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Abstract
Crowdsourcing systems are commonly faced with the
challenge of making online decisions by assigning tasks
to workers in order to maximise accuracy while also
minimising cost. To tackle this problem, various meth-
ods inspired by active learning research have been pro-
posed in recent years. However such methods are typ-
ically evaluated against a limited set of benchmarks in
different scenarios. As a result, no general comparative
analysis of methods exists. Therefore it is not known
which strategies dominate others across a range of do-
mains or which strategies are best suited to specific do-
mains. In this paper, we describe an open-source toolkit
that allows the easy comparison of the performance of
active learning methods over a series of datasets. Fur-
thermore, the toolkit provides a user interface which
allows researchers to gain insight into worker perfor-
mance and task classification at runtime. This paper
provides both an overview of the toolkit as well as a set
of results evaluating 16 state-of-the-art active learning
strategies over seven public datasets.

Introduction
Researchers who work in the area of crowdsourcing have
invested significant effort into the problem of how to gain
the best accuracy for a given task at the minimum cost. In
general, this problem pertains to the area of active learning
research which studies how to maximise the performance
of artificial learners by intelligently picking the next best
sample to learn from within all possible samples (Settles,
2012). However, in contrast to traditional active learning
problems, adaptive crowdsourcing algorithms also need to
reason about which worker should be allocated to the task.
This selection must be driven by knowledge of the worker’s
accuracy and the estimated belief over the task’s true label
estimated from multiple workers’ judgments1 collected so
far. As a result, an active learning strategy for crowdsourcing
usually consists of a combination of three components: (i) a
judgement aggregation model, (ii) a task selection method
and (iii) a worker selection method.
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1In our terminology, we use the term label to indicate a possible
classification of a task, and the term judgement to indicate a label
provided by a worker for a task.

In recent years, various active learning strategies have
been proposed. These methods aim to intelligently select
the most promising task to be crowdsourced next (i.e. the
task for which an additional judgement will maximise the
increase in overall accuracy), and the best worker to be al-
located to the task (Costa et al., 2011; Zhao, Sukthankar,
and Sukthankar, 2011; Kamar, Hacker, and Horvitz, 2012).
A common approach is to use statistical models to infer
the quantities of interest, such as the worker’s accuracy and
the task’s aggregated answer from the set of judgments and
subsequently use this inferred knowledge to inform the de-
cision of which task and worker to select next (Bachrach
et al., 2012; Bragg and Weld, 2013) or potentially remove
workers considered as spammers from the worker selection
(Welinder and Perona, 2010). As a result, existing methods
vary in the types of models used to aggregate the workers’
judgments and their strategies to perform task and worker
selections. Crucially, all these methods agree that the pro-
posed active learning strategies provide significant cost sav-
ing by achieving the same accuracy with significantly fewer
judgments. However, their performance is typically evalu-
ated against a limited set of benchmarks in different scenar-
ios and no comparative analysis of a broad range of methods
currently exists. As a result, it is not known which strategies
dominate others across a range of domains, or which strate-
gies are best suited to specific domains.

In addition, a number of public datasets have recently
been proposed and employed for the evaluation of these
methods, for example the Weather Sentiment dataset (Ve-
nanzi et al., 2014), Music Genre dataset (Rodrigues, Pereira,
and Ribeiro, 2013), Sentiment Polarity dataset (Pang and
Lee, 2004) and ZenCrowd dataset (Demartini, Difallah, and
Cudré-Mauroux, 2012). New active learning strategies are
often evaluated over one or two of these datasets, but little at-
tention is paid to the domain of the dataset nor the individual
characteristics of a dataset. For example, datasets collected
from a domain in which the workers are required to make
trivial decisions might not demonstrate the effectiveness of
intelligent judgement aggregation models, while datasets
with few judgements per worker might not demonstrate the
effectiveness of worker selection methods. As such, the per-
formance of an active learning strategy may be easily over or
under-generalised without considering a number of datasets
which vary over different domains and in size.



