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Abstract
We consider a setting where an agent-based planner
instructs teams of human emergency responders to
perform tasks in the real world. Due to uncertainty
in the environment and the inability of the plan-
ner to consider all human preferences and all at-
tributes of the real-world, humans may reject plans
computed by the agent. A naı̈ve solution that re-
plans given a rejection is inefficient and does not
guarantee the new plan will be acceptable. Hence,
we propose a new model re-planning problem us-
ing a Multi-agent Markov Decision Process that
integrates potential rejections as part of the plan-
ning process and propose a novel algorithm to effi-
ciently solve this new model. We empirically eval-
uate our algorithm and show that it outperforms
current benchmarks. Our algorithm is also shown
to perform better in pilot studies with real humans.

1 Introduction
In the aftermath of major disasters, First Responders (FRs),
such as medics, security personnel and search and rescue
teams, are rapidly dispatched to help save lives and infrastruc-
ture. In particular, FRs with different skills, capabilities and
experience may be required for the different tasks that need to
be performed (e.g., medics and volunteers to assist casualties,
security personnel and fire-fighters to save buildings on fire
during riots). While performing such tasks, FRs often oper-
ate in a very dynamic and uncertain environment, where, for
example, fires spread, riots start, or the environment floods.
Crucially, such environments require FRs to devise complex
schedules for sub-teams to perform tasks across spatially dis-
tributed locations as quickly and efficiently as possible.

Given this, a number of algorithms have been developed to
empower software agents to instruct humans to form teams
and carry out specific tasks. For example, [Chapman et al.,
2009; Ramchurn et al., 2010] provide both centralized and
decentralized solutions to the problem of task allocation to
teams of FRs with different capabilities. However, they typ-
ically assume that the environment is completely determin-
istic (e.g., task deadlines are known and humans move at a
fixed speed) and that humans always obey instructions. Thus,
humans may be expected to team up with people they have

never worked or will always be fit to work on all possible
tasks. However, as pointed out by [Moran et al., 2013], such
assumptions simply do not hold in reality. The environment
is typically prone to significant uncertainties and humans may
reject plans suggested by a software agent if they are tired or
prefer to work with specific partners. Now, a naı̈ve solution
to this would involve re-planning every time a rejection is
received. However, this may instead result in a high compu-
tational cost (as a whole new plan needs to be computed for
the whole team), may generate a plan that is still not accept-
able, and, following multiple rejection/replanning cycles (as
all individual team members need to accept the new plan),
may lead the teams to suboptimal solutions.

Against this background, we propose a model for agile
planning, where plans sent by a software agent to humans
may be rejected. Humans may do so because they are tired,
or more importantly, because they prefer to stick to spe-
cific team members. Specifically, inspired by results from
the DARPA Coordinators programme [Musliner et al., 2006;
Maheswaran et al., 2008] we build upon the framework of
Multi-agent Markov Decision Processes (MMDP) [Boutilier,
1996] to integrate the notion of plan rejection as one of the
possible failures that may happen when actions are performed
by the actors in the system. Thus, if the humans reject a
plan, the system simply transitions to another state and re-
turns a new plan. Therefore, re-planning is an implicit pro-
cess whereby a new plan is selected by a pre-computed policy
leant from our model. Now, to compute such a policy, we de-
velop an algorithm using Monte-Carlo Tree Search (MCTS),
and in particular, the UCT method [Kocsis and Szepesvári,
2006] due to its scalability to large problems. In particular,
we show that the UCT method is inefficient for our problem
as it can very easily get stuck in local optima due to rejections.
To address this, our algorithm applies a Two-Pass Planning
(TPP) process where, in the first pass, we compute the best
policy for the underlying MMDP without rejections, and, in
the second pass, we handle the rejections using the policy
computed by the first pass. By so doing, we decouple the
normal states (where humans are allocated tasks) from the re-
jection states (where they await new plans).

In more detail, this paper advances the state of the art and
contribute to the community in the following ways:

1. We develop a new model for task allocation with re-
jections, k-RMMDPs, that is informed from real-world



field trials of planning agents [Wagner et al., 2004;
Fischer et al., 2014; Maheswaran et al., 2008]. Our
model is the first to explicitly capture rejections as part
of the planning process.

