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ABSTRACT

The creation of Virtual Power Plants (VPPs) has been sugdéstrecent
years as the means for achieving the cost-efficient integratf the many
distributed energy resources (DERS) that are starting trgenn the elec-
tricity network. In this work, we contribute to the developnt of VPPs by
offering a game-theoretic perspective to the problem. @pelty, we de-
signcooperativegor “cooperative VPPs"—CVPPs) of rational autonomous
DER-agents representing small-to-medium size renewdbtdrieity pro-
ducers, which coalesce to profitably sell their energy toeteetricity grid.
By so doing, we help to counter the fact that individual DERs@ften ex-
cluded from the wholesale energy market due to their pezddivefficiency
and unreliability. We discuss the issues surrounding thergemce of such
cooperatives, and propose a pricing mechanism with cedtzgirable prop-
erties. Specifically, our mechanism guarantees that CVBRsthe incen-
tive to truthfully report to the grid accurate estimates lafit electricity
production, and that larger rather than smaller CVPPs fdinis;promotes
CVPP efficiency and reliability. In addition, we propose heame to allo-
cate payments within the cooperative, and show that, ghvisrstheme and
the pricing mechanism, the allocation is in the core anduab, ;o subset
of members has a financial incentive to break away from the ZWre-
over, we develop an analytical tool for quantifying the utenaty about
DER production estimates, and distinguishing among diffetypes of er-
rors regarding such estimates. We then utilize this toolewdss# protocols
to manage CVPP membership. Finally, we demonstrate theas ttirough
a simulation that uses real-world data.
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1. INTRODUCTION

The vision of a“Smart Grid” [12], and the resulting creation of
a robust, intelligent electricity supply network which neakeffi-
cient use of energy resources and reduces carbon emisgans,
challenge that has been recently taken up by a growing nuofber
researchers [6, 3, 7, 14, 15]. In this context, one of the rpeob-
lems facing the energy supply industry is how to best achilege
utilization of thedistributed energy resources (DERS&Rt, in re-
cent years, have appeared in the electricity network. SUERD
range from electricity storage devices to small and mediapac-
ity (2kW-2MW) renewable energy generators.

In principle, employing DERSs to produce energy could reduce
reliance on conventional power plants even by half [10]. ikénl
conventional power plants that lie on the transmission agtvand
are “dispatched” (i.e., called in to produce energy wherdedg
by the national electricity transmission network opemtpermed
the Gridherein), DERs lie in the distribution network and, due to
their small size, they (and their capacity) are “invisibie'the Grid.
Thus, they cannot be easily dispatched to meet demand. Mareo
due to their decentralized nature and small size, DERs #rnerei
invisible to the electricity market as well, or, lack the aajpy, flex-
ibility or controllability to participate in a cost-effia way [10].

Now, thereliability of supplyis a major concern of the Grid. It
is essential that independent suppliers are reliablee sheefailure
to meet production targets could seriously compromise rii@oth
operation of the network as a whole. In contrast, given ttgrem
dictability of renewable energy sources, the DERs wouldaligu
struggle to meet power generation targets when operatomeal
This normally prohibits them from striking profitable dealéth
the Grid, and keeps them out of the electricity market for fefa
suffering penalties specified in contracts (driving thersigm low-
profit contracts with third-party market participants eesd) [10].
To address this issue, in recent years many countries {e.the
EU) have enacted policies that guarantee the sale of eli¢gfrom
small-scale producers to the Grid in pre-determifestl-in tariffs
that are generally above market prices. Such policies wene c
ceived by the need to promote the incorporation of renewaiie
ergy sources into the Grid, so that they generate apprecjzdst
centages of total demand. However, with the number of DERs
expected to rise to hundreds of thousands, and with theblaria
generation seen as another uncertainty to be addressedl timre
through active Grid management, this is clearly unsuskééna

To counter these problems, the creationvotual Power Plants
(VPPs)to aggregate DERs into the virtual equivalent of a large
power station, and thus enable them to cost-efficientlyiatie into



the market, has been proposed in recent years. [7, 10]. A ¥PP i
a broad term that intuitively represents the aggregatedlibties

of a set of DERs. For example, it can be thought of as a pastfoli
of DERSs, as an independent entity or agent that coordinaRsD
pooling their resources together, or as an external aggnegzat
“hires” DERs to profit from their exploitation.

In our work here, we propose that power-producing DERs co-
alesce together to forrmooperativesof agents that can profitably
be integrated into the Grid, such a cooperative correspgnth
a virtual power plant. Viewing the DERs as autonomous agents
is natural, due to their distributed nature and inherenividdal
rationality, and enables them to realize their full potainéis self-
interested market units (as it allows for the possibilitgttaven the
smallest of DERs can carry out certain communication argllint
gent decision making tasks on their own, but without impgsins
as a requirement). We call these coalitions of DER-agerdsyfc
eratives” because dh) their completely decentralized natu(®)
their ability to sell their production without relying on yaexter-
nal entity that profits by using their members’ resourcest @)
the fact that members willingly participate in a coaliti@s, it is in
their best interests to do so. Of course, the mechanismsilolegc
in this work can also be readily used by any company that \sishe
attract DERs as suppliers, aiming to resell their energhe¢dGrid.

In the rest of the paper, we will use the terms “cooperatived a
“cooperative VPP (CVPP)” interchangeably.