In this paper, we propose the open-source .NET Active-
CrowdToolkit – available on Github at orchidproject.
github.io/active-crowd-toolkit. This toolkit
allows the easy benchmarking of active learning strategies
over a series of datasets and offers an extensive set of fea-
tures for monitoring the performance of algorithms as they
are executed in large-scale experiments. The toolkit aims to
provide a number of features to aid researchers to reproduce,
benchmark and extend the most prominent active learning
and crowdsourcing algorithms, in a similar way to toolk-
its in other domains, such as NLTK for natural language
processing (Bird, 2006), SQUARE or CrowdBenchmark for
computing crowd consensus (Sheshadri and Lease, 2013;
Nguyen et al., 2013) and NILMTK for energy disaggrega-
tion (Batra et al., 2014). Using our toolkit, we present the
results of an extensive empirical comparison of the combi-
nation of five judgement aggregation models, two task selec-
tion methods and two worker selection methods, resulting in
a total of 16 active learning strategies, evaluated over seven
public datasets. Finally, we also release two new datasets
for the Weather Sentiment and Sentiment Polarity domains,
each of which were collected using the Amazon Mechanical
Turk (AMT) platform, that provide new testbeds for crowd-
sourcing research. Thus, our contributions are summarised
as follows:

• We propose the .NET ActiveCrowdToolkit for analysing
the performance of active learning strategies in crowd-
sourcing environments. The toolkit provides interfaces for
judgement aggregation models, task selection methods
and worker selection methods, allowing new strategies to
be constructed by combining novel and existing modules.
Furthermore, our common dataset format allows existing
active learning strategies to be easily evaluated over new
datasets. In addition, our toolkit provides a user interface,
allowing researchers to gain intuition into the inner work-
ings of active learning strategies, such as the real-time be-
lief updates over the label of individual tasks and the ac-
curacies (confusion matrices) of individual workers.

• We release two datasets along with this paper: the Weather
Sentiment dataset (WS-AMT) and the Sentiment Polarity
dataset (SP-2015).2 Both datasets were collected using the
AMT platform for the same domain as existing datasets.
Our dataset analysis shows that despite this similarity in
domains, the datasets show significant differences in cer-
tain dimensions, which we also show contribute to varia-
tions in the performance of active learning strategies.

• We provide an empirical evaluation of 16 active learn-
ing strategies over seven datasets. Our results show that
Bayesian aggregation models which capture the uncer-
tainty in latent parameters provide the most accurate
judgement aggregation, entropy-based task selection en-
sures the most efficient order for selecting the next task,
and strategies which specifically select the best worker
yield the greatest overall accuracy. Furthermore, our re-
sults highlight the variance between different datasets

2Both the released datasets are available at bit.ly/
1EJdtBt

even when collected from the same domain. Finally, our
results show that average recall is a preferable metric over
the accuracy metric, especially when the number of gold
labels in a dataset is highly skewed.

The remainder of this paper is structured as follows. We
first describe a number of existing and novel datasets, pay-
ing specific attention to the domain and scale of the datasets.
We then define an active learning strategy as a combination
of a judgement aggregation model, task selection method
and worker selection method, before describing how each
element is implemented as part of the ActiveCrowdToolkit.
Last, we present our empirical evaluation of 16 active learn-
ing strategies over seven datasets and conclude by discussing
future work in the last section.

Datasets
A number of datasets have been used for the evaluation
of the active learning strategies. In particular, we consider
seven public datasets commonly used for crowdsourcing re-
search, five of which were released by related work, and two
of which are novel contributions of this work. We chose to
collect additional datasets in order to determine whether dif-
ferences between datasets were due to the scale or domain
of such datasets. Importantly, all these datasets have gold-
standard labels, (i.e., external labels provided by more reli-
able judges) for all the tasks. We provide details of the pay-
ment per task to each worker for our datasets and for existing
datasets where this information is available in publications.
Table 1 provides the scale of each dataset in terms of the
number of tasks, workers, labels and judgements, while Fig-
ures 1 and 2 show the number of judgements per task and the
number of tasks per gold label respectively for each dataset.
The following sections describe the domain of each dataset
and their relevant features.