2. We develop a novel algorithm to solve k-RMMDPs.
Specifically, we show how our TPP algorithm allows us
to cope with the increased state-space induced by the k-
RMMDP model (compared to pure MMDPs).

3. We empirically evaluate our TPP algorithm in simula-
tions and show that it outperforms the state-of-the art.
Crucially, we deploy our algorithm in a real-world pilot
study, shown to improve performance significantly.

The rest of the paper is organized as follows. We first
briefly review the related work and provide basic definitions.
Then, we propose the k-RMMDP model and our algorithm
to solve this model as well as a method to reduce the search
space. We then report the simulation results of our algorithm
and the results from our pilot studies.

2 Related Work
The problem of planning under uncertainty is usually mod-
eled by Markov Decision Process (MDP). In the presence of
multiple agents, the MDP model has been extended to Multi-
agent MDP (MMDP) with joint action space. In the past
decades, many algorithms have been proposed to solve large
MDPs such as RTDP [Barto et al., 1995], LAO* [Hansen and
Zilberstein, 2001], and UCT [Kocsis and Szepesvári, 2006].
However, they all assume that the agents completely follow
the policy during execution time. With agents rejecting plans,
plan repair [Fox et al., 2006] or strengthening [Hiatt et al.,
2009] may be useful for deterministic domains but very diffi-
cult for MDPs because the best action for one state may de-
pends on the actions selected in all the other states. Our idea
is to pre-plan for the rejections, motivated by fault-tolerant
planning [Jensen et al., 2004]. This is nontrivial and the key
challenges that we try to address here are: 1) how to define
the rejection model for a team of agents and 2) how to handle
the huge augmented state space given rejections.

Among the early effort in the DARPA Coordinators pro-
gram, Musliner et al. [2006] is most related to our work,
where they also use MMDPs to compute a joint policy for hu-
man participants. However, they require the transition proba-
bilities being fully specified (they use the Bellman backup for
informed unrolling), which is difficult for our problem that
involves complex physical processes (e.g., spreading of ra-
dioactive cloud). Furthermore, they do not model people’s
preferences and therefore do not explicitly handle rejections.
This is crucial especially when some tasks may be harmful to
the participants (e.g., entering radioactive cloud). Therefore,
novel solutions are needed to tackle our problem.

3 Formal Model
We consider the problem where a team of FRs (e.g., medics,
security personnel, logistics experts, or search and rescue
teams) need to perform a number of tasks (e.g., save casual-
ties, control access to resources) in the aftermath of a disaster.
For example, rescuing a victim of the disaster may require a

search and rescue team to dig out a victim from under the
rubble and medics to provide life support, while moving food
reserves may require security personnel to protect the trucks
provided by logistics experts. Hence, the FRs need to decide
on the sequence of actions to execute given that the tasks are
located in different parts of the disaster space and where the
effect of their actions may be liable to some uncertainty (e.g.,
due to fires spreading and preventing access to targets, or the
FRs getting tired and taking longer to complete the tasks).

Given the complexity of computing the allocation of tasks
to FRs, such a problem is typically given to a planning agent
that can advise the human FRs on what to do. To this end,
we develop a system that such an agent can run, by com-
putationally modeling the behavior of FRs in terms of the
actions they take and the teams they form to complete their
tasks. Hence, in what follows, we model this problem us-
ing a Multi-Agent Markov Decision Process (MMDP). More-
over, given that the planner agent may not be able to model
all aspects of the real-world, its plans may be rejected (as
shown by [Maheswaran et al., 2008; Moran et al., 2013;
Wagner et al., 2004]), and therefore, we also describe how
the rejection of plans can be modeled.

3.1 Task Allocation under Uncertainty
Formally, an MMDP is defined as tuple 〈I, S, {Ai}, T,R,
s0, γ〉, where: I = {1, 2, · · · , n} is the set of n FRs as de-
scribed above; S is a set of system states (e.g., where the FRs
are positioned, their current task); Ai is the action set of FR
i ∈ I; T : S× ~A×S → [0, 1] is the transition function where
~A = ×i∈IAi is the set of joint actions; R : S × ~A → < is
the reward function (e.g., the level of completion of a res-
cue mission or the time it takes to distribute vital resources);
s0 ∈ S is the initial state; and γ ∈ (0, 1] is the discount fac-
tor as in the standard MMDPs (γ is 0.95 in our experiments).
Here, an action ai ∈ Ai is what an FR can do in one step in
a fixed amount of time so all FRs complete their actions at
the same time as commonly assumed [Musliner et al., 2006].
Tasks with long duration can be accommodated by adding
extra states (e.g., states about tasks in process) and the FRs
concerned repeat their action until the task is completed. The
goal of solving MMDPs is to find the optimal policy that max-
imizes the number of completed tasks with minimum costs.

