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We consider stochastic model predictive control of a multi-agent systems
with constraints on the probabilities of inter-agent collisions. We first study
a sample-based approximation of the collision probabilities and use this
approximation to formulate constraints for the stochastic control problem.
This approximation will converge as the number of samples goes to infinity,
however, the complexity of the resulting control problem is so high that
this approach proves unsuitable for control under real-time requirements.
To alleviate the computational burden we propose a second approach that
uses probabilistic bounds to determine regions with increased probability
of presence for each agent and formulate constraints for the control prob-
lem that guarantee that these regions will not overlap. We prove that the
resulting problem is conservative for the original problem with probabilis-
tic constraints, ie. every control strategy that is feasible under our new
constraints will automatically be feasible for the original problem. Fur-
thermore we show in simulations in a UAV path planning scenario that
our proposed approach grants significantly better run-time performance
compared to a controller with the sample-based approximation with only
a small degree of sub-optimality resulting from the conservativeness of our
new approach.

1 Introduction

There are many applications, in which the deployment of multiple robots or UAVs
is advantageous for the completion of the mission compared to just a single robot
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or UAV. For example, the search for a target with multiple UAVs [1] or localization
of an odor source with multiple robots [2] have been studied in the past. In all of
these applications, path planning, obstacle avoidance, and collision avoidance with
other robots also play an important role, since without path planning and collision
avoidance, the successful completion of the task at hand and the physical intactness of
the robots or UAVs cannot be warranted. We will from now on not further distinguish
between a robot, a UAV, or a ground vehicle and will therefore call the entity making
path planning decisions an “agent”.

Noisy sensor measurements for localization and imprecise models of the motion
dynamics can lead to uncertain estimates of the pose of the agents. When ignored
by the path planning algorithm, these uncertain estimates can cause a failure of the
mission through collisions with obstacles or other agents and so it is crucial to account
for them while planning.

If a stochastic description of the agents’ states is considered, constraints on the
behavior of the agents should also be treated in a probabilistic manner. Probabilistic
chance constraints are constraints on the probability that the agents are in states that
could cause a failure of the mission, i.e., collide with obstacles or with each other
[3, 4, 5]. In contrast to robust control, where one tries to find control actions that
are optimal under bounded disturbances, chance constraints allow to model problems
with disturbances with arbitrary probability distributions. In order to make these
probabilistic constraints computationally feasible, the distributions over the agents’
states have to be either very simple (e.g. Gaussian) with simple constraints (linear
or convex) or the distributions from which the constraints are constructed have to
approximated.

Another factor that increases safety and optimality of planning is planning model
predictively into the future. In model predictive control the controller uses a model
of the agents dynamics to extrapolate the agents’ states under candidate control se-
quences several time steps into the future and then chooses the control input that is
not only optimal for the current states but also for the extrapolated states. Hence,
model predictive control (MPC) enables the agents to plan pro-actively to avoid ob-
stacles or other agents, since conflicts or possible collisions are detected earlier and the
agents can react more quickly and more efficiently to avoid them. However, stochas-
tic MPC has the drawback that the planning problem can become very complex and
consequently it is vital to pay attention to real-time capabilities of planning.

There are two main challenges when considering stochastic constraints for collision
avoidance. One challenge is that the collision probabilities cannot be determined ef-
ficiently since multivariate integrals have to be computed and the other is that the
feasible region for the stochastic optimization problem is not necessarily convex any-
more.

In this work, we propose two approaches to formulate stochastic model predictive
path planning for multi-agent systems with chance constraints on the probability of
inter-agent collisions as a mixed integer linear program (MILP). MILPs are a well-
understood problems that can be solved very efficiently for moderate problem sizes
and find many applications in robot planning, flight control, and receding horizon
control (see for example [6, 7, 8, 9]).
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We first study a sample-based approximation of the collision probabilities and use
this approximation to formulate constraints for the stochastic control problem. This
approximation will converge as the number of samples goes to infinity, however, the
complexity of the resulting control problem is so high that this approach proves un-
suitable for control under real-time requirements.

To alleviate the computational burden we propose a second approach that uses prob-
abilistic bounds to determine regions with increased probability of presence (RIPP)
for each agent and formulate constraints for the control problem that guarantee that
these regions will not overlap. We prove that the resulting problem is conservative
for the original problem with probabilistic constraints, ie. every control strategy that
is feasible under our new constraints will automatically be feasible for the original
problem. This is a very remarkable property of our novel constraints, since it guaran-
tees feasibility for the original problem and we do not actually have to evaluate the
complicated inter-agent collision probabilities.

Since we employ a sample-based representation of the agents’ uncertain positions
and the probabilistic bounds we use for the RIPP regions hold for arbitrary uncertain
states, we do not have to make any assumptions (such as being Gaussian) on the
nature of the occurring noise or disturbances. Also in our approach we do not have to
assume that the chance constraints are given through linear inequalities only and thus,
are able to model the more complex and inherently non-convex coupling constraints
on the states of the agents.

We show in simulations in a UAV path planning scenario that our proposed RIPP
approach grants significantly better run-time performance compared to a controller
with the sample-based approximation of collision probabilities, with only a small de-
gree of sub-optimality resulting from the conservativeness of our new approach. We
also compare our probabilistic methods with robust control methods for multi-UAV
collision avoidance and provide empirical evidence that our approach is better suited
for stochastic settings, since it allows the user to precisely specify an upper bound on
the probability of collisions for the UAVs.