Weather Sentiment - CF (WS-CF)

The Weather Sentiment dataset was provided by Crowd-
Flower for the 2013 Crowdsourcing at Scale shared task
challenge.3 The workers were asked to classify the senti-
ment of tweets with respect to the weather into the follow-
ing categories: negative (0), neutral (1), positive (2), tweet
not related to weather (3) and can’t tell (4). The competi-
tion organisers did not release information regarding any re-
strictions of the worker pool or the worker payment per task.
This dataset contains the least number of judgements but has
the largest pool of workers, with each worker providing less
than 4 judgements on average, as shown by Table 1. Fur-
thermore, Figure 2 shows that the most common gold label
is unrelated, while only five tasks were assigned the gold
label can’t tell. This suggests that, in this dataset, strategies
which correctly label tweets in the can’t tell class will have
a much higher accuracy improvement than for tweets in any
other class.

3https://www.kaggle.com/c/
crowdflower-weather-twitter
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Dataset Judgements Workers Tasks Labels Judgement Judgements Judgements
accuracy per task per worker

WS-CF 1720 461 300 5 0.766 5.733 3.731
WS-AMT 6000 110 300 5 0.704 20.000 54.545
MG 2945 44 700 10 0.560 4.207 66.932
SP-2013 27746 203 5000 2 0.789 5.550 136.680
SP-2015 10000 143 500 2 0.893 20.000 69.930
ZC-IN 11205 25 2040 2 0.678 5.493 448.200
ZC-US 12190 74 2040 2 0.770 5.975 164.730

Table 1: Crowdsourcing datasets
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Figure 1: Judgements per task. WS-AMT and SP-2015 are not shown as all tasks received exactly 20 judgements.
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Figure 2: Tasks per gold label. Variants of the same task set (e.g. WS-CF and WS-AMT) are not shown individually as they
contain identical distributions.

Weather Sentiment - AMT (WS-AMT)

We recollected the WS-CF dataset using the AMT platform.
The workers were asked to complete the same task as in the
CrowdFlower shared task challenge, although in this case
many more judgements were collected from a smaller pool
of workers for the same set of tasks. This was achieved by
acquiring exactly 20 judgements per task, and as such the
dataset contains many more judgements per task and judge-
ments per worker than the CrowdFlower dataset, as shown in
Table 1. We did not place any restrictions on the worker pool
and each worker was paid $0.03 per judgement. This dataset
collected using AMT yielded a 0.06 lower judgement accu-
racy than the CrowdFlower dataset, which can be explained
by the use of a different platform and system design. We
also collected task acceptance and submission timestamps,
which are not used in this work but might be of use to future
research to inform the reliability of individual judgements.

Music Genre (MG)
The Music Genre dataset was collected by Rodrigues,
Pereira, and Ribeiro (2013) using the AMT platform and
contains samples of songs of 30 seconds in length taken
from the audio dataset collected by Tzanetakis and Cook
(2002). The workers were asked to listen to the music sam-
ple and classify the task into one of 10 music genres: coun-
try (1), jazz (2), disco (3), pop (4), reggae (5), rock (6),
blues (7), classical (8), metal (9), hip-hop (10). Gold labels
were assigned to each task by experts. The crowdsourcing
platform required that workers were restricted to only those
with an average task acceptance rate of higher than 95%
across the whole AMT platform, although the worker pay-
ment per task was not released. The judgement accuracy for
this dataset is the lowest of all our datasets, indicating the
difficulty of each task. Figure 1 shows a bi-modal distribu-
tion of judgements per task, in which many tasks receive
either 2 or 6 judgements, while few tasks receive 4 judge-
ments. Figure 2 shows that the gold labels are equally dis-
tributed across the 10 genres. Thus, this dataset presents a



scenario of uniform classes of tasks where each correct clas-
sification provides the same accuracy gain.

Sentiment Polarity 2013 (SP-2013)
The SP-2013 dataset contains worker annotations using the
AMT platform for sentences taken from movie reviews, ex-
tracted from the website Rotten Tomatoes (Pang and Lee,
2004). The workers were asked to classify the polarity of
each sentence as either positive (1) or negative (0), with
no option to express their uncertainty. Gold labels were as-
signed to each task by experts. As with the MG dataset,
the crowdsourcing platform required that workers were re-
stricted to only those with an average task acceptance rate of
higher than 95% across the whole AMT platform, although
the worker payment per task was not released. This is the
largest dataset considered in this paper, containing 27,747
sentiment judgements for 5,000 tasks. Figure 1 shows that
the vast majority of tasks receive 5 or 6 judgements, while
Figure 2 shows that the tasks with positive and negative gold
labels are equally weighted.