Given the issues discussed above, it is only natural thabtite
should encourage the emergence of cooperatives, by gaaragt
the purchase of CVPP energy at competitive rates. To thisiend
this paper we incorporate ideas from mechanism design aop co
erative game theory, and put forward an energy pricing mésha

2. RELATED WORK

Here we briefly review existing related work that providetelili
gent agents—and, more generally, Al research—solutioesdogy-
related problems. To begin, we note that researchers indime c
munity have recently presented economics-inspired wotkdhkle
such problems. Specifically, Vytelinguetal.[15] proposed strate-
gies for the management of distributed micro-storage gndeg
vices that adapt to the electricity market conditions. Ipasate
work, they developed a market-based mechanism to autaatigtic
manage the congestion within the system by pricing the flow of
electricity, and proposed strategies for traders in therS@rid [14].

However, ideas frontooperative game theomn particular—
i.e., from the branch of game theory that studies the protdém
forming coalitions of cooperating agents—have been used in the
broader energy domain for more than a decade. Yeurad. [16]
employ coalitional game theory in a multiagent system madel
the trading process between market entities that genératsmit
and distribute power. Also, Contrerasal.[2, 1] presented hilat-
eral Shapley valumegotiation scheme to determine how to share
the costs for the expansion of power transmission netwariang
coalescing rational agents.

Turning our attention to VPP-specific literature, Pudjiet al.
[10] stress the need to integrate DERSs into the electricityvork
in an organized and controllable manner through partimpah a
VPP structure, and discuss the subsequent technical anth@em
cial benefits to the electricity network as a whole. They alsarly
outline the economic advantages to DERs, demonstratingegs t
do through specific examples that VPPs can be used to faeilita
DER access to the electricity market. Dimeas and Hatziargy6]
also call for the emergence of VPPs, and essentially suggest-

to be employed by the Grid. The mechanism can be seen as anganjzational structure that makes use of interacting toati to

efficient alternative to feed-in tariffs, and so promotes iticorpo-
ration of the DERs (as CVPPs) in the Grid. In some detail, our
mechanism promotes supply reliability, guaranteeing €PPs
truthfully provide the Grid with estimates of their elecity pro-
duction that are as accurate as possible. Further, thepasrded

for increased production, while the Grid maintains the igbtb
decide the flexibility of the mechanism and its degree of joeate
dence from market fluctuations. Building on that key conitiidn,

this purpose. Similarly, Mihailescat al. [8] propose the use of
coalition formation to build VPPs, but do not provide theailstof
the formation process or offer specific game-theoretictsmia—
as they do not discuss issues of individual rationality ceirtive
compatibility. Though all of those papers advocate thetwpaf
VPPs, they do not describe specific mechanisms for the market
VPP interface or the interactions among VPP members.

In contrast, thdPowerMatcher(see [7] for an overview) is a de-

we then propose a payment scheme to allocate payments withingentralized system architecture that has been proposethasmas

the cooperative, and show that, given this scheme and thimgri

to balance demand and supply in clusters of DERs. It attetopts

mechanism, a CVPP can guarantee payments to its members sucfinplement optimal supply and demand matching by organittieg

that no subset of them has a financial incentive to form a CVPP
of its own. Formally, we guarantee that, provided DER praidiuc
estimates are accurate, the payments to CVPP members e in t
set of core allocations of the corresponding coalitional game [9].
We then develop a method that quantifies the uncertaintyrdega
ing DER production estimates and distinguishes betwederdiit
types of errors in predicted production (i.e., those spetifiindi-
vidual DERs, and those common within whole DER clusters), an
employ it to devise CVPP membership management protocols.
This is the first paper to discuss the formation of VPPs from a
game-theoretic standpoint, extrapolating as it does nmsmade-
sign and cooperative game theory concepts and techniqubssto
domain. As such, this work demonstrates that multiagertare
can provide the energy industry with solutions regardirey ghc-
cessful integration of DERSs in the supply network. Note thég
research has the potential of short to mid-term applidgtiti re-
alistic settings, as several power trading companies tinaekec-
tricity from small scale producers to sell to the Grid alngadist.
Examples includd-lexitricity in the UK andTata Power Trading
Company Ltdin India (business description available online).

DER-agents into a logical tree, assigning them roles anscpie
ing strategies to use in their interactions. The aspectisfystem
most relevant to us is the one proposing the aggregatiordofich

ual agents’ supply offers in a cluster, serving as a VPP tjlidbe
use of arobjective agentSuch an agent has the task of implement-
ing a “business logic” that would guide the VPP’s actions.wHo
ever, the authors stop short of proposing a specific businggs
Our approach can be seen as a detailed description of justasuc
logic, employing game-theoretic ideas and tools to thippse.

3. AGENT COOPERATIVES

An agent cooperative (CVPP) is a collection of participgidER
agents, each of which registers with the CVPP when joinintge T
CVPP may possess and employ any rules, tools and functipnali
necessary to ensure its unconstrained and profitable apeestan
enterprise. We now present briefly some key CVPP charatibsris
and functionality most relevant to our work here.

In most countries, the day is divided into 48 half-hour eleity
trading intervals, osettlement periods-or each of these, electric-
ity prices are set in the market, and specific electricitydpation
targets are specified for the various generators the dayehefiven



predicted supply and demand. A DERan estimate aexpected
productionvaluegfzai_ytj for any half-hour period;. This is the
energy it expects to be able to supply duringgiven any known
external factors (such as the prevailing meteorologicabtmns)
and its expected technical state. Thus, the main profilenpetex
that describes the production of a DERhroughout each day is
its expected production vectmi = (;/>r\o/di7tj>, describing the
DER'’s production for every half-hour period.