To the best of our knowledge this is the first time a practical approach for the control
of a multi-agent system with chance constraints on the probability of a collision of the
agents is proposed. Existing work on chance constrained control deals either with
planning for single agent systems or for systems without coupling chance constraints
on joint states of different agents.

The paper is structured as follows. In Section 2, we formally define the general
problem of model predictive control for a multi-agent system with chance constraints.
In Sections 3 and 4, we describe the system dynamics of the agents, the sample approx-
imation of the state distributions, and outline how to formulate single agent planning
as a MILP. The contribution of this paper lies in Sections 5 and 6, where we first show
how to approximate the collision avoidance constraints directly with samples. Then, in
Section 6 we construct our novel approach employing regions of increased probability of
agent presence, prove its conservativeness and compare its computational complexity
to the full approximation of the collision avoidance constraints. In Section 7 we give a
theoretical comparison of the complexity of the optimization problems constructed in
the previous two sections. In Section 8, we compare our novel approach with a con-
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troller with the sample-based approximation in a UAV path planning scenario with
non-Gaussian wind turbulence models. Section 9 concludes the paper and points to
future work.

1.1 Related Work

The body of work on interactions of agents in a multi-agent system is immense, so we
focus here on recent results in chance constrained control of single-agent and multi-
agent systems.

The most recent work on chance-constrained MPC for linear systems can roughly
be classified into three parts: conservative approximations, control of systems with
Gaussian disturbances and sample-based control.

The authors of [10] approximate chance constraints through conservative constraints,
that ellipsoids around the means of the state estimates are completely contained in
the feasible region. Computational comparisons in [11] and [12] indicate however that,
albeit being very fast, this approach introduces a high degree of sub-optimality through
its conservativeness.

For systems where the disturbance distributions are known to be Gaussian, [12, 11]
propose to employ an inequality from probability theory called Boole’s inequality.
Here, instead of enforcing that all state constraints are satisfied with a certain proba-
bility at the same time, each linear state constraint is considered separately and the
probability of violating this constraint is also enforced separately. These ’separated’
chance constraints can then be formulated through one-dimensional constraints on
Gaussian cumulative distributions, making the resulting problem a convex optimiza-
tion problem. The work [13] extends these approaches to the control of multi-agent
systems, however, without considering coupling constraints on the states of the agents
that are necessary for modeling collision avoidance. Instead, the authors aim to find
an optimal allocation of the overall probability of the failure of the mission among the
agents in a decentralized manner.

The work [14] uses results from linear quadratic control with Gaussian disturbances
and measurement noise to derive closed-loop dynamics for such systems. The authors
then apply convex optimization techniques to solve the closed-loop, chance-constrained
planning problem similar to the algorithm proposed in [11]. They also briefly outline
a method on how to treat collision avoidance in a multi-agent setting by manual
partition of each agent’s feasible region prior to planning in such a way that collisions
are avoided. This need for manual tuning can be a disadvantage since it has to be
done for each new instance of a multi-agent problem and it cannot be guaranteed that
the partitions are optimal.

The dissertation [15] also accounts for possible future measurements during com-
putation of the control strategy and extends their algorithm to model uncertain and
possibly dynamic environments. Although the results of this work allow to model
interactions among several agents with uncertain localization, the computation of a
control strategy is limited to a single agent while the other agents are treated as mov-
ing obstacles. In [16] the authors give a comparison of the conservative constraints
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from [10] and the constraints for Gaussian disturbance employing constraint separation
from [11].

In [17], the authors propose to approximate the probabilities for collisions with
obstacles for the single agent case by sample-based Monte-Carlo methods. This ap-
proximation has the advantage that almost arbitrary state and noise distributions can
be treated. They transform the search for an optimal solution to the stochastic sin-
gle agent control problem under chance constraints to finding a solution of a mixed
integer linear program (MILP). The formulation as a MILP has the advantage that
standard solvers like CPLEX [18] can be employed to solve problems of moderate size
efficiently to an optimal solution. However, the considerations in [17] are restricted to
chance-constrained control of a single agent.

1.2 Notation and Conventions

Bold face letters X or x denote random variables, where the underline indicates that
the random variable is multivariate. Bold face letters A, B, or C denote matrices. A
superscript T denotes the transpose of a vector or a matrix. Deterministic quantities
such as the system input uit will be in normal type, where the underline indicates that
the variable is a vector. The first superscript of a variable identifies the agent this vari-
able refers to. The first subscript identifies the time instance in the planning horizon.
The expectation of a function g with respect to a random vector X with probabil-
ity density f(x) is defined as EX{g} :=

∫
g(x)f(x)dx. Similarly, the expectation of

a general event E with respect to a random vector X with probability density f(x)
is defined as EX{E} :=

∫
E
f(x)dx =

∫
χE(x)f(x)dx, where χE(x) is the indicator

function of E. The probability that a multivariate random variable x with probability
density function (pdf) f(x) lies in some set E is denoted by Pr(x ∈ E) and is defined
as the multivariate expectation

Pr(x ∈ E) :=

∫
E

f(x)dx =

∫
χE(x)f(x)dx , (1)

where χE is the indicator function of E, ie. χE(x) equals one if x ∈ E and zero oth-
erwise. Cov(X) denotes the covariance E

{
(X − E{X})(X − E{X})T

}
of the ran-

dom vector X, which is a matrix for multivariate random variables. Analogously
Cov(X,Y ) := E

{
(X − E{X})(Y − E{Y })T

}
is the covariance between the random

vectors X and Y [19]. The Manhattan-norm is defined through ‖x‖1 :=
∑
k |xk|, the

Euclidean norm through ‖x‖2 :=
√∑

k x
2
k and the sup-norm as ‖x‖∞ := maxk |xk|

for real vectors x = [x1, x2, . . . , xn]T .