Sentiment Polarity 2015 (SP-2015)
We recollected the SP-2015 dataset also using the AMT plat-
form. Similarly to WS-AMT, we did not set any require-
ments on each worker’s qualifications and we paid $0.03
per judgment. As with WS-AMT, we again collected 20
judgements per task including time information about the
worker’s submissions, although such judgements were col-
lected over a subset of 10,000 tasks of the SP-2013 dataset.
As a result, SP-2015 contains approximately 4 times the
number of judgements per task compared with SP-2013, al-
though it also contains only 10% of tasks of SP-2013. Ta-
ble 1 shows that both SP datasets contain judgements of
the highest average accuracy, indicating that the tasks are
easier and require less subjective judgement than other do-
mains. Furthermore, the average accuracy of SP-2015 was
0.11 higher than for the SP-2013 dataset. This could be due
to a different task design that may have made the task easier,
and also a reward scheme that might have attracted different
types of workers.

ZenCrowd - India (ZC-IN)
The ZenCrowd India dataset contains links between the
names of entities extracted from news articles and URIs
describing the entity (Demartini, Difallah, and Cudré-
Mauroux, 2012). The dataset was collected using the AMT
platform, with each worker being asked to classify whether
a single URI was either irrelevant (0) or relevant (1) to a
single entity. Gold standard labels were collected by asking
expert editors to select the correct URI for each entity. No
information was released regarding the restrictions on the
worker pool, although all workers are known to be living in
India, and each worker was paid $0.01 per judgment. A total
of 11,205 judgements were collected from a small pool of
25 workers, giving this dataset the highest number of judge-
ments per worker. Figure 1 shows that the vast majority of
tasks receive 5 judgements, while Figure 2 shows a skewed
distribution of gold labels, in which 78% of links between

RT ET
RW BW RW BW

Majority vote 3 7 3 7
Vote distribution 3 7 3 7
Dawid & Skene 3 3 3 3
IBCC 3 3 3 3
CBCC 3 3 3 3

Table 2: Compatibility of active learning strategies

entities and URIs were classified by workers as unrelated.
As such, it should be noted that any aggregation methods
with a bias towards unrelated classification will correctly
classify the majority of tasks and thus receive a high accu-
racy. Therefore it is necessary to select more than one perfor-
mance metric (e.g., accuracy and recall) to evaluate different
aspects of the methods.

ZenCrowd - USA (ZC-US)
The ZenCrowd USA dataset was also provided by De-
martini, Difallah, and Cudré-Mauroux (2012) and contains
judgements for the same set of tasks as ZC-IN, although
the judgements were collected from AMT workers in the
US. The same payment of $0.01 per judgement was used.
However, a larger pool of 74 workers was involved, and as
such a lower number of judgements were collected from
each worker, as shown by Table 1. Figure 1 shows a simi-
lar distribution of judgements per task as the India dataset,
although slightly fewer tasks received 5 judgements, with
most of the remaining tasks receiving 3-4 judgements or 9-
11 judgements. The judgement accuracy of the US dataset is
0.09 higher than the India dataset despite an identical crowd-
sourcing system and reward mechanism being used.

Active Learning Strategies
Having described our datasets, we now focus on the active
learning problem of optimising the classification accuracy
using the minimum number of judgments. In general, an ac-
tive learning strategy consists of a single loop in which a
judgement aggregation model is first required to update its
estimates of the task labels and, in some cases, of the work-
ers accuracies given a set of judgements. The task selection
method then uses the output of the aggregation model to se-
lect the next task to receive a new judgement. Finally, the
worker can be selected if the model also maintains its be-
lief over the accuracy of each worker, otherwise the worker
can be selected randomly to simulate the situation of no con-
trol over the worker assigned to the task. Table 2 shows how
strategies can be formed as combinations of the three ele-
ments described in the following sections.

Judgement Aggregation Models
The judgement aggregation model is the algorithm that com-
bines the set of collected judgments into a set of aggregated
estimates of the true label of each task. Furthermore, to han-
dle the uncertainty around the judgments, these estimates are



usually provided in terms of probabilities of a task to be as-
signed to each category.