Note that, besides this estimated production, there iacamal
production vectoassociated with each DERprod, = (prodiytj ).
The value for eaclprodi’tj, however, becomes known only after
the corresponding /pgr/iod elapses. We will be using the il

notationprod, andprod, to refer toi’s production when the pe-
riod ¢; of reference is evident or of no significance. Furthermore,

we will be usingprod andgr?)?ic to denote the production and
expected production of a cooperativeof DER agents. The differ-
ence between thg-values of the estimated and actual production
vectors, gives the DER (or, similarly, CVPPBjediction errorfor
the ¢; period. Note thaprod. = >, prod,, as the total CVPP
production is just the sum of the production of its DERs. Rert
we assume thairod, = >, prod,.!

Now, essential functionality for the CVPP operation inaad
rules and procedures f@a) the distribution of revenuegb) the ag-
gregation of individual production estimates into CVPRI&ones,
and (c) membership management (admitting and expelling mem-
bers). That functionality might be located on some centgaina
responsible for “running” the CVPP, or it could be potenyialis-
tributed over several agents. The functionality localmatetails
are unimportant to our work here. Instead, we proceed toritbesc
the aforementioned CVPP operational activities in depth.

4. TRUTHFUL AND RELIABLE CVPPS

consumption side, where the Grid interacts with only a fergda
utility companies, which, in turn, interact with the millis of in-
dividual consumers. Thus, it is imperative for the Grid torpote
the formation oflarge CVPPs, each with a sizeable production ca-
pacity. Larger CVPPs make it possible for the Grid to inteveith

a smaller number of entities, and also promote supply riéitiab

4.1 Payment Mechanism

With this list of requirements in mind, we now put forward acpr
ing mechanism that the Grid can use when making paymentg to th
CVPPs for their contributed energy. As discussed, the C\{lP&*s
vide their estimated production for each day-ahead setti¢ipe-
riod to the Grid authority. As stated abo@,?ﬂc is the estimated
production declared by CVP®, andprod. its actual production

in the given time interval. Leprice be the electricitypase price
(per kWh). The “Grid-to-CVPP” payment from the Giddto C'is:

1
1+ oz|p/)r\o/dc — prodq|?

- log(prod,) - price - prods
1)

The three first factors of this payment function (or pricingai-
anism) represent thactual pricebeing offered by the Grid td.
Multiplying them with the actual CVPP production (the fdufac-
tor, prod,.) gives the actual payment 8. The mechanism has
specific properties that satisfy the requirements mentiagheve:

(1) The first factor, ———1———, depends on the accu-
1+a|prodg —prod o |#

racy of the estimates provided by the CVPP. Thésuracy fac-

tor is a bell-shaped function qfr/\o/dc given the actual production
prod. parameter, as the one whose graph is depicted in Fig. 1. It
simplifies tol whenprod, = Br\c;lc, proportionally decreases as
the difference between them increases. Importantly, gisahse is
independent of whetherrod,. is greater thatﬁ;&ic or vice versa.
Parametera andg are functions oprod, and determine the exact

Va,c =

In this section, we present a payment mechanism that can be em shape of the curve, and can be tuned so that the factor ajerac

ployed by the Grid to promote the formation of DER coopegstiv
The mechanism addresses the main hurdles the Grid facesewith
spect to DERS’ integration—namely, thareliability of their pro-
duction (given DERS’ dependance on uncontrollable factike

the weather), and thelarge numberggiven that it is anticipated
that hundreds of thousands of DERs would be eventually embed
ded within a given country’s distribution network).

To begin, we elucidate the main requirements of the Grid with
respect to its interaction with CVPPs, and proceed to show ho
they translate into the features of our payment mechanism.

(a) Reliability of supply: The Grid operators are responsible for
compiling production schedules to pass to the large powaertgl
Currently, these are based on the predicted demand forieict
As more supply originates from smaller generators, theidjated
output will also need to be incorporated into the Grid prditunc
scheduling process. Hence, the Grid requires any entigrant-
ing with it (such as a DER or a CVPP) to provide it with reliable
production estimates, and to be able to honour any agreetment
supply a specific amount. Subsequently, the Grid would bigngil
to reward producers that are proven to be reliable suppliers

(b) Need to minimize the number of entities the Grid interact
with: As already mentioned, widespread small-scale production
will result in a huge number of DERs being connected to thel Gri
However, the Grid would obviously prefer to interact withraasl
number of electricity producers, as this makes it easierdnage
and settle accounts. This requirement mirrors the scewarithe

It is conceivable that CVPP-wide estimates miot necessarily
equald_, prod;. This would have no impact in our results.

zero forprod estimates that are at a distanceabd ., away from

the actuaprod ., production. The use of this factor guarantees that
the CVPP has the incentive to truthfully provide a highlywete
estimate of its production, as acting otherwise leads tosa @i
revenue (at least in expectation).

(2) The second factorlog(prod.), increases with production
and thus encourages a large CVPP size. Therefore, CVPPs with
more DER members generate more energy and obtain a better ove
all price than smaller ones. Nevertheless, beitagdunction, the
factor flattens eventually at very high production amourif$is
means that, though the formation of large CVPPs is encodrage
the emergence of a single CVPP containing all DERs is notesiec
sary consequence. Even though small CVPPs have an incémtive
merge initially, they will not mergad infinitum as there is no visi-
ble benefit after some point due to the limit linearity of tbadtion.

Of course, other reasons to prevent merging, such as gdogahp
or technical restrictions, might exist.