3.2 The Rejection Model
As aforementioned, human FRs tend to reject plans when
they may find tasks too hard (e.g., too far if they are tired,
or not meeting their capabilities) or prefer to pair up with key
partners. Hence, we define a model to capture such rejections.

Definition 1. A rejection model ∆N : S × ~A → [0, 1] for a
team of FRs N ∈ 2I is defined as a probability distribution
given states and joint actions, where ∆N (s,~a) specifies the
probability of all FRs in N rejecting action ~a while the other
FRs that are not in N accept ~a in state s.

In particular, ∆∅(s,~a) is the probability that all FRs
accept action ~a in state s (i.e., no FRs reject ~a ) while
∆I(s,~a) is the probability that all FRs reject ~a in s.
Thus, the sum of all the rejection probabilities ∀s,~a :∑

N∈2I ∆N (s,~a) = 1 because ~a may either be accepted



or rejected by some of the FRs. For example, given a
team of three FRs, I = {1, 2, 3}, all possible cases are:
∀N ∈ {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, in
which ∆{1,3}(s,~a) denotes the probability that FRs 1 and
3 jointly reject ~a while FR 2 solely accept it in state s. In
other words, our rejection model is defined over sub-teams of
the FRs. By so doing, we model the rejection behavior of the
whole team instead of a single FR because our goal is to gen-
erate plans that are acceptable for all the FRs. Although the
rejection model has many parameters, it is often very sparse
in practice because FRs reject a plan only when necessary.

Here, we assume that each FR has only a bounded number
of chances to reject a plan in a single decision step (based
on the observations in [Ramchurn et al., 2015], humans do
not reject plans infinitely many times). In other words, we
only allow each FR k rounds in a decision step to reject the
plan and request a new plan. The upper limit k is necessary
to ensure an agreement can be reached by all the FRs during
a limited amount of time. Given these assumptions, we next
extend the MMDP to consider k rejections in the model.

4 The k-RMMDP Model
A k-rejection MMDP (k-RMMDP) has the same action space
~A as the MMDP but has an augmented state space S that
additionally captures rejection events, a transition function T
that incorporates our rejection model, and a reward function
R that captures the cost of rejections as described below.

The State Space. S is defined as follows:

(s, j) ∈ S × {1, 2, · · · , k}1 × · · · × {1, 2, · · · , k}n

where s ∈ S is a state of the underlying MMDP model and
j = (j1, · · · , jn) is the joint rejection count of the FRs with
0 ≤ ji ≤ k the rejection count for FR i. Here, (s, j) ∈ S is
called a rejection state with j 6= 0 where 0 = (0, 0, · · · , 0)
means no rejections, and (s,0) ∈ S is called a normal state.

The Transition Function. T is defined as follows:

1. ∀s,~a, s′,0 ≤ j < k : T((s′,0)|(s, j),~a) = ∆∅(s,~a) ·
T (s′|s,~a) where ∆∅(s,~a) is the probability that joint
action ~a is accepted by all the FRs in state s (No rejec-
tion is raised by any FRs). In this case, state s transitions
to the next state s′ according to the transition function T ,
and the joint rejection count j is reset to 0.

2. ∀s,~a, j, N ∈ 2I \ {∅} and ∀i ∈ N, ji ∈ j, 0 ≤ ji < k:
T((s, j + 1N )|(s, j),~a) = ∆N (s,~a) where N is the set
of FRs who reject the joint action ~a and 1N = 〈1N (i)〉
is a length-n 0-1 vector with 1N (i) = 1 if i ∈ N oth-
erwise 0. When ~a is rejected by the FRs in N , rejection
count j increases by 1 while system state s remains un-
changed. If an FR has reached k rejections, it is excluded
in this case due to: ∀i ∈ N, ji ∈ j : 0 ≤ ji < k.