A wide spectrum of aggregation models currently exists,
which vary in terms of complexity and their ability to take
into account different aspects of labelling noise in the aggre-
gation process, such as worker accuracy and task difficulty.
In particular, the most sophisticated aggregation algorithms
use statistical models of the worker’s reliability and filter
unreliable judgments. Other simpler methods combine judg-
ments assuming that all the workers are equally reliable. We
select the following set of models in order to provide a bal-
ance between simple, intuitive aggregation models and more
complex aggregation models. Furthermore, we focus on ag-
gregation models which have a low computational overhead
and are therefore able to make decisions within a few sec-
onds, since these methods are most promising for deploy-
ment in real systems. Thus, we consider the following five
judgement aggregation models:

• Majority vote is a simple yet popular algorithm that as-
signs a point mass to the label with the highest consensus
among a set of judgments. Thus, the algorithm does not
represent its uncertainty around a classification, and con-
siders all workers to be equally reliable. (Littlestone and
Warmuth, 1989; Tran-Thanh et al., 2013).

• Vote distribution assigns the probability of a label as the
fraction of judgments corresponding to that label. Thus,
the algorithm treats the empirical distributions of judg-
ments as the estimate of the true label.

• Dawid & Skene is a well-known method that uses confu-
sion matrices, i.e., matrices expressing the labelling prob-
abilities of the worker conditioned on the task label val-
ues, to model the reliability of individual workers (Dawid
and Skene, 1979). It treats both the workers’ confusion
matrices and the task labels as unobserved variables and
applies an iterative expectation-maximisation inference
algorithm to simultaneously estimate both these quanti-
ties from the judgment set.

• Independent Bayesian Classifier Combination (IBCC)
learns the confusion matrices using a Bayesian inference
framework that, in contrast to Dawid & Skene, consid-
ers uncertainty over the confusion matrices and the task
labels (Ghahramani and Kim, 2003). It then applies an
iterative variational method to compute approximate esti-
mates over all latent variables.

• Community-Based Bayesian Classifier Combination
(CBCC) is an extension of IBCC that models com-
munities of workers with similar confusion matrices
(Venanzi et al., 2014). This model is able to learn both the
confusion matrices of each community and each worker
as well as the true label of each task from the judgment
set.

Importantly, the two Bayesian aggregation models (IBCC
and CBCC) require several hyperparameters to be set. These
hyperparameters regulate the prior belief of the algorithm
over the confusion matrices and task labels. Following the
same setting used in the original papers (Ghahramani and
Kim, 2003; Venanzi et al., 2014), we set the hyperparameter

of the diagonal counts of the confusion matrices to be higher
(1.5) than the off-diagonal counts (1). This means that a pri-
ori the workers are assumed to be better than random. The
other hyperparameters are set uninformatively. Furthermore,
we run CBCC with two communities for all the datasets
to allow the algorithm to learn two micro-classes of ac-
curate and inaccurate workers.4 Finally, Dawid & Skene
was implemented using the open-source code available at
bit.ly/1zkExXf in which, by default, the model infer-
ence of the confusion matrices is initialised with the accu-
racy of the majority votes.

Task Selection Methods
Different methods for selecting tasks given estimates of their
labels can be devised depending on different approaches for
measuring uncertainty in the label estimates. For instance,
some approach consider the entropy, the label uncertainty,
the model uncertainty or the combination of these elements
as utility. Other approaches might use a more expensive for-
ward planning framework to predict the expected utility of
judgments for a particular task (Kamar, Hacker, and Horvitz,
2012). Here, we focus on approaches with low computa-
tional cost that can select tasks within a few seconds. We
consider the following two methods:

• Random task (RT) selection is a simple method that se-
lects tasks uniformly at random in a way that, if enough
sequential rounds are allowed, all the tasks will have a
uniform number of labels.

• Entropy task (ET) selection is the method that selects
the most uncertain task with respect to the uncertainty
measured by the entropy of the estimated label distribu-
tion. It seeks to reduce the uncertainty of the aggregation
model by acquiring extra judgments for tasks for which
the model has lower confidence of the true label.

Worker Selection Methods
A crucial step for an active learning strategy is to select the
worker which will provide a new judgment for the selected
task. Depending on the level of control of the crowdsourcing
system, one can assign a task to a specific worker to repro-
duce the scenario of expert crowdsourcing (Tran-Thanh et
al., 2012) or select workers at random to reproduce the sce-
nario of AMT and similar platforms. Thus, many existing
strategies are built around the two following methods:

• Random worker (RW) selects the workers uniformly at
random to simulate the scenario where task requestors do
not have direct control over task assignments such as in
AMT.