2 General Problem Formulation

The general problem we want to solve is as follows: For M agents i = 1, . . . ,M
with discrete-time stochastic description in state space form, we plan over a horizon of
length H in order to minimize the sum of the agents’ cost functions. This minimization
is subject to the constraints that the probabilities of inter-agent collisions and the
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probability of agents leaving the feasible region are kept below certain user-defined
thresholds. The formal formulation of this problem is

minimize
ui
1:H ,i=1,...,M

M∑
i=1

Exi
0:H

{
hi(xi0:H , u

i
1:H)

}
(2)

s.t. ∀i=1,...,M ui1:H ∈ F iu (3)

∀i=1,...,M,t=1,...,H xit = f it (x
i
0, u

i
1:t,ν

i
1:t) (4)

∀i=1,...,M Pr(xi1:H /∈ F i) ≤ δi (5)

∀i,j=1,...,M,
j 6=i

Pr((xi1:H ,x
j
1:H) /∈ F i,j) ≤ δi,j . (6)

The decision variables ui1:H = [(ui1)T , (ui2)T , . . . , (uiH)T ]T are the (deterministic) con-
trol inputs to agent i confined to lie in the polygonal and convex feasible region F iu.
The function hi is the control objective and rates how desirable certain states of the
agents are. It depends on the control inputs and the system states of the agents. The
system state of agent i over the planning horizon is modeled as a random vector and
is denoted by xi0:H = [(xi0)T , (xi1)T , . . . , (xiH)T ]T . We assume these random vectors
to be stochastically independent for different agents i0 6= i1 and we also assume that
the system noise is independent of the control inputs. Since the states are modeled
as random vectors, we take the expectation of hi(xi0:H , u

i
1:H) w.r.t. the agents’ state

distributions in (2).
The mapping f it describes the model of the dynamics of agent i. The state of agent

i at time instance t depends on the initial state xi0, the control inputs ui1, . . . , u
i
t, and

stochastic noise νi1, . . . ,ν
i
t acting upon each agent. The stochastic noise terms are

used to account for possible errors in the dynamic model or exogenous disturbances
that act upon the systems, such as wind turbulence on UAVs. They can also account
for uncertainties in the initial state estimate xi0 and how those are carried forward and
possibly increased through state prediction over time. We assume here that the second-
order central moments of the noise terms νit and the prior state distributions xi0 are
known. Even if there is no analytic knowledge about the second-order moments, since
we will assume in later sections that we can draw samples from these distributions, so
it should be possible to obtain good estimates of these quantities through the sample
approximations.
F i is the feasible region to agent i and Pr(xi1:H /∈ F i) is the probability that agent

i leaves the feasible region during the mission. The feasible region can for example
model an area the agents are not supposed to leave or obstacles the agents have to
avoid. Pr((xi1:H ,x

j
1:H) /∈ F i,j) specifies the probability that agent i and agent j do

not meet the coupling constraints defined by the feasible region F i,j that control the
interaction among agents. We consider constraints consistent for all agents, so we set
F c := F i,j . We understand these constraints as collision avoidance constraints, i.e.,
constraints on the expected distance of agent i and j.

The upper bounds 0 ≤ δi, δi,j ≤ 1 on the probability of the agents leaving their own
feasible region F i or the joint feasible regions F c characterize the chance constraints
on the failure of planning [3, 4, 5]. These chance constraint bounds are specified by
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the user and can be used to adjust how cautious the agents’ plans will become.

3 Sample-based Methods for Systems with Linear
Dynamics

We assume that the stochastic discrete-time dynamic state space model of each agent
i = 1, . . . ,M is given through the linear system equation

xit+1 = Aixit + Biuit + νit , (7)

where xit is the uncertain state of agent i modeled as a random variable, uit is the
deterministic control input and νit is the stochastic system noise. This model can
either be obtained by assuming linear dynamics from the outset or by linearizing the
system dynamics around a working point. For linear system dynamics of the form (7)
the mapping

xit = f it (x
i
0, u

i
1:t,ν

i
1:t) , (8)

that determines how the agent’s state depends on the initial state xi0 and behaves under
control inputs ui1:t, is linear in the control inputs and given through the equation

xit+1 = (Ai)txi0 +

t∑
s=1

(Ai)t−s−1(Buis + νis) , (9)

as can be easily checked. For arbitrarily distributed initial states xi0 and for arbitrarily
(non-Gaussian) distributed system noise νit there is in general no closed-form repre-
sentation (or one with a finite number of parameters) of the random vectors xit. We
therefore make use of sample-based methods to represent the uncertain states of the
agents and will describe how to do so in the rest of this section.

