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Abstract
A key challenge for intelligent domestic heating systems

is to obtain sufficient knowledge of the thermal dynamics of
the home to build an adaptive thermal model. We present
a study where stochastic grey-box modelling is used to de-
velop thermal models and an extended Kalman filter is used
for parameter estimation for a room in a family home.

1 Introduction
A key challenge for intelligent domestic heating systems

(IDHS) is to obtain sufficient knowledge of the thermal dy-
namics of the home to build an adaptive thermal model that
can reliably predict the spatial and temporal effects of its ac-
tions. This challenge has been studied extensively for large
buildings where thermal models are maintained via the off-
line or on-line learning. In the former, the thermal model is
learned either once or at infrequent intervals and assumed
to be fixed over an arbitrary horizon. For example, Gao
et al. applies linear regression to historical data to learn a
fixed thermal model of a room in an office [1]. Likewise,
Rogers et al. conducted a field-study of 750 UK homes
and used non-linear regression to infer the thermal model
of each home [3]. However, the assumption of a fixed model
is inadequate in highly dynamic environments, and instead
the on-line (or adaptive) learning where models are updated
continuously has been shown to be more effective. In par-
ticular, variants of the extended Kalman filter (EKF) have
been used for adaptive thermal modelling in buildings [2].
Although, such techniques are equally applicable to modern
homes, one must consider the challenges peculiar to homes
(e.g., more diverse heating systems, less reliable occupancy
patterns, lack of structural data) for their effective use.

Against this background, we propose an adaptive mod-
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elling approach based on stochastic grey-box modelling and
the EKF to infer thermal properties of homes. We apply it to
a room in a family home and show that our thermal model
predicts the room temperature where the 95th percentile of
the absolute prediction error is 0.95◦C and 1.37◦C for 2 and
4 hours predictions, respectively; in contrast to the corre-
sponding 2.09◦C and 3.11◦C errors of the existing historical-
average based thermal model (called PreHeat, see [4]).

2 Case Study
We consider the living room of a family house in Cam-

bridge, UK, that is equipped with the per-room based under-
floor heating which is controlled via a room unit. The room
unit has temperature and occupancy detection sensors, and a
radio module to communicate with a PC (see [4]). The use of
underfloor heating involves multiple heat transfers processes
whereby heat is transferred from the source to an intermedi-
ate thermal mass (floor) that slowly leaks to its surroundings
- introducing thermal lags and additional leakages, thus mak-
ing this room interesting from a control perspective.

3 Thermal Modelling
We adapt the grey-box modelling approach which uses

the prior physical knowledge of the system and observed
data to derive a thermal model. In our case, the prior knowl-
edge of the room includes the (i) use of underfloor heating
(ii) binary status of heating (iii) indoor air temperature and
(iv) presence of considerable process noise. We note that
there is no knowledge of the (i) heater output (ii) floor and
house envelope temperature (iii) thermal capacities and re-
sistance of the walls and (iv) the room layout (e.g., dimen-
sion of the walls). These system states are considered hidden
and therefore must be inferred indirectly. We now outline a
number of increasingly complex thermal models.

Single-Box Model (Ta) is the simplest model where the
transfer of heat is assumed to be direct between the heater
and the indoor air which then leaks to the outside. Here,
no thermal delay for the heat transfer exists, enabling us to
measure the effect of thermal delays in other models.

T̂a = Ta + rhλh +φao(To−Ta) (1)

Underfloor Heating Model (TaTf ) models the transfer of
heat from the heater to the indoor air via an intermediary
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(b) Effect of solar radiance on pred. error
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(c) Thermal models with solar irradiance

thermal mass (floor), thus introducing a thermal lag. The
indoor air then leaks heat to the outside.

T̂f = Tf + rhλh +φ f a(Ta−Tf ) (2)

T̂a = Ta +φ f a(Tf −Ta)+φao(To−Ta) (3)

Underfloor and Envelope Model (TaTf Te) extends Tf Ta
such that the heat escapes to outside via the house envelope.