• Best worker (BW) selects the workers with the highest
estimated reliability of correctly labelling a task, calcu-
lated by taking the maximum of the diagonal of each
worker’s confusion matrix. However, it should be noted
that other methods of estimating the best worker based

4The toolkit allows users to set any number of communities for
CBCC, although we do not focus on exploring how active learning
performance varies w.r.t the number of communities here.



on each worker’s confusion matrix can be easily imple-
mented with our toolkit. Notice we can only use this
method with aggregation models that learn each worker’s
accuracy such as Dawid & Skene, IBCC and CBCC, as
shown by Table 2.

It should be noted that while the best worker selection strat-
egy is intuitively the most efficient, it also more problematic
due the risk of potentially overloading a single worker with
many tasks and the delays introduced by constraining the
task to that worker. This makes it less practical to be applied
to crowdsourcing processes.

ActiveCrowdToolkit
We have released the ActiveCrowdToolkit as open-source
software, with the aim that the toolkit will be used and ex-
tended by the active learning community. The following sec-
tions describe the structure of toolkit and the toolkit’s graph-
ical interface.

Toolkit Structure
The toolkit has been structured to allow it to be easily
extended with new datasets and active learning strategies.
Datasets are described on disk in CSV format, in which the
columns represent: task identifier, worker identifier, judge-
ment label and gold label. The toolkit automatically discov-
ers datasets in a specific directory, although external datasets
can also be loaded into memory using the graphical inter-
face. No data type constraints are placed on the values con-
tained in the CSV files, allowing identifiers from the original
crowdsourcing platform to be used if desired.

As described in the previous section, an active learning
strategy consists of a combination of a judgement aggrega-
tion model, a task selection method and a worker selection
method. By defining a single interface between these three
components, strategies can be easily constructed by combin-
ing existing or novel components. Through the use of such
interfaces, arbitrarily complex aggregation models can be
implemented, for example the IBCC and CBCC models use
the Infer.NET engine (Minka et al., 2013) to perform prob-
abilistic inference over the task labels and worker confusion
matrices.

The toolkit has two interfaces: a command line interface
and a graphical interface. The command line interface is de-
signed to allow experiments to repeated many times across
multiple machines, which we use to produce the results pre-
sented in the empirical evaluation section of this paper. The
graphical interface is designed to provide researchers with
the intuition behind the behaviour of active learning strate-
gies, which we describe in the following section.

Graphical Interface
Figure 3 (a) shows the interface which allows researchers to
set up experiments which run multiple active learning strate-
gies over a single dataset. Using this dialog, the user can
construct an active learning strategy by combining an aggre-
gation model, a task selection method and a worker selection
method. The user can also select the number of judgements

(a) Experiment set up.

(b) Real-time strategy accuracy and belief over task label.

(c) Confusion matrix of individual workers.

Figure 3: Screenshots of the ActiveCrowdToolkit’s graphical
interface.

each task should receive during an initial exploration phase,
i.e., before the active learning process begins.

Once an experiment has been started, the interface dis-
plays the accuracy graph of each strategy in real-time as
judgements are selected from the dataset, as shown by Fig-
ure 3 (b). The figure also shows the ability to visualise the
estimate over the true label of a task as provided by the ag-



gregation model. Figure 3 (c) demonstrates the ability to vi-
sualise the confusion matrix of individual workers over each
label for models which include a worker model. This allows
researchers to understand which workers consistently pro-
vide correct or incorrect judgments, and even which gold
labels are repeatedly misclassified by an individual worker.

Empirical Evaluation
We now compare all possible active learning strategies as
combinations of the five judgement aggregation models, two
task selection methods and two worker selection methods.
However, as shown in Table 2, the best worker method is
not compatible with the majority vote and vote distribution
models, since these models do not represent the performance
of individual workers. This results in a total of 16 active
learning strategies, each of which is evaluated over seven
datasets. All strategies are initialised with one judgement
per task for each dataset, in order to provide each strategy
with some information upon which an intelligent strategy
can be executed. We present results of the active learning
phase which follows this initialisation, such that the first
judgement to be selected by the strategy is actually the sec-
ond judgement for that task. Each strategy is run up to 30
times on each dataset, for which we present the mean value
as well as error bars representing the standard error in the
mean. For each dataset, we present graphs of the following
two standard metrics:

• Accuracy is the proportion of tasks that were classified
correctly by the aggregation model.