3. ∀s,~a, s′ : T((s′,0)|(s,k),~a) = T (s′|s,~a) where k =
〈k, k, · · · , k〉 is the joint rejection count meaning that all
the FRs reach the limit so that joint action ~a is executed
and system state s transitions to the next state s′.

4. ∀s,~a, j, s′, j′ : T((s′, j′)|(s, j),~a) = 0 otherwise.

To sum up, if not all FRs reach the k rejection limit (i.e.,
j 6= k), the FRs can either accept ~a and the state transits
from (s, j) to ∀s′ ∈ S, (s′,0), or reject ~a by ∀N ∈ 2I \ {∅}
and the system state s remains unchanged while the rejection
counts increase from j to j + 1N . Otherwise (i.e., j = k),
the FRs must accept ~a and the state transits from (s,k)
to ∀s′ ∈ S, (s′,0). In our pilot studies, we observed that
rejections can be resolved in a limited amount of time, during
which we assume that the state remains unchanged.

The Reward Function. We assign a cost to each rejection so
that the policy computed by the planner minimizes the num-
ber of rejections of the FRs (i.e., it attempts to find the most
acceptable plan). Specifically, we define the reward function
R of the k-RMMDP as ∀s,~a, j : R((s, j),~a) = R(s,~a) if
j = 0 and −C otherwise where C ∈ <+ is the rejection
cost specifying how costly a rejection is to the team perfor-
mance. By so doing, the FRs are rewarded with the original
reward function only when the joint action is accepted by all
the FRs and penalized with a fixed value C when any rejec-
tion is raised. Indeed, the choice of the rejection cost depends
on the specific domain and our model can accommodate more
complex functions. The goal of solving k-RMMDP is to find
the best policy that maximizes the reward of the underlying
MMDP with minimum rejections.

Now, the policy π for the k-RMMDP is a mapping from
augmented states (s, j) to joint actions. At execution time, a
joint action ~a is selected by π(s,0) in state s. If no rejection
is raised, ~a is executed by the FRs. Otherwise, another
joint action is selected by π(s, j). This process terminates
until a joint action is accepted or all the FRs reach the k limits.

Complexity and Analysis. It is worth noting that our model
is a variation of the MMDP where the rejection model is ex-
plicitly represented. In other words, k-RMMDP is a special
case of MMDPs with the states, the transition function, and
the reward function of considering rejections. The rejection
model is necessary to specify when a plan may be rejected
by some FRs during planning time. Comparing to the pure
MMDP representation, the main advantage of having such ex-
plicit representation is that we are able to exploit the problem
structure (as detailed next) and develop planning algorithms
to more efficiently solve our problem.

Specifically, for each system state s ∈ S, there are (kn−1)
rejection states. Totally, there are |S|·(kn−1) rejection states.
Therefore, the total number of states in k-RMMDPs isO(|S|·
kn) (rejection states plus normal states), much larger than the
state size of the underlying MMDP (i.e., |S|). For example, if
the rejection limit is k = 3 and the number of FRs is n = 8,
the state size of k-MMDPs is |S| · 38 = |S| · 6561 � |S|.
Note that this complexity result is directly inherent from the
setting that each FR can independently reject plans k times.

Given the huge state space, it is computationally intractable
for optimal MDP algorithms (e.g., VI, PI, LP, etc.) to solve
k-RMMDPs because they will quickly run out of time or
space given that |S| is already very large. Anytime algo-
rithms such as RTDP [Barto et al., 1995] and UCT [Kocsis
and Szepesvári, 2006] can handle large state space but will
easily get trapped in local optima where very long sequences
of pure rejection states such as (s,0) → · · · → (s,k) are



Algorithm 1: Two-Pass UCT Planning
Input: The k-RMMDP Model:M, The Initial State: (s0,0).
// The first pass:
// Compute the policy for ∀s, (s,0).
Solve the underlying MMDP ofM and build a search tree:

Run UCT on the underlying MMDP: 〈S, ~A, T,R〉
Update all the Q-values: Q(s,~a)← Q(s,~a) ·∆∅(s,~a)

// The second pass:
// Compute the policy for ∀s, j 6= 0, (s, j).
foreach state node (s,0) in the tree do