(3) The third factorprice, is determined by the Grid either through
supply and demand in the electricity market or through athesins,
and will be the same for all CVPPs participating in the market

It is evident that this pricing mechanism promotes cooparat
participation in the market, and captures the aforemeatidist of
requirements. First, it promotes suppbliability, by guarantee-
ing that CVPPs receive higher revenues for accurate estinat
CVPP has an incentive to provide as accurate an estimatesas po
sible, and has no incentive to strategize about it, as theats is
only used by the function to check how far off the actual pmdu
tion was from the promised supply target. As shown abovéuilil
providing a wrong or biased estimate does not improve andlynos
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Figure 1: An accuracy factor function diagram

decreases the payment to the CVPP for the same amount of actua

production. Thus, the mechanism promateshfulnesson behalf
of the CVPPs. Similarly, the mechanism also prometéisiencyat
the Grid level by incentivizing the formation of large coogtives,
each attaining a substantial production aggregate.

4.2 Truthful and Reliable DER-Agents

The above mechanism incentivises the CVPP to provide aecura
estimates about its production. As discussed earlier, tbdyg-
tion of a CVPP is nothing but the aggregate of the production o
all the DERs composing it. Therefore, the CVPP requiresrateu
estimates of production from the DERs in order to be able ltuea
late the production estimate to provide to the Grid. Givas, tthe

since otherwise it does not receive the full payment comedimg
to the energy it actually produced.

4.3 Payment Schemes Render Stable CVPPs

Here we provide a further, game-theoretic justificationtfer pay-
ment scheme used by the Grid to reward CVPPs, and for that used
by a CVPP to reward its members. Specifically, we show thedrgi
the functions used to reward the cooperatives and the membg¢
ment scheme described above, and assuming that all CVPP mem-
bers’ stated production estimates are accurate, no mehsoeset
has an incentive to break away and form a smaller cooperdtive
addition, this result promotes the goal of large CVPP sizes.

To demonstrate this, we employ the concepthaf core[9], the
strongest of the game-theoretic solution concepts useddoritbe
coalitional stability. Some preliminaries from cooperatigame
theory are in order. To begin, 1&¢, |N| = n, represent a set of
players; aoalitionis a subses C N. Then, gtransferable utility)
coalitional gameG(V; v) is defined by itcharacteristic function
v : 2% - R that specifies thealuev(S) of each coalitions [13].
Intuitively, v(.S) represents the maximal payoff the members of
can jointly receive by cooperating, and the agents canilolisér
this payoff among themselves in any way. While the chargstter
function describes the payoffs available to coalitionsides not
prescribe a way of distributing these payoffs. Altocationis a
vector of payoffse = (z1, ..., x,) assigning some payoff to each
i € N. Then, thecoreis the set ofr payoff allocations with the
property that no coalition of agents can guarantee all ehémbers
a payoff higher to what they currently receive unaerAs such, no
coalition would ever be motivated to break away from the dran
coalition of all agents. Now, let(S) denote the payoff allocated

payment from the CVPP to the DERs should encourage the DERsPY  to agentsS C N, i.e.,z(S) = >, s zi. Then, formally,

to truthfully provide good estimates of their productionvidently,
this mirrors the scenario between the Grid and the CVPPngaki
cue from that, we use the same principle for this “CVPP-tdRDE

DEFINITION 1. An allocationz is in the core of G(N;v) iff
z(N) =v(N) andforanyS C N we haver(S) > v(S).

payment function as the Grid-to-CVPP one. Thus, the payment That is, the values(N) of the grand coalition is efficiently dis-

from CVPPC to member: for supplied energyrod, is:
z prod,

Ve, = — .
1+ alprod; — prod,|#  prodc

’

Va,c 2)
We now describe the function in detail, demonstrating halidits
truthful and as accurate as possible predictions from thRDE
(1) AsinEq. 1, the first factori+, is anaccuracy
+a|prod; —prod;|?
factor, encouraging the DER to provide the CVPP with its best pos-
sible production estimate. It equalsf the estimate was accurate,
and drops following a bell curve otherwise. Notice thas simply
a normalization factor used to redistribute the entigec amount
back to the members. Redistribution is in proportion to them
bers’ production and prediction accuracy—this can be yasién

with z = prodg . Alternatively, the CVPP
# = 5, brod,/(i+alprod; —prod; 7) Y.

can setz = 1 and use the residual profits to pay for maintenance
costs, recruiting new members, or other such purposes.

(2) The second facto%, gives the proportion of energy con-
tributed by this DER w.r.t. the total CVPP production, makthe
payment distribution fair across all DERs.

(3) The last factorVg,c, denotes the total amount that is to be
divided among the constituent DERs, and corresponds toaje p
ment received by the CVPP from the Gfid.

To recap, by employing this payment function the CVPP pro-
motes truthful and highly accurate predictions from itsstdnent
DERs. A DER has an interest to truthfully and accurately repo

20f course, this could be reduced by subtracting an amouhisif t
is required to account for CVPP fees or maintenance costs.

tibuted byxz among all agents, and the payments specified bye
such that anys' already receives at least its valugs). The core of
a game can be non-empty. Worse than that, it is in geiN®ahard
to determine the non-emptiness of the core (see, for exaifiple
Returning to our setting, consider the formation of a CVPP as
a coalitional game, with the characteristic function disieg the
value that any subset of DERs can derive by working together a
a team, and the CVPP intuitively corresponding to the granadi-c
tion of all agents. In our case, interestingly, assuminthfcu and
accurate DER estimates, the form of the characteristictiomc
v(S) = log(prodg) - price- prodg, allows us to prove that the pay-
ments allocated by Eq. 2 constitute a core-stable allatatitich
also implies that the core of the game is always non-empty.