We assume that for each agent i = 1, . . . ,M we can draw N independent samples
distributed with the same distribution as the agent’s state xi0 at time step t = 0. We
will denote these samples by {xi0,j}Nj=1 and assume, for notational convenience only,
that we draw an equal number N of samples from each agent’s prior distribution.
Furthermore for each agent i we draw N noise samples

(νi1,j , ν
i
2,j , . . . , ν

i
H,j) ∼ fν

i
1:H (νi1, ν

i
2, . . . , ν

i
H) , j = 1, . . . , N (10)

from the distribution of the system noise νi1, . . . ,ν
i
H that affects agent i over the

planning horizon of length H.
The model of the dynamics (7) of each agent i allows us now to generate N ’sample

trajectories’ over time. These trajectories are obtained by propagating each initial
sample in combination with a noise sample through the system equation (9). Each
sample trajectory has the length H + 1 and consists of samples

xi0:H,j := [(xi0,j)
T , (xi1,j)

T , . . . , (xiH,j)
T ]T . (11)
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The (t+ 1)-th sample is defined through the formula

xit+1,j = (Ai)txi0,j +

t∑
s=1

(Ai)t−s−1(Buis + νis,j) . (12)

The most important property of this construction is that the ’sample trajectories’ de-
pend deterministically and linearly upon the control inputs. This will enable us to
formulate the sample-based approximation stochastic control problem as a determin-
istic optimization problem.

So what have we achieved by this construction? For one we have obtained a represen-
tation of agent i’s uncertain states for instance at time step t0 the samples {xit0,j}

N
j=1

approximate the distribution of the random variable xit0 . This approximation can be
used to evaluate probabilistic quantities depending on the agents’ state distributions
that otherwise we would have had to employ computationally expensive methods to
calculate. One example of such a probabilistic quantity is the mean of the uncertain
state of agent i at some time step t0 which we can now estimate by the sample mean:

The sample mean vector

µ̂i
t0

:=
1

N

N∑
j=1

xit0,j (13)

is an estimator of the true first moment of xit0 , with convergence to the true value as
the number of samples goes to infinity. As another example the expectation Exi

t0
{g}

can be approximated through

Exi
t0
{g} ≈ 1

N

N∑
j=1

g(xit0,j) (14)

and the expectation over an event E through

Exi
t0
{E} ≈ 1

N

N∑
j=1

χE(xit0,j) (15)

both with convergence to the true expectation when the number of samples goes to
infinity.

We will use these sample-based approximations throughout the rest of the paper to
approximate probabilities of agents leaving the feasible region or colliding with each
other.

4 Sample-based Approximation of Obstacle Collision
Probabilities

In this section, we will outline how a tractable approximation of the single agent
chance-constrained MPC problem can be formulated, using the sample approximation
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of an agent’s state distribution from the previous section. The next section will be
concerned with modeling and approximating the coupling constraints between the
agents. Since we will only consider the single agent case in this sectio, we will drop the
superscript denoting the agent for notational convenience for the rest of the section.

In the work [17], the authors showed that for a single agent with linear dynamics
and a sample-based approximation of the agent’s state and under further assumptions,
the chance-constrained MPC problem can be formulated as a mixed integer linear
programm. The additional assumptions are that the objective function h is piecewise
linear and convex and the feasible region F is either convex and polygonal or non-
convex with polygonal obstacles. In the following we will outline the construction
from [17].

If h is a piecewise linear convex objective function, for example a function consisting
of weighted Manhattan-norms (for an example see for instance [6] or the simulations
in Section 8), the sample approximation of the expectation of the cost function

Ex0:H
{h(x0:H , u1:H)} ≈ 1

N

N∑
j=1

h(x0:H,j , u1:H) (16)

is again a piecewise linear convex function in the control parameters u1:H . This can be
seen as follows. By construction we know that the sample trajectories depend linearly
upon the control inputs. The composition of this linear mapping with the piecewise
linear and convex function h is again piecewise linear and convex. Since taking the
expectation of this composition in Eq. (16) is a linear operation, the whole sample
expectation of the objective function is piecewise linear and convex.

The probability that the agent is not in the feasible region F at time instance t is
approximated through the sample expectation

Pr(x1:H /∈ F ) = Ex1:H
{χCF } ≈

1

N

N∑
j=1

χCF (x1:H,j) , (17)

where χCF is the indicator function of the complement Rn \ F of the feasible region.
It is defined to be χCF (x) = 1 if x is not in the feasible region (and hence in the
complement Rn \ F ) and χCF (x) = 0 if x is in the feasible region F . Instead of the
true, computationally intractable, chance constraint Pr(x1:H /∈ F ) ≤ δ we impose the
chance constraint on the approximated probability

1

N

N∑
j=1

χCF (x1:H,j) ≤ δ . (18)

This constraint on the approximated probability can be evaluated much more effi-
ciently and can also be transformed into mixed integer and linear constraints on the
optimization problem. This can be achieved by setting constraints on the number of
samples that are not within the feasible region F as we will now outline.