Create a sub MMDP:
Initial state: (s,0)
Normal states: ∀j, (s, j)
Terminal states: ∀s′, (s′,0)

Actions: ~A , Transition: T, Reward: R
Run UCT on the sub MMDP:

Build a subtree with states ∀j, (s, j)
Propagate values of ∀s′, (s′,0) to the subtree
Propagate values of the subtree to node (s,0)

Update all the Q-values of (s,0)’s ancestors in the tree

// The policy: π(s0, j) = arg max~a Q((s0, j),~a).
return the policy computed with Q-values in the search tree

unfolded and evaluated. Note that the process of complet-
ing tasks requires transitions among normal states. However,
the number of normal states is only a fraction of the overall
states, i.e., |S|/(|S| · kn) = 1/kn (it is about 0.0001 for the
aforementioned example). Therefore, it is very inefficient for
the state-of-the-art MDP approaches to find a good policy in
such a huge state space (as shown in our experiments).

Having defined k-RMMDP, we next proceed to describe
our algorithm to compute the policy.

5 Solving the k-RMMDP Model
In this section, we first provide a brief overview of MCTS as
the building block of our algorithm and then go on to specify
the TPP algorithm that we apply to address the challenge of
huge state space and solve k-RMMDPs.

5.1 Monte-Carlo Tree Search
Given that k-RMMDP augments MMDP, the solutions that
apply to the MMDP framework will also apply to our frame-
work. Here, we focus on MCTS as it has been shown to scale
to large problem domains [Gelly and Silver, 2011] and is
also an anytime algorithm (which makes it particularly attrac-
tive when fast response times are required in deployments).
Moreover, it can compute the policies using only simulations
of future events (a.k.a. generative model). This is partic-
ularly useful for our problem where the transition between
states is very difficult to model explicitly. For example, in
our experiments, we have 8 FRs and 17 tasks in a 50×55
grid. The total number of possible system states is more than
2 × 10400. Hence, it is intractable to represent the transition
and reward functions in a tabular form. It is also difficult
to have a compact representation because the state transition
involves complex physical processes (e.g., the spreading of

radioactive cloud). Fortunately, it is fairly straightforward to
develop a simulator (i.e., generative model) that takes a state
as input and (stochastically) outputs the next state given the
joint actions of the FRs as what we did for our problem.

Although LRTDP [Bonet and Geffner, 2003] and Anytime
AO* [Bonet and Geffner, 2012] are also anytime algorithms,
both of them require the transition function (not available in
our problem). Therefore, MCTS is more suitable for our
domain as it only relies on simulations. In MCTS, the key
operation is the action selection in each state node of the
search tree. One common choice to implement it is using
the UCB1 [Auer et al., 2002] heuristic. Here, MCTS with
UCB1 is usually called UCT [Kocsis and Szepesvári, 2006].
In other words, UCT is the leading implementation of MCTS
using the UCB1 heuristic to balance the exploration and ex-
ploitation. Although UCT can converge to the optimal so-
lution given sufficient amount of simulations, directly apply-
ing UCT to solve k-RMMDPs turns out to be very inefficient
(may require huge number of simulations) because the state
space of k-RMMDPs is very large (see discussion in the pre-
vious section). Therefore, the planner can easily get trapped
in local optima when all the actions are rejected by the FRs.
Hence, we need a procedure to improve the search.

5.2 Two-Pass UCT Planning
We propose the TPP (Two-Pass Planning) algorithm to more
efficiently solve k-RMMDPs. Our key observation is that the
Q-value function of each state-action pair can be recursively
split into two components given the state structure as:

Q((s, j),~a) = R((s, j),~a) +
∑
s′, j′

T((s′, j′)|(s, j),~a)V (s′, j′)

= R((s, j),~a) +
∑
s′∈S

T((s′,0)|(s, j),~a)V (s′,0)

+
∑

j 6=k,N∈2I\∅

T((s, j + 1N )|(s, j),~a)V (s, j + 1N )

= R((s, j),~a) + ∆∅(s,~a)
∑
s′∈S

T (s′|s,~a)V (s′,0)

+
∑

j 6=k,N∈2I\∅

∆N (s,~a)V (s, j + 1N )

where V (s′, j′) = max~a∈ ~A Q((s′, j′),~a) is the value func-
tion. Here, the first component specifies the transitions to the
normal states ∀s′ ∈ S, (s′,0) and the second component is
for the transitions to the rejection states ∀N ∈ 2I \ ∅, (s, j +
1N ). To exploit this structure, we solve k-RMMDPs by first
focusing on the transitions only to ∀s′∈S(s′,0) and then con-
sidering the transitions to the rejection states. The main pro-
cedure of our TPP method is outlined in Algorithm 1.