• Average recall is the mean across all classes of the recall
rate, defined as the fraction of positive instances of a given
class that were correctly labelled.

Figures 4 and 5 show the accuracy and average recall for the
five judgement aggregation models and two worker selec-
tion methods over seven datasets for entropy task selection
and random task selection respectively. The following sec-
tions discuss the key findings as a result of differences in
the datasets, judgement aggregation models, task selection
methods and worker selection methods respectively.

Datasets
It can be seen that each of the seven datasets exhibit distinct
behaviour. Most evidently, all strategies converge slowly on
datasets with a low judgement accuracy (e.g. ZC-IN). Such
datasets show a large difference between the performance
of each strategy, indicating the benefit of intelligent judge-
ment aggregation models. In contrast, all strategies converge
quickly on datasets with a high judgement accuracy (e.g.
SP-2015). Such datasets show little difference between the
performance of various strategies. However, the fast conver-
gence rate indicates the benefit of stopping early, allowing
the cost of acquiring additional unnecessary judgements to
be avoided. Furthermore, it can be seen that even datasets
from the same domain show vastly different performance of
active learning strategies. In the WS domain the difference
in performance is due to differences in the total number of
judgements and also the number judgements per task and

judgements per worker, while in the SP domain the differ-
ence is due to the average accuracy of judgements.

Figures 4 and 5 show the accuracy and average recall af-
ter each judgement. Although accuracy represents a highly
intuitive metric, it assigns more weight to gold labels which
occur more frequently a dataset. In contrast, the recall metric
weights each gold label equally, independent of the number
of tasks per gold label. The difference between these met-
rics is most evident for highly skewed datasets, such as ZC-
IN as shown in Figure 4 (f), in which the IBCC and CBCC
strategies show decreasing accuracy while the average recall
increases. Furthermore, the Dawid & Skene strategies show
a high accuracy and low average recall, due to all tasks be-
ing classified as the most common gold label. As a result,
we recommend the use of the recall metric where a single
measure is required to compare the performance of active
learning strategies.

Judgement Aggregation

Each graph in Figures 4 and 5 compares the performance
of five judgement aggregation models. Consistent with pre-
vious work (Bragg and Weld, 2013; Venanzi et al., 2014),
the IBCC and CBCC models consistently outperform the
Dawid & Skene, Majority vote and Vote distribution mod-
els. This is due to their modelling of the skill of individual
workers, as well as their ability to represent uncertainty over
latent parameters.

It is also worth noting that although the Dawid & Skene
model reaches its highest average recall at the endpoint of
most datasets, it often requires a large number of judge-
ments before the average recall rapidly increases. Such rapid
changes in accuracy and average recall are a result the re-
classification of all tasks as a new label. This long initial
phase means that the model is likely to be competitive in
scenarios where a large number of judgements are available
before the active learning phase begins, but uncompetitive
in cold-start scenarios. In addition, compared to IBCC and
CBCC that accept prior distributions over their parameters,
Dawid & Skene requires a good guess of initial parameters
to provide good accuracy in its inference results. For exam-
ple, for the MG dataset, the accuracy of the majority vote is
close to 0.5 (see Table 1) and, given the default initialisation
of the confusion matrices of Dawid & Skene with major-
ity vote accuracy on the diagonal values, the model starts
its inference assuming that the workers are almost random
labellers that does not produce good quality results.

Task Selection

It can be seen by comparing the performance of similar
strategies between the two figures that entropy task selec-
tion outperforms random task selection across all datasets.
This is due to the faster convergence rate, which is most
evident for the ZC-US dataset, in which the CBCC best
worker strategy reaches its maximum average recall with
less than 2,000 judgements through the entropy task selec-
tion method, while the same strategy requires nearly 10,000
judgements for the random task selection method.
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(d) SP-2013
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(e) SP-2015
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(f) ZC-IN
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Figure 4: Accuracy graphs versus number of selected labels for the five models with entropy task selection.

Worker Selection

Figures 4 and 5 show that in almost all cases the best worker
strategies outperform or perform comparably to the corre-
sponding random worker strategies. As such, the ability to
select the next worker allows convergence to be achieved
earlier than through random worker selection, and as such
can reduce crowdsourcing costs significantly in practice.
However, it should be noted that there are multiple ways of
implementing a best worker strategy as discussed in the ac-
tive learning strategies section of this paper, and other imple-
mentations might yield a consistently superior performance.

Furthermore, the ability to select specific workers might not
be possible in many crowdsourcing systems.

Conclusions and Future Work
In this paper, we have proposed the ActiveCrowdToolkit as
a tool for benchmarking active learning strategies for crowd-
sourcing research. As part of this toolkit, we have released
two new crowdsourcing datasets characterised by a high re-
dundancy in their judgment set. The toolkit allows active
learning strategies to be easily constructed by combining
judgement aggregation models, task selection methods and
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Figure 5: Accuracy graphs versus number of selected labels for the five models with random task selection.

worker selection methods, and evaluated as the strategy is
executed using the toolkit’s graphical interface. We have
also used the toolkit to evaluate 16 active learning strategies
across seven datasets. We have shown that existing datasets
vary widely due to differences in domain, scale, worker re-
strictions and rewards, and we have also shown that such
differences have a significant impact on the evaluation of
active learning strategies. We evaluated each strategy using
both accuracy and average recall metrics, and showed that
the recall metric is most representative of performance in
cases of unevenly distributed task gold labels. Our empiri-
cal evaluation showed that the IBCC and CBCC judgement

aggregation models show the best performance across the
range of datasets, while majority vote and vote distribution
models converge more slowly to a constant accuracy level,
and the Dawid & Skene model performs most competitively
in scenarios with longer initialisations. In addition, we have
shown that entropy-based task selection results in faster con-
verge than random task selection, and also that the selection
of the best worker to perform each task also results in faster
convergence compared to random worker selection.

There are a number of potential directions for future
work. First, integration of the ActiveCrowdToolkit with live
crowdsourcing platforms, such as AMT or CrowdFlower,



would allow state-of-the-art active learning strategies to be
deployed in real-time. Second, the trade–off between an ini-
tial uniform task selection phase followed by a more intel-
ligent task selection phase has not yet been investigated.
Third, the trade-off between the performance and run-time
of active learning computation has not been investigated in
this work. Fourth, although different strategies of our toolkit
can be easily run in parallel via the command line, the graph-
ical interface does not currently support multithreading or
parallel computation.

References
Bachrach, Y.; Graepel, T.; Minka, T.; and Guiver, J. 2012.

How to grade a test without knowing the answers — a
bayesian graphical model for adaptive crowdsourcing and
aptitude testing. In Proc. of the 29th Int. Conf. on Machine
Learning (ICML-12), 1183–1190.

Batra, N.; Kelly, J.; Parson, O.; Dutta, H.; Knottenbelt,
W.; Rogers, A.; Singh, A.; and Srivastava, M. 2014.
NILMTK: An open source toolkit for non-intrusive load
monitoring. In Proceedings of the 5th international con-
ference on Future energy systems, 265–276. ACM.

Bird, S. 2006. NLTK: The Natural Language Toolkit. In
Proceedings of the COLING/ACL on Interactive Presen-
tation Sessions, COLING-ACL ’06, 69–72. Stroudsburg,
PA, USA: Association for Computational Linguistics.

Bragg, J., and Weld, D. S. 2013. Crowdsourcing multi-
label classification for taxonomy creation. In First AAAI
Conference on Human Computation and Crowdsourcing,
25–33.

Costa, J.; Silva, C.; Antunes, M.; and Ribeiro, B. 2011. On
using crowdsourcing and active learning to improve clas-
sification performance. In Intelligent Systems Design and
Applications (ISDA), 2011 11th International Conference
on, 469–474.

Dawid, A. P., and Skene, A. M. 1979. Maximum Likelihood
Estimation of Observer Error-Rates Using the EM Algo-
rithm. Journal of the Royal Statistical Society. Series C
(Applied Statistics) 28(1):20–28.

Demartini, G.; Difallah, D. E.; and Cudré-Mauroux, P.
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