For this purpose, the function that indicates whether a particle trajectory leaves the
feasible region χCF (x1:H,j) is replaced by a binary variable ej ∈ {0, 1}. This binary
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variable is equal to one ej = 1 if the j-th sample trajectory leaves the feasible region
and equal to zero ej = 0 if the sample trajectory stays within the feasible region. So
how is this binary variable defined? For a convex polygonal feasible region, ej evaluates
whether sample trajectory x1:H,j fulfills all linear inequalities given by the line segments
defining F . For polygonal obstacles in the feasible region, ej measures whether certain
integer constraints are satisfied that specify whether the sample trajectory x1:H,j has
positive clearance to every face of the polygonal obstacle. So in general ej measures if
the j-th particle trajectory satisfies all constraints of a set of linear constraints and a
set of mixed integer linear constraints. The constraint (18) that only a weighted subset
of all particles leave the feasible region is then transformed into the integer constraint

1

N

N∑
j=1

ej ≤ δ (19)

that only a weighted subset of the binary variables ej is equal to one.
The MILP formulation of the single agent chance-constrained MPC problem is then

given by

minimize
u1:H

1

N

N∑
j=1

h(x0:H,j)

s.t. u1:H ∈ Fu
xt,j = f it (x0,j , u1:t, ν1:t,j)

1

N

N∑
j=1

ej ≤ δ

ej ∈ {0, 1} determined from feasible region.

(20)

For more detailed descriptions on how to derive the mixed integer linear constraints
from the feasible region please refer to [6] and [17].

5 Multi-Agent Collision Avoidance

This section is concerned with the approximation of the probabilities of inter-agent
collisions and the derivation of constraints that keep these probabilities below user-
defined thresholds. We will first formally define our notion of an inter-agent collision
(the agents come too close) and then study how from this definition, the true proba-
bility of an inter-agent collision can be derived. Because the probability of a collision
of two agents will depend on both uncertain states of the agents its evaluation is even
more computationally expensive than the probability of a single agent leaving the
feasible region. So in a first step we use the sample approximations of the agents’
uncertain states to derive a sample approximation of the probability of an inter-agent
collision. This direct approximation will converge to the true probability of a collision
as the number of samples goes to infinity, however, the complexity of the resulting
optimization problem can be so high that this approach proves problematic for control
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under real-time requirements. Because of its convergence, however, solutions found
with this formulation will be very close to the optimal solutions of the “true” chance-
constrained MPC without any approximation. So the complexity of this formulation
calls for other more tractable ones but it will serve as a benchmark for the others.

For simplicity of exposition and for notational convenience we will consider path
planning in the two-dimensional plane and we will from now on only consider two
agents, denoted by a superscript 1 and 2. Since we defined the constraints on the
probability of a collision in (6) as pairwise constraints on the states of two agents, the
considerations can be extended verbatim for every other possible combination of two
agents.

5.1 Sample-based Approximation of Inter-agent Collision
Probability

In this section we will define the event of a collision of two agents, study the probability
of such an event occurring depending on the uncertain states of the agents and will
derive a sample-based approximation of this probability.

Let ε > 0 be the prespecified minimum distance between two agents for collision
avoidance, for instance we could set ε to be twice the diameter of a robot or the twice
the wingspan of a fixed-wing UAV.

We let x1t and x2t denote the two-dimensional positions of agents 1 and 2 in the plane
at a time instance t. We define the event of a collision as ‖x1t − x2t‖2 < ε, i.e., the two
agents’ are closer than the minimum clearance ε. The feasible region F c for the joint
states of the agents resulting from this definition is the set of possible positions that
do not cause a collision. Hence the feasible set is the set of agent positions that have
a distance greater or equal than ε

F c := {(x1, x2)|‖x1 − x2‖2 ≥ ε} . (21)

The probability of a collision of two agents is then the probability that the uncertain
states of the agents are not in the feasible set

Pr((x1
t ,x

2
t ) /∈ F c) = Pr(‖x1

t − x2
t‖2 < ε) (22)

= Ex1
t , x2

t

{
χCF c(x1t , x

2
t )
}

(23)

=

∫ ∫
χCF c(x1t , x

2
t )f(x1t )f(x2t )dx

1
tdx

2
t , (24)

where

χCF c(x1t , x
2
t ) =

{
1 if ‖x1t − x2t‖2 < ε

0 else
(25)

is the indicator function of the complement of F c and f(x1t ) and f(x2t ) are the proba-
bility density functions of the position estimates of the agents. Please note that in the
above we have used the relation (x1, x2) /∈ F c ⇔ ‖x1 − x2‖2 < ε which follows from
the definition of the feasible set F c.
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The integral (24) that determines the probability of a collision is the integral of
multivariate density functions multiplied by the indicator function χCF c . For general
density functions this integral will have no closed-form solution because of the possibly
complex structure of the density functions. Even for multivariate Gaussian distribu-
tions it will become difficult to evaluate the integral since the indicator function is a
non-convex and nonlinear function and there are no known formulas to evaluate this
integral. Even if the integral (24) was given by a closed-form representation, it is not
guaranteed that the resulting constraints on the probability of an inter-agent collision
would be tractable for an optimization algorithm.