THEOREM 1. LetC = {1,...,n} be acooperative d”| = n
agents, and le€/(C’; v) be the coalitional game with characteristic
functionv(S) = log(prodg) - prod g - price determining the value
of each subse$ C C of agents. Consider the payoff allocatian
where each agentin C is paid according to Eq. 2—i.e., propor-
tionally to 4’s contribution to the production of the CVPP (given
;r\(_)?li = prod;). Thenx € core(G).

PrRooOF We will show thatz is in the core. We know that
distributes all payoff to the agents efficiently and therefa(C') =
v(C), wherev(C) = Vg, ¢, so the first condition of Def. 1 holds.
Assume for the sake of contradiction thatis not in the core.
Then, there exists som& C C s.t.v(S) > z(S). Butz(S) =

YiesTi = g;gjgv(C) (this is easy to see by settingod, =

prod, forallin Eq. 2). Thusw(S) >

rod
Sm—di -prod-log(prods)-



price < prodg-log(prodg)-price > pm prodc log(prod)-

price < log(prodg) > log(prodc) But sinceS C C, this is
impossible. Thusg is in the core olG(C;v). O

Thus, the choice of the Grid-to-CVPP and CVPP-to-DER paymen
schemes described above is well justified from a game-ttiepre
coalitional stability point of view also.

5. QUANTIFYING PREDICTION ERRORS

In Section 4.1 we introduced the payment function of CVPPs to
their members, based partially on the accuracy of theiriptieds.
Here we propose several methods for quantifying the unogyta
in DER predictions, and distinguishing between differgmtes of
prediction errors. This will prove helpful for devising rhets to
handle CVPP membership (in Section 6). To begin, consider th
examples of a virtual power plant that aggregates the suppty
several DER wind farms (belonging to different stakehadjielis-
tributed in a geographical area, or from a set of solar painels
stalled by different houses in an extended neighbourhocath E
DER can make an error in the prediction of its future outputafo
given half-hour period. Itis useful to distinguish betweéen main
classes of errors:

(a) Systematic errors: This error type is caused by the inherent
uncertainty in predicting an outside variable that is usedrainput

by several DERs while calculating their production estsat~or
renewables, this is most likely a weather-related variadlieh as
wind speed or solar power. So, for example, if the meteoroidg
office is innacurate in its prediction of wind speed at a d¢etiane

in a local area, then all the wind turbines in that area maisteqg
an error in their predicted production. We call this type obe
systematicas it is common to all energy resources that rely on that
factor, and it is outside the control of individual DERs.

(b) Residual errors (DER specific): Besides the systematic er-
rors, the predictions of an individual DER may be affectedceby
rors caused by factors specific to itself, and (at leastadbftiunder

its control. In the example discussed above, even if a wirtdina

is supplied with very accurate predictions of wind speexpiiedic-
tion of its actual output may not be that accurate (becauiseait
older turbine, requires maintenance work, and so on).

Against this background, we now propose a statistical ntetho
for distinguishing between the different types of predicterrors.
Consider a dataset consistingmafDERs in a CVPP, which belong
to the same category of energy producers (e.g., wind tustinoen
the same area). For each of these DERsalf-hour data points are
available within some large time peridd= {1,...,n} (n can be
quite large as the data can span several days, weeks or months

Formally, |etprodL . andprod, , denote the estimated and actual
productlon of DER: in a half-hour intervat. Moreover, letA; ; =
prod, , prodz .+ Vi={1,...,m},Vt € T denotei’s prediction
errors |nt Given the 2- dlmenS|onaI error matrix with entrias ;
as defined above, we can define #verageprediction error across
all DERs for some € T as: 2 = = Xt b

m
In what follows, we denote byA%. the n-vector of errors corre-
sponding to energy produceérfor every intervalt € T (A% is a

row of A; ; error matrix entries correspondingdp and byu4 the
n-vector containing the average prediction errors acrddSERs
for all time steps € T'. We can now compute tHeearson corre-

lation coefficienp? between vectord’. andu4 as:

S (A - B — )
\/Z?:l(Ai,t —Ay)? \/Z?:l(utA — uB)2
®)

cov(AL, p8)

A y _
o(AL)o(ug)

Pi

where cov( A%, y%) denotes the statistical covariance between
the two vectorsA’. andu4, o(A%) ando(p4) are their standard

A — n A R
deviations, and\,; M andus = Zf:Tl“t their means.

Intuitively, for each energy producer p2* € [0, 1] shows how
correlated its errors in predicted production were withdkerage
errors made by the energy producers in the same categorg in th
CVPP. In our wind turbine example, if the coefficigrjt for wind
tubines is high, it means that this turbine tends to make a prediction
error when all other wind turbines in its area make a preafictirror
of similar proportions. Thus, its error is mostly of a “sysic”
nature. If there is an uncertain, outside factor (e.g., wépded
prediction) causing an error for all these turbines, theneirors
can be assigned to this factor. Converselyfis low, the errors
of this wind turbine are caused by its own functioning/pet&idn
capabilities, and appear unrelated to those of similaryrecs.

With this at hand, statistical theory [4] allows us to defin®t
important measures for the error vector of each producehe
fraction of variance explainetly the systematic factor (also called
the coefficient of determinationff VES® = (p£)?, and thefrac-
tion of variance unexplainebr, the fraction of residual variance)
FVUS =1 — (p£)% In essence, these measures determine the
percentage of the variance in DER prediction errors that can be
explained by systematic factors. Thus, we can separateatfie v
ances(A%) in the prediction errors of eachover periodT into
the systematic and the residual variance, the latter defised

Ores(AT) = FVUT o (A7) = [1 = (p7)*]o(AT)  (4)

Thus, the residual variance provides us with a tool to determ
whether the prediction error of a specific DERs due to factors
that do not affect other energy producers of the same nahde a
in the same area. As we shall see, this tool can be used tarinfor
CVPP membership management decisions.