T̂f = Tf + rhλh +φ f a(Ta−Tf ) (4)

T̂a = Ta +φ f a(Tf −Ta)+φae(Te−Ta) (5)

T̂e = Te +φae(Ta−Te)+φeo(To−Te) (6)

Complete Model (TaTf TeS) extends Tf TaTeto include the ef-
fect solar irradiation on T̂a and T̂e.

T̂f = Tf + rhλh +φ f a(Ta−Tf ) (7)

T̂a = Ta + raλs +φ f a(Tf −Ta)+φae(Te−Ta) (8)

T̂e = Te + reλs +φae(Ta−Te)+φeo(To−Te) (9)

4 Empirical Evaluation
We use data from November, 2011 to March, 2012 (150

days) which is sufficient to evaluate our models for infre-
quent events (e.g., turning off the heating for holidays) and
the effect of seasonal changes. We use publicly available
data for the external temperature and solar irradiance1.
While the time and accuracy requirements of prediction vary
based on the system and its objectives, we find that in our
case, predicting 2 and 4 hours ahead with the accuracy of
±1◦C and±1.5◦C, is sufficient for the effective heating con-
trol. Thus, we analyse the absolute errors for 2 and 4 hours
predictions within 95th percentile (roughly corresponding to
the confidence interval of ±2 SD) of all models, as in Fig-
ure 1(a). We note that as modelling increasingly captures
the physical properties of the building, the prediction accu-
racy increases further. To drive our model selection further,
we analyse the nature of the prediction error with Tf TeTf .
Figure 1(b) shows the absolute prediction errors (95th per-
centile) of Tf TeTf against the hour of day. The error is rel-
atively large during the daytime hours, hinting on the im-
portance of solar irradiance. This is indeed the case (Fig-
ure 1(b)) where the prediction accuracy improves when the
solar irradiance is factored in Tf TeTf S, however, it is not
completely eliminated in Tf TeTf S as our solar irradiance data

1https://www.cl.cam.ac.uk/research/dtg/weather/
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php

Time
k k+1 Units

Floor temperature Tf T̂f
◦C

Room air temperature Ta T̂a
◦C

Envelope temperature Te T̂e
◦C

External temperature To - ◦C
Heater output λh λ̂h

◦C/hr
Global Solar Irradiance λs - J/m2/hr
Solar Irradiance (Air) λa - J/m2/hr
Solar Irradiance (Envelope) λe - J/m2/hr
Heating time ratio rh - ∈ [0,1]
Irradiance ratio (Air) ra r̂a

◦C.m2/J
Irradiance ratio (Envelope) re r̂e

◦C.m2/J
Leakage rate (Floor, Air) φ f a φ̂ f a 1/hr
Leakage rate (Air, Outside) φao φ̂ao 1/hr
Leakage rate (Air, Envelope) φae φ̂ae 1/hr
Leakage rate (Envelope, Outside) φeo φ̂eo 1/hr

Table 1. Notation used for thermal modelling.

consists of monthly averages and thus, can only be used as
an approximation to the actual irradiance. Figure 1(b) con-
firms that solar irradiance can make predictions more accu-
rate but it does not indicate which of our models will benefit
the most by it. Therefore, we include solar irradiance in all
models and calculate the 95th percentiles of prediction error
for every model, as in Figure 1(c). It is evident that the pre-
diction errors of Tf TeTf S meet our requirements and hence,
no further model extension is required.
5 Conclusions and Future Work

Adaptive thermal modelling techniques such as EKFs that
previously has been used in large buildings can also be used
in homes with necessary modification to tackle the chal-
lenges unique to homes. We demonstrated this technique for
a room and showed that the EKF-based models can be use-
ful for the efficient control of heating. Our future work is to
extend our model to selected homes.
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