In order to make the probability of an inter-agent collision computationally more
tractable, we approximate the probability a collision through the sample expectation.
We do this by replacing the continuous distributions f(x1t ) and f(x2t ) through their
corresponding sample approximations, given through the two sets of samples {x1t,j}Nj=1

and {x2t,l}Nl=1. When the continuous distributions are replaced by their sample ’coun-
terparts’ the double integrals in Equation (24) are replaced by a nested sum and,
hence, the approximated probability of a collision is

Pr((x1
t ,x

2
t ) /∈ F c) = Ex1

t ,x
2
t

{
χCF c(x1t , x

2
t )
}

≈ 1

N2

N∑
j=1

N∑
l=1

χCF c(x1t,j , x
2
t,l) .

(26)

Results on Monte-Carlo sampling methods show that this approximation will conver-
gence against the true collision probability as the number of samples for each agent
goes to infinity (see e.g. [20] for a discussion of convergence properties).

In the next section we will show how this approximation can be translated into mixed
integer linear constraints. Unfortunately the complexity of the resulting optimization
problem will be so high, that it is difficult to solve the problem with these constraints
under real-time requirements. However, since the sample-based approximation intro-
duced in this section will converge against the true probability of a collision of two
agents it is still highly relevant and it will serve as a benchmark for the alternative
approach we will propose.

5.2 Constraint Formulation for Sample-based Approximations

In this section, we will outline how the sample approximation (26) of the probability of
a collision between two agents can be transformed into mixed integer linear constraints.

As a first step we have to replace the Euclidean norm in the definition of the feasible
set

F c =
{

(x1t , x
2
t )| ‖x1t − x2t‖2 ≥ ε

}
(27)

by the supremum norm, since the Euclidean norm ‖ · ‖2 involves evaluation of quadratic
terms that cannot be transformed into mixed integer linear constraints. So we replace
the original feasible F c set by the auxiliary set

F c∞ :=
{

(x1t , x
2
t )| ‖x1t − x2t‖∞ ≥ ε

}
. (28)
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Replacing the Euclidean norm by the supremum only makes the feasible set for two
agents smaller because from the norm inequality ‖x1t − x2t‖∞ ≤ ‖x1t − x2t‖2, it follows
that if two agents have a distance of greater or equal than ε in the supremum norm,
they have a distance greater or equal than ε in the Euclidean norm. So it follows
that F c∞ is a subset of F c and hence, we only make the feasible region for the agents
smaller and are more conservative when considering the supremum norm instead of
the Euclidean norm. In this section only, we will consider the feasible region F c∞.

According to (26), the approximation of the constraints Pr((x1
t ,x

2
t ) /∈ F c∞) ≤ δ1,2t is

1

N2

N∑
j=1

N∑
l=1

χCF c
∞

(x1t,j , x
2
t,l) ≤ δ

1,2
t , (29)

where

χCF c
∞

(x1t,j , x
2
t,l) :=

{
1, if ‖x1t,j − x2t,l‖∞ < ε

0, otherwise,
(30)

is the indicator function of the complement of F c∞.
To evaluate the sum above, we have to iterate through all samples j = 1 . . . N of the

first agent and all samples l = 1 . . . N of the second agent and check if χCF c(x1t,j , x
2
t,l)

equals one or zero. In order to formulate this ’check’ we introduce a binary variable
ej,l,t,1,2 ∈ {0, 1} for that holds if ej,l,t,1,2 = 1 then samples x1t,j and x2t,l are within ε
proximity of each other and if ej,l,t,1,2 = 0 they are not. Then we have to ensure that

the weighted sum of the ej,l,t,1,2 is less or equal than the chance constraint bound δ1,2t .
So how do we construct the binary variable ej,l,t,1,2? By definition, the sample

x1t,j = [x1t,j , y
1
t,j ]

T is in more than ε away from sample x2t,l = [x2t,l, y
2
t,l]

T in the supremum
norm if

‖x1t,j − x2t,l‖∞ = max{|x1t,j − x2t,l| , |y1t,j − y2t,l|} > ε . (31)

This is equivalent to the condition that one of the following inequalities holds

x1t,j − x2t,l > ε or (32)

x2t,j − x1t,l > ε or (33)

y1t,j − y2t,l > ε or (34)

y2t,j − y1t,l > ε or , (35)

where we just formulated the absolute value from Eq. 31 differently. Since the logical
’or’-constraints above are not directly applicable as integer linear constraints, we use
the ’Big M’-method to transform them into logical ’and’-constraints.

So we check whether sample x1t,j = [x1t,j , y
1
t,j ]

T is in ε proximity of sample x2t,l =

13



[x2t,l, y
2
t,l]

T at time instance t through the constraints

x1t,j − x2t,l > ε− b1j,l,t,1,2Mo and (36)

x2t,l − x1t,j > ε− b2j,l,t,1,2Mo and (37)

y1t,j − y2t,l > ε− b3j,lt,1,2Mo and (38)

y2t,l − y1t,j > ε− b4j,l,t,1,2Mo , (39)

with additional binary slack variables bij,l,t,1,2 ∈ {0, 1} and arbitrary large positive

number Mo. If at least one of the bij,l,t,1,2 above is zero, then the samples have sufficient

distance because then the corresponding inequality holds. If all four bij,l,t,1,2 equal one,
the samples can be within ε distance of each other.