6. MANAGING CVPP MEMBERSHIP

In Section 4.3 we showed that, given the payment function de-
scribed in Eq. 1, coalitions representing CVPPs are stabline
sense that DERs do not have a financial incentive to abanéom th
However, this result only holds when the DERs composing the
coalition are always able to provide accurate, error-frgerates

of their production. In general, cooperatives do not havneen-

tive to expel members, given that more members means gesater
pected production and thus greater expected revenuese Aathe
time, given Eq. 1, it is also true that, if certain DER membemes
consistently unreliable in their production estimatesntthe addi-
tional penalty that the CVPP suffers due to increased wabidily

can in the long term offset any benefits from an increasedativer
production. Therefore, a CVPP should perform a regulauerain

of its individual members’ performance, based on which iy mie-
cide to expel some of them. In this section, we provide metfiod
such an evaluation.

Formally, as in Section 5 above, we consider the performafce
m DERSs belonging to a CVPP in a discretized time pefibdon-
sisting oft = 1, ..., n half-hour periods. Furthermore, we denote
by C'\i the CVPPC if DER ¢ was not its member. Given the Grid-
to-CVPP payment of Eq. 1, we define thwarginal contribution
(or marginal valug of DER to cooperative”' in periodt to be:

5)
Intuitively, the marginal contribution of DERto the cooperative at
any time interval is the difference between the payment ahed-

operative actually receives, and the payment it would hegeived
had: not been part of the cooperati¥eNote that this marginal

mg
‘/Z‘—»C;t - VG,C;t - VGA,C\i;t

3Incidentally, although perhaps intuitively appealingjngsthe



value is influenced by both the estimated and actual proohsti scenarios. We then apply our mechanisms to this settingpdem

I:f;am andprod, ,, of DER: (and, implicitly, by its errors\; ;). strate the benefits to individual turbines from forming apera-
Given this, we now propose a method to assess the long-termtive, and evaluate our method for ranking DERs according¢e p

performance ofi within a time frame of interesf. The same diction performance.

mechanism could be applied to the process of deciding whethe  To begin, the main characteristic of a wind turbine ispitaver

to accept a new member in the CVPP, if historical data reggrdi ~ curve describing, for a given level of wind speed, its electrimat-

its predictions’ reliability were available. put (in MW). The generic power curve of wind turbines is tygilg
Note that a first, simple solution would be to assess the meshbe ~ asigmoid functionwith a threshold level, beyond which the power
performance by ranking them according to their marginatriiou- output increases more sharply. A turbinesminal capacityde-
tion during a time period” consisting of intervals = 1,...,n. scribes its maximum power (and, subsequently, energy peztiu
That is, we can simply add the marginal contributions of DE& per hour) output for “optimal” wind speed. . .
the intervalst € T: V"% = >,_, , V/"%.,. Then, each The Sotavento farm contains 24 wind turbines, with an iteal
producer can be ranked by its marginal contribution to tkemaes nominal capacity of 17.5 MW which jointly produce an average
of the CVPP, as described B¥"<. . across the period’ of inter- of 38,500 MWh yearly. The available dataset we used in our ex-
est. This method captures the exact contributions of mesnbet periments contains, for eadfourly slot for the entire year from 2
does not account for systematic errors. So, for example,R §i& September 2009 to 2 September 2010, both the actual windspee
uated in an area with poor wind/solar power prediction foivarmy recorded, as well as the farm production (in kwWh) for thatetim
period, would be penalized for elements outside its control slot. There are 8600 records/year provided in total, dueotoes

A fairer method would be to use the residual variance spewific ~ récords being corrupt. Fig. 2 shows a scatter plot of all terly
each DER. Such a method involves ranking the producers a@ccor data points from Sotavento, as well as the power curve (gmeaid

ing to their residual variances, as computed in Eq. 4, ovarimg function) we derived based on this data.
T. The least accurate producers could then possibly be expell Next, we divided the derived curve for the entire farm (iie.,
from the CVPP, as a high residual variance shows their piedic ~ our terminology, the CVPP) into 24 identical power curves; tor
accuracy underperforms that of others in the same area torsics each individual wind turbine (DER). Note that, while no dietd
erable period of time. However, that would have the disathge data was available about individual turbines, considettiegn equal
that it completely disregards the contributions of indial DERs in nominal production capacity is realistic, and sufficiemillus-
to the CVPP revenues. Indeed, a CVPP could be reluctant to ex-trate the functioning of our model. Therefore, based on & r
pel a member that, though consistently inaccurate, stiltrdoutes data, each of the 24 turbines has a nominal capacity &0 kw
significantly to the CVPP production and, therefore, reesnu (or, it can supply~500 homes). Ifv; is the wind speed at an hourly
Thus, here we propose a method that actua#lighsthe marginal timepointt (in m/s), thegenericpower curve of each turbine is:
contribution of a DER by its residual variance (normalized 1] _ 700
through division by the sum of residual variances acrossrall prod] " (wi) = ———e——— (7)

e > 1 + e0-66%(9—wt)
agents). Specifically,’ calculates, for eachoverT', the following:

The shape of this function for each individual turbine is sagne

scorel, — (1- Ores(AY) yme ©) as that in Fig. 2, but with a maximal capacity of 700 kW.
- m J =0 Scatter plot of real production data for Sotavento
’ 23:1 Ores(AT) o 18000
Intuitively, DERs with higher residual variance have thaarginal S 16000

contribution disregarded more, while still taking someditréor it.