In the first pass, we compute the policies and build a search
tree without considering the rejection states. In other words,
we only consider the normal states ∀s∈S , (s,0) in this pass.
This is equivalent to solving the underlying MMDP, which
can be done by UCT. The outcome of this pass is a search
tree with state nodes and action nodes. Intuitively, this pass
computes the best policy in the case that no FR rejects the
selected actions. From the system’s point of view, this policy
is the most efficient one for the team of FRs to complete the
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Figure 1: Search tree built by the TPP algorithm.

tasks (ignoring human preferences to stick to certain teams
or to avoid certain tasks). Moreover, ignoring the rejection
states makes the UCT search deeper in the tree and, hence,
allows it to better explore the policy space. In this way, we
avoid local optima caused by the rejection states (i.e., very
long sequences of rejections with few tasks being completed).

In the second pass, we compute the policy for the rejec-
tion states. Specifically, we traverse the search tree in reverse
order, that is, from the leaves to the root, and expand each
action node along the path with the rejection states by draw-
ing from the rejection model. In other words, we consider the
case when the action is rejected by the agents and the state
transitions from (s,0) to (s, j) where the joint rejection count
j 6= 0. To expand each action node, we create a sub MMDP
for each node (s,0) in the search tree as follows. This sub
MMDP starts with state (s,0). Given a joint action ~a , it tran-
sitions to another state (s, j) where j 6= 0 if ~a is rejected by
the agents. It terminates with state (s′,0) where s′ ∈ S if ~a is
accepted. Notice that the joint action space ~A , the transition
function T, and the reward function R of the sub MMDP are
identical to the original k-RMMDP model.

Each sub MMDP is also solved by UCT. Starting with
(s,0), we build a subtree with joint actions and rejection
states. The leaf nodes of the subtree are terminal states (s′,0)
where s′ ∈ S. Note that we do not need to expand the termi-
nal states in the subtree. Instead, we link them to the nodes in
the search tree computed by the first pass. Then, theQ-values
of the nodes (s′,0) are propagated to the subtree. Intuitively,
these Q-values are the future rewards after the joint action is
accepted by the FRs. By so doing, we limit the search space
in the second pass only to the rejection states. If (s′,0) is not
sampled in the first pass, we recursively expand it by UCT
until the leaf nodes are all in the search tree or the maximal
search depth is reached. We also propagate the Q-values of
the subtree back to the search tree computed in the first pass
and update theQ-values of the search tree. The goal is to bias
theQ-values of (s,0) so that the joint action that is preferable
to the FRs has a larger value than the other joint actions that
have a higher risk of being rejected by the FRs.

Figure 1 graphically illustrates the search tree of our TPP
algorithm where the tree nodes with solid lines are generated
in the first pass while the nodes with dotted lines are expanded
in the second pass. As seen from the figure, the search tree
interleaves state nodes with action nodes. In the first pass,
the state node (s0,0) (the rejections count 0 is omitted in
the graph) is expanded with two action nodes ~a1 and ~a2 and

then transits to states (s1,0), (s2,0) and (s3,0), (s4,0) re-
spectively assuming ~a1 and ~a2 are accepted by all FRs. This
process repeats for the newly expanded state nodes until the
maximal search depth is reached. This is equivalent to solv-
ing the underlying MMDP with UCT. In the second pass, each
action node is expanded with the rejection states considering
the case that the action may be rejected by some FRs. For ex-
ample, two nodes of rejection states (s0, j1), (s0, j2) (the sys-
tem state s0 is omitted in the graph) are appended to action
node ~a1 depending on who reject ~a1. Then, (s0, j1), (s0, j2)
are expanded with new action nodes. This is equivalent to
proposing new actions to the FRs after they reject ~a1. If the
new actions are accepted, the state (s0,0) transits to new nor-
mal states so the subtree with dotted lines is linked with some
state nodes generated in the first pass (if such nodes do not ex-
ist, new nodes are created and expanded as in the first pass).
If the new actions are also rejected, new nodes of rejection
states are generated and the whole process repeats down to
the maximal depth. After that, the values propagate from the
leaf nodes up to nodes (s0, j1), (s0, j2) and then to node ~a1

and node (s0,0) with their values being updated accordingly.
Finally, the best policy is computed based on the Q-values.

6 Empirical Evaluation
We consider a disaster scenario in which a satellite, powered
by radioactive fuel, has crashed in a sub-urban area. Debris
is strewn around a large area, damaging buildings and caus-
ing accidents and injuring civilians. Moreover, radioactive
particles discharged from the debris are gradually spreading
over the area, threatening to contaminate food reserves and
people. Hence, emergency services are deployed to evacu-
ate the casualties and key assets before they are engulfed by
the radioactive cloud. To test the performance of our algo-
rithm, we built an MMDP simulator for this scenario. As
shown in Figure 2(a), there are 8 FRs and 17 response tasks
located in a 50×55 grid (i.e., the map). The FRs are assigned
a specific role as: medic, fire-fighter, soldier, or transporter.
Their mission is to evacuate all four types of targets as: victim
(requires medic and fire-fighter), animal (requires medic and
transporter), fuel (requires soldier and fire-fighter), or other
resource (requires soldier and transporter).

The state contains information about the FRs’ locations in
the grid and their health levels, the status of all tasks (i.e.,
todo, working, and completed), and the coverage of the ra-
dioactive cloud shown as the red region in Figure 2(a). At ev-
ery time step, each FR can move to a neighboring cell or stay
in the current cell and the radioactive cloud spreads stochasti-
cally in the grid (see [Ramchurn et al., 2015] for more detail).
A task must be completed by FRs with the required roles be-
fore it is contaminated by the radioactive cloud. The FRs get
a reward if a task is completed. If a FR enters the radioactive
cloud, her health level will drop based on the dose received
from the cloud and is “killed” if her health level is 0.

6.1 Simulation Results
We benchmark our algorithm against several state-of-the-art
methods. Specifically, we compared our TPP algorithm with
two baselines where: REPLAN is the replanning approach
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Figure 2: Simulation of disaster response scenario.

for the underlying MMDP (It tries replanning when a plan is
rejected); UCT is the flat UCT planner using our k-RMMDP
model. As aforementioned, our transition model is not avail-
able in a closed form and therefore most of existing algo-
rithms cannot solve our problem. All the three algorithms
were run online and called only when the policy for a given
state was not computed. By so doing, we avoided comput-
ing the policy for all possible states off-line, which is in-
tractable for our problem. We tested the problem instance
with each algorithm 1000 times and report the average re-
sults. Specifically, we report the average value and runtime of
each algorithm as the key performance metrics, where the val-
ues are the accumulated rewards achieved using the policies
computed by the algorithms and the runtime is the planning
time of each algorithm per decision step. In the experiments,
we initialize the rejection model by randomly generating the
preference of each FR and set the discount factor γ = 0.95,
the rejection limit k = 3, and the rejection cost C = 1.0.

Figure 2(b) and 2(c) summarize our results with different
numbers of simulations from 50 to 200. As shown in Fig-
ure 2(b), TPP outperforms UCT and REPLAN with higher
values. This indicates that TPP produces better policies that
can complete more tasks and get fewer rejections from FRs.
The gaps between TPP and REPLAN are always large (≥
28.3
170 ≈ 16.6% improvement1) regardless of the number of
simulations. This is because TPP explicitly considers rejec-
tions in the k-RMMDP model while REPLAN simply gener-
ates another plan when a plan is rejected. Moreover, as shown
in Figure 2(c), REPLAN takes significantly more time than
TPP because replanning is very costly, especially when more
simulations (e.g., 200) are used. This further justifies our k-
RMMDP model. Given small number of simulations (< 100),
TPP performs slightly better than UCT. However, when the
number of simulations is sufficiently large (e.g., 200), TPP
outperforms UCT by more than 52.4

170 ≈ 30.8% improvement.
We can also see from Figure 2(b) that TPP nearly converges
at 200. This also shows that TPP converges faster than UCT
with fewer simulations.

Apart from the results shown in the figure, we also ran
UCT on the same problem instance with 10000 simulations
for 1000 times and got the averaged value of 133.76, which is

1The maximal value of the problem with 17 tasks is 170.

very close to what TPP achieved with 200 simulations. Note
that it has been proved that UCT will converge to the optimal
policy with sufficient simulations [Kocsis and Szepesvári,
2006]. Therefore, this value can be viewed as the approx-
imate upper-bound value for TPP. In terms of runtime, as
shown in Figure 2(c), REPLAN took much more time for re-
planning as expected. Surprisingly, TPP did not take more
time than UCT though we call UCT twice in TPP. This is be-
cause TPP found the best plan that is acceptable for all FRs
faster without extensively expanding the rejection states, as
what may happen in UCT. Therefore, the time required by
the second pass of TPP is minimal given the search tree com-
puted in the first pass. In summary, our simulation results
demonstrate that: 1) explicitly modeling rejections using our
k-MMDP model is a better solution than replanning; 2) when
the number of simulations is sufficient, our TPP algorithm
outperforms UCT with much better value but takes less time.

6.2 Pilot Studies
We deployed our algorithm in a real-world disaster response
simulation exercise, whereby a planner agent instructs human
participants, acting as FRs, to complete a number of tasks.
The scenario was similar to our simulation except that we
tested our system on people. Specifically, the planner agent
takes the game status (i.e., positions of FRs, known status
of the cloud, and messages received from FRs) as input and
produces a plan for each FR for the current state. Once a plan
is computed, the plan is split into individual task allocations
and sends them to each FRs. In more detail, 2 pilot runs of
our planner agent, one with REPLAN and the other with TPP,
were carried out with distinct sets of 8 participants in each run
lasting 30 minutes (i.e., a deadline). A video of our pilot runs
can be viewed at: http://bit.ly/1ebNYty.

During the trials, as participants, and as tasks were com-
pleted, the planner (that knows where the tasks are and has
estimates of the environmental hazard) instructed the players
to team up with specific partners and complete tasks in the
simulated disaster space [Fischer et al., 2014]. Crucially, a
mobile app allowed them to reject the plan suggested by the
planner agent. As there is no well defined rejection model for
humans, we trained the rejection model with the data from
our previous trials and update our model online based on the
acceptance and rejection of plans (i.e., the FRs’ preferences)



as they are received. Specifically, we observed from the previ-
ous trials that all of the rejections happened when following
the allocation would have split existing teams, or instructed
players to team up with physically more distant responders.
Other than the distances, FRs may reject a plan when they
think the assigned tasks are too risky for them. They also tend
to reject a plan when they are not in good health condition.

In the field trial with REPLAN, it was found that partici-
pants rejected plans many more times than for TPP (8 times
for REPLAN and none for TPP). Moreover, it was found that,
with REPLAN, the participants only completed 75% of the
tasks in 19 mins while with TPP, they completed 80% of
the tasks in 17 mins (i.e., more tasks faster than REPLAN).
Practically, none of the participants had depleted any of their
health points in the run with TPP while, with REPLAN, the
average health points was 80%. This demonstrates the benefit
of explicitly considering the FRs’ rejections. While these pi-
lot studies are not intended to be statistically conclusive, they
do indicate that the plans computed by TPP (that tends to keep
existing teams together and prevent rejections) allowed FRs
to form more effective teams that implement (possibly bet-
ter and more importantly safer) plans faster. Crucially, they
validate our approach in the real-world.

7 Conclusions
In this paper, we defined k-RMMDP, a novel model of task
allocation for emergency responders, that is informed by real-
world field trials that showed that humans may reject plans
computed by a planner agent. Our model is the first to implic-
itly consider such rejections. Moreover, we provide a two-
pass algorithm, based on UCT, to improve the search for a
solution in a large policy space. Finally, we both simulate our
algorithm and deploy it in pilot studies to demonstrate how
it significantly outperforms the standard replanning approach
as well as the naı̈ve UCT method and the benefit of explicitly
modeling FRs’ preferences when generating plans for people
in the real-world. By so doing, we establish a novel bench-
mark for agile planning. Future work will look at running
more field trials to further investigate the effectiveness of our
planning algorithm and develop more effective models and
methods to learn the preferences from human input.
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