Now we define the binary variable ej,l,t,1,2 in such a way that it counts the number
of samples in too close proximity by the constraint

4∑
i=1

bij,l,t,1,2 − 3 ≤Moej,l,t,1,2 . (40)

We have that if ej,l,t,1,2 = 1, it follows that all bij,l,t,1,2, i = 1, . . . , 4 can be equal to one

and the samples x1t,j and x2t,l can be within ε distance of each other and if ej,l,t,1,2 = 0,

at least one of the bij,l,t,1,2, i = 1, . . . , 4 has to be zero and the samples have sufficient
distance. Finally, we bound the weighted number of ej,l,t,1,2 that are allowed to be
equal to one by the constraint

1

N2

M∑
j=1

M∑
l=1

ej,l,t,1,2 ≤ δ1,2t . (41)

Please note that since the above sum is a nested sum, we have M2 many binary vari-
ables ej,l,t,1,2. This can lead to very slow run times of a MILP with these constraints.
The constraints (36)-(39), (40), and (41) are the mixed integer linear formulation of
the sample approximation of the chance constraint on the probability of a collision
between two agents.

6 Efficient Collision Avoidance Approximation

In the previous section we studied the probability of a collision of two agents and saw
that it is difficult to compute the true probability a collision even for uncertain states
with simple distributions. Therefore we proposed a sample-based approximation that
will converge against the true probability when the number of samples goes to infinity.
When we transformed this approximation into mixed integer linear constraints, it
turned out that we have to introduce binary variables for each pairing of samples of
different agents. Hence, the number of binary variables that results from the sample-
based approximation can be prohibitively high.
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In this section, we will therefore propose a more efficient formulation of inter-agent
collision avoidance constraints based on regions of increased probability of presence
(RIPP) of agents. Not only does the RIPP formulation allow us to generate controls
under real-time requirements with only a small degree of sub-optimality compared
to the optimal solution of the chance constrained problem. But we can also formally
prove that controls found with the RIPP algorithm are feasible to the original problem
with chance constraints on the true probabilities of agent collisions.

The derivation of the RIPP algorithm proceeds in two steps: First we will define a
region around the mean value of the uncertain position xi of an agent i and study the
probability that the agent is outside of this region. The intuition is that the larger
this region is, the less probable it is that the position of the agent lies outside the
region. This intuition can be quantified by a probabilistic inequality that gives an
upper bound on the probability that the position of the agent lies outside of the RIPP
region. In the second step we introduce constraints to the control problem that ensure
that for different agents their respective RIPPs do not overlap. We will prove that if
these RIPPs have the adequate size and they do not overlap, then we can control the
complex collision probabilities in such a way that the do not exceed the predefined
bounds. In order to define the RIPPs and ensure their non-overlap, we have to do the
following two things.

1. We have to determine a correct size for the region of increased probability of
presence in such a way that just the right amount of probability mass lies outside
of the region. We will do this in Section 6.1.

2. We have to formulate constraints that ensure that these regions will not overlap
for different agents in order to make sure that the probability of a collision does
not exceed the chance constraint bound. We will do this in Section 6.2

As before in Section 5 we will only consider two agents 1 and 2 and their two-
dimensional positions in the plane when talking about collision avoidance.

6.1 Regions of Increased Probability of Presence (RIPP)

In this section we will construct the region of increased probability of presence for an
agent i with uncertain position xi. We will omit the subscript t denoting the time
step in this section for notational convenience.

Let µi := [µix, µ
i
y]T ∈ R2 be the mean value of the uncertain position xi of agent i,

where the subscript x and y denote the x and y coordinates in the plane. We define
a rectangular region of increased probability of presence (RIPP) around mean through

Ei := {[xi, yi]T
∣∣|xi − µix| ≤ αix, |yi − µiy| ≤ αiy} ⊂ R2 . (42)

The RIPP region Ei describes the set of points in R2 for which both coordinates
deviate at most some distance from the mean value of the uncertain state of the agent.
Its position depends on the mean of the uncertain state of the agent and its size depends
on the two parameters αix and αiy. The reason why the RIPP region is defined to be
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rectangular since it is very easy and efficient to define mixed integer linear constraints
to ensure that two rectangles do not overlap. This will become apparent in the next
section, when we will formulate constraints that ascertain that these regions do not
overlap for differing agents.

For each agent i, we define the probability that the uncertain position of agent i lies
outside of the RIPP region Ei as

P i := Pr(xi /∈ Ei) = 1− Pr(xi ∈ Ei) . (43)

For larger RIPP regions Ei, the probability P i becomes smaller and smaller as is
illustrated by the next theorem from [21].

Theorem 1 (P. Whittle [21]). Let X = [x1, . . . ,xn]T be a zero mean random vector
with covariance matrix V and define P := 1 − Pr(|xj | ≤ αj ; j = 1, . . . n), then
P ≤ trace(VB−1), where B is any positive definite matrix with diagonal elements
bjj = α2

j . For the special case of a bivariate random variable xi with covariance matrix

(Cikl)k,l=1,2 and probability P i for xi defined as in (43), the bound on P i simplifies to

P i ≤
C11(αiy)2 + C22(αix)2

2(αix)2(αiy)2
+

√
[C11(αiy)2 + C22(αix)2]2 − 4C2

12(αix)2(αiy)2

2(αix)2(αiy)2
. (44)

The theorem not only provides that the probability that the true position is outside
of the region becomes smaller as the size of the region increases, it also gives the
constructive rate (44) at which the probability decreases. We will use this upper
bound (44) on the rate how P i decreases to derive a method on how to determine a
size of the region Ei such that just the right amount of probability mass lies outside
the region. Since the bound will play such an important role, we will denote it by
C(xi, Ei) and so

C(xi, Ei) :=
C11(αiy)2 + C22(αix)2

2(αix)2(αiy)2
+

√
[C11(αiy)2 + C22(αix)2]2 − 4C2

12(αix)2(αiy)2

2(αix)2(αiy)2
.