The CVPP then ranks the DERs in terms of their score, and leas th
option to expel members with low performance. The advantdge
this method is that it avoids punishing individual DERs fgstem-

atic errors, while taking into account their marginal cdnitions

at the same time.
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7. EMPIRICAL EVALUATION

We tested our payment mechanisms by examining the incentive 0 v
of a set of individual DERs to form a cooperative, in the cahte Wind speed (m/s)

of a renewables generation scenario. The data used in olir ana gigyre 2: Scatter plot of the yearly data points from Sotaveto.
ysis comes from th&otaventoexperimental wind farm, in Gali-

cia, Spain, and is made freely available for research pepfrom 7.1 Forming CVPPs of Wind Turbines

their website (http://www.sotaventogalicia.com/). Tizenfi pro- . . .
duces roughly the energy required to serve 12,000 homeshé#t w Although the Sotayento site prov@es real Qata about prasfuc
and wind speeds, it does not provide us with any long-terra dat

follows, we first discuss how we constructed individual wind about thepredictionsof individual turbines. Furthermore, all wind
bine profiles from the available data, and describe our ptiedi ut thep : . '
turbines in Sotavento are owned by the same entity (a govarom

marginal contributions to distribute the CVPP revenueshe t agency). By contrast, our goal is to examine more deceptali
DERs is problematic as an approach, because it compromiEBBs D  settings, with these turbines belonging to individual stakders.
truthfulness. Specifically, it provides agents with a regsostrate- Specifically, our aim here is to verify experimentally thgiven
Siotid be based on whether ey can accurately predie and “co U Pyment mechanisms, ‘selfinterested” turbines (D
rect” the reports of others, so that they are awarded theinsrg dlfferenF abilities have an incentive to coalesce into a E'VP .
gains resulting from improved CVPP performance. Though the TO this end, we consider experimental scenarios in which the
study of such collective “auto-correction” mechanismséshaps main parameter varied is the prediction ability of indivatitur-
interesting, it is out of the scope of this work. bines regarding future production. Formally, given a wipeed
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Figure 3: Benefits from joining a CVPP vs. selling to the Grid & an independent producer (singleton): (a) symmetric casdb)
asymmetric case: performance ofgood predictors, and (c) asymmetric case: performance ofoor predictors. Averages are over
86,000 steps (8600 hourly time points available in a year & yely simulation run 10 times). Error bars too small to be visible.

predictionw;, we first compute ajeneric(idealized) production  Joining a CVPP is beneficial in the symmetric case.

prodf;"mc of each wind turbine at timet using Eq. 74 Then, Turning our attention to Fig. 3(a) which depicts the resfdtsthe
theactual production for each DER=1...24 is given by symmetric predictions scenario, we can see that, whateeeesid-
prodis = prod?’ineric N1, 0syst) ual uncertainty in prediction is, individual DERs have acentive

to join together to form a CVPP. For small values of the déorat

‘where the variance factar.,,.; captures the systematic error that in prediction errow;., (i.e., when all agents predictions are almost
is common to all turbines (i.e., the actual wind speed is het t  entirely accurate), this effect is due to the superaddgivacture

same as predicted). While the actual productions are draderi  of the reward function of Eq. 1. This was not surprising, give
pendently for each DER the deviatiorn,.: of the normal pertur-  the result of Theorem 1. Interestingly, however, the immdaiur
bation distribution is the same for all, reflecting the fdwttthey payment schemes is even more profound when highly inagcurat
are all subject to the same uncertain, outside factor (woeed). DERs (i.e., those with high values of residual variance) cane-
Now, the DERs can have rather different capabilities vdetiv- sidered. In this case, the revenue for singleton DERs mare th
ing future production estimates. This is captured by a DReesic halves when compared to their average gains when pariioipiat
(or residual) error factos,..,. Then, the estimated production re- 5 CVPP (from 1700 to 800 euro/day), as the agents are punished
ported by each DER=1...241is: the Grid for their inability to predict their production agately.

As expected, when agents interact with the Grid as a CVPP, the
cooperative’s revenue also drops when its members becasse le

Against this background, we use two simulation settingsxto e~ accurate in prediction. However, the drop is much smallemf
plore the benefits to individual DERs from being in a CVPP.dthb 2700 to about 2600 euro/day for each of the 24 members. This
settings, the number of DERSs is fixed at 24 (as in Sotaveramph e IS mainly because, if added over the entire cooperativeduab

— _ generic 7
prod, , = prody; “N(1,07e5)

with generic production functions as in Eq. 7, and with theteg- prediction errors cancel each other. Thus, quite interglsti even
atic error variance set t9,s; = 0.1. We setprice = 0.05; this is a virtual power plant consisting of 24 DERs with poor preidict
combined with the first two factors of Eq. 1 to give thetual price ability is able to issue a reasonably accurate estimateetGti.

in euros/kWh. We consider the following cases:

(a) The symmetric case:All DER-agents areequally goodor
equally badn predicting their own production. In other words, the
residual deviatiow?. ; is the same accross all ageits

(b) The asymmetric case:The agents in the cooperative are di-
vided into 2 classes: one gbod predictorshaving a low residual
deviationo,.s0) = 0.05 regarding their production estimates,
and a second class pbor predictors having a high residual devi-
ation of o,.cs(nigny = 0.6. The relative proportion of the two class
sizes varies from 0/24 to 24/24 (out of the 24 agents in the EVP

For both scenarios, we ran a series of experiments where the
real wind data for all hourly intervals for an entire year wasd.
The simulation of the hourly wind speeds over the entire yess
repeated 10 timégo reduce the outcomes’ variance, resulting to
86, 000 tests for each data point shown in the results of Fig. 3.

Results for the asymmetric case.
We now examine a setting in which DERs can be separated into
two distinct classes, one gbodand one ofpoor predictors (with
a residual variance af,c;(jow) = 0.05 ando, ¢ (nign) = 0.6 re-
spectively). The main experimental parameter varied hetbae
number of agents of each type that make up the CVPP; these are
varied from 0 to 24.
Simulation results appear in Fig. 3(b) and 3(c). We obsérag t
in general, both types are better off being in a CVPP thamante
ing with the Grid as singletons. This is regardless of whethe
other participants are good predictors or poor. Howeveretiare
some additional interesting observations to be made irs#iiing.
Somewhat surprisinglygood predictorsactually do much bet-
ter if the rest of the cooperative members are poor. The nefago
this is the way the CVPP-to-DER payment redistribution fiorc

4As already discussed, our simulation uses the real windisdee works. If an agent is the only accurate one (or among the few-ac
each hour for the 365 days in the year. rate ones) in the cooperative, it gets a large proportiomejaint
°The simulation parameters were chosen with the computtion payments, as it is among the few with a low error factor, ang th
requirements of the various experimental settings in mind,in enjoys high returns following the (normalized to rewarduaecy,

all cases our results are statistically significant.



as explained in Section 4.2) redistribution of CVPP’s rexem

In general,poor predictorsalso have a strong incentive to join
the CVPP, as the results in Fig. 3(c) show. An interestingpoi
to note is that it would appear from these results that botbr po
and good predictors prefer the other agents in the cooperatibe
poor predictors (unless their errors are all biased towdmelsame
direction and thus do not cancel out—an improbable scerfario
large CVPPs). However, as shown in our figuresrelommember
of the cooperative would on average expect to do slightlyebéit
the number of good predictors is high, as the cooperativerdmie
gains more revenue on average in that case.

7.2 Ranking DERs by Prediction Performance

For the last set of results, we use a similar setting as thm-asy
metric case described above. We divide the DER-agentswao t
categoriesgood predictorgwith o0,y = 0.05) andpoor pre-
dictors (with ¢,.cs(nigny = 0.3). The number of each agent type in
the cooperative was varied from 1 to 23 (out of 24 agents al)tot
Recall that in Section 6, two methods for assessing the ibontr
tion of a DER: to the CVPP were discussed: one based on only
its marginal contribution to the cooperative, and the oti&ing
into account both's marginal contribution and the residual error
varianceo,.s(A%). In our experiments, we compare these two
methods, taking” to be one year of hourly data, as before.

The graph in Fig. 4 shows, for settings with= 1...24 poor
predictors, the number akal poor predictors detected by each
method (i.e., how many actual poor predictors are amongkthe
lowest scoring agents returned by each method used). Nate th
the ranking shown is actually an average over 25 runs, <effiti¢d
reduce the results’ variance to very low levels (since, at,faach
data point represents the results from 25 years of real dath).

As we can see, the method that weighs marginal values by-resid
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Figure 4: Results for the efficiency of ranking measures.

ual variance (Eqg. 6), making use of the techniques of Se&jon
is clearly better in distinguishing poor predictors thankiag by
marginal contributions alone; in fact, it rarely identifeepredictor
wrongly in this setting. In contrast, the strategy of ragiéolely by
marginal values does degrade, especially when the numigeroof
predictors roughly equals that of poor ones. In any casaethdts
in this setting show that both methods manage to distingoisin
predictors from good ones with a very high degree of accuracy

8. CONCLUSIONS

In this paper we applied several game-theoretic ideas irrbegy

domain. We presented a pricing mechanism that can be used as al15]

alternative to feed-in tariffs, in order to promote the ti@aand
cost-efficient operation of DER cooperatives. We also psedo

a method to allocate CVPP revenues to its members, and showed

that this method promotes CVPP stability (assigning paytfat
are core-stable, under the condition of DER accuracy). \&e al

showed that the payment functions incentivize truth+tglivhen
CVPPs interact with the Grid and when DERs interact with the
CVPP; and that our methods promote supply reliability amdipc-

tion efficiency. Moreover, we provided a generic method foiR®
membership management, which was experimentally showe to b
successful in ranking DERs w.r.t. predictions’ accuracsudially,

our ideas were evaluated on scenarios using data from avoeld-
wind-farm. Our results confirm that joining CVPPs which make
use of our proposed payment schemes is almost always bahefici
to any individual DER.

In future work, we intend to study alternative pricing sctesm
to the one proposed here. For instance, residual erraxteckin-
formation could perhaps be incorporated in the paymenttioimc
Doing so optimally and in a fair manner is not straightforgar
since determining the residual part of the error requiresstiady
of an agent’s performance over an extended period, whil@aiye
ment function rewards the agent for its immediate perforceakVe
also intend to examine alternative ways to distribute reéwamong
CVPP members, perhaps by utilizing th&inapley valug9]. Al-
though its exact calculation is an intractable problem use ofbi-
lateral Shapley value approximation schemes could be an option.
Furthermore, assuming DERs could provide production egém
in the form of a full distribution (rather than just an exptialue),
it would be interesting to devisoring ruleq11] to elicit those es-
timates, and to reward both estimates that turn out to beraiecu
and those provided with high precision (low variance). Mve,
we would be interested in implementing a web service to aecom
modate CVPP formation and member management activities.
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