of running time (see
Figure 1c), G-S-MCKP achieves the most efficient computa-

3We have also run additional experiments with different parame-
ter settings. However, due to page limitations, we ignore the details
of those results, as they show similar results on a broad view.



tional running time that is faster than that of the others by up
to an order of magnitude of 2.5 (compared to the running time
of FR-S-MCKP) and 4 (compared to OPT-S-MCKP), respec-
tively. In addition, FR-S-MCKP is faster than OPT-S-MCKP
by up to a magnitude of 2. Thus, this results demonstrate that
both FR-S-MCKP and G-S-MCKP can achieve near optimal
performance with significantly less computational cost, com-
pared to that of OPT-S-MCKP.

7 Conclusions
In this paper we provide a comprehensive analysis of S-
MCKP, the stochastic multiple-choice knapsack problem. In
particular, we proposed OPT-S-MCKP, an optimal algorithm
for the case when the value-weight distributions are known.
We also proved that this algorithm can achieve Õ(

√
T ) per-

formance loss when these distributions are not known a pri-
ori. We also developed two computationally efficient approx-
imation algorithms, FR-S-MCKP and G-S-MCKP. The for-
mer can provably achieve Õ(

√
T ) performance loss for both

known and unknown distribution scenarios. On the other
hand, while G-S-MCKP does not have rigorous theoretical
performance guarantees, we demonstrated that it can still
achieve good performance (i.e., comparable with the other
two methods) with a significantly lower computational cost.
As a result, these approximation algorithms can be used in
many real-world applications where both low computational
cost and high performance are key requirements.

As a possible future work, we aim to provide theoretical
performance guarantees for G-S-MCKP, as our conjecture is
that it can also achieve Õ(

√
T ) performance guarantee. How-

ever, this is not trivial as our current techniques are not suit-
able for tackling this problem. In particular, it is essential to
estimate how bad a decision of G-S-MCKP at each time step
is, compared to that of the optimal algorithm.
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