(45)
Please note that the bound C(xi, Ei) depends on the covariance matrix (Cikl)k,l=1,2 of
the uncertain state xi and the size of the region Ei which is determined by its lateral
lengths αix and αiy.

In the rest of this section we want to investigate the following question: Given an
amount γi of probability mass, how do we determine the size of the region such that
at most γi of the probability mass of the uncertain state xi lies outside of the region?
Or more formally: Given 0 ≤ γi ≤ 1 and an uncertain state xi, how do we determine
αix and αiy such that

Pr(xi /∈ Ei) ≤ γi ? (46)

For now we assume that we are given some level 0 ≤ γi ≤ 1 for which we want to
determine the size Ei such that (46) holds for the uncertain state xi. The shape of
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the region Ei is already defined to be rectangular, while its size is determined by the
parameters αix, which is the region’s extent in the direction of the x coordinate, and
αiy, which is the extent in the y direction. If we find αix and αiy so that

C(xi, Ei) = γi (47)

holds, then by Whittle’s Chebychev inequality (44) in Thm. 1 we can guarantee that

Pr(xi /∈ Ei) ≤ C(xi, Ei) = γi (48)

the probability mass of the uncertain position xi outside of the region Ei is at most
γi. The inequality (48) follows from Whittle’s Chebychev inequality (44) in Thm. 1
together with the definition of C(xi, Ei) in (45) and Eq. (47).

So in order to bound the probability mass of the uncertain position of agent i
outside of the region Ei we have to determine the parameters αix and αiy such that

the equality C(xi, Ei) = γi holds. To achieve this, we have to add another equation,
since the equation C(xi, Ei) = γi is only one equation for the two unknowns αix and
αiy and hence it is under determined. We propose to choose the parameters αix and αiy
such that additionally

αix
αiy

=

√
Ci11
Ci22

(49)

holds. This choice is motivated by the intuition that for an uncertain position with
axis-aligned Gaussian distribution (i.e., Ci12 = 0 in the covariance), the diagonal of the
covariance matrix given through Ci11 and Ci22, quantifies the extent of the covariance
ellipsoid in x-direction and y-direction. If the ratio of αix and αiy equals the ratio of√
Ci

11 and
√
Ci

22, the shape and extent of the region Ei follows the shape and extent of
the covariance ellipsoid. So if there is considerable uncertainty in one of the coordinate
directions, indicated by a covariance ellipsoid with strong extent in this direction, the
region will also have a stronger spread in this direction to account for this increased
uncertainty. Other relations like αix = αiy could be employed, too, and their influence

on the region Ei and the resulting constraints will be subject of future research.
When we insert the equation for αiy that results from (49)

αiy =

√
Ci22
Ci11

αix (50)

into the equation for the bound C(xi, Ei) = γi the latter is an equation with only
one remaining unknown, namely αix. The equation for the remaining unknown is a
polynomial of degree four with two real solutions that can be determined analytically.
The positive real solution of the equation is

αix =

√
Ci11
γi

+

√
Ci11C

i
22(Ci11C

i
22 − (Ci12)2)(γi)2

Ci22(γi)2
. (51)
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Given an uncertain position xi together with the covariance matrix of this uncertain
position and given a level γi, Eqs. (51) and (49) allow us to determine the RIPP region
Ei such that C(xi, Ei) = γi holds. Together with Whittle’s Chebychev inequality we
can then guarantee that the probability mass of xi outside the RIPP region Ei is at
most γi and i.e. Pr(xi /∈ Ei) ≤ γi! So for any given level γi the construction above
enables us to determine a region of increased probability of presence for xi such that
we can precisely control that at most γi probability mass of xi lies outside of the
region.

6.2 Collision Avoidance Based on Non-overlapping RIPPs

In this section we will make use of the results of the previous section to derive our
RIPP formulation of collision avoidance constraints. We consider two agents 1 and 2
with uncertain positions x1

t and x2
t together with an upper bound 0 ≤ δ1,2t ≤ 1 on

the probability of a collision of these agents at time instance t. We will derive the
RIPP formulation of collision avoidance constraints and then prove in Theorem 2 that
controls found with the novel RIPP constraints are feasible for the original problem
with bound δ1,2t on the probability of a collision between agents 1 and 2.

The RIPP constraints are constructed in two steps: In the first step we determine
the RIPPs E1

t and E2
t for agents 1 and 2 such that the probability mass outside of the

RIPPs is at most some γit for both i = 1, 2. In the second step a constraint is added to
the optimization problem that warrants that the two RIPPs will not overlap at time
step t.

The construction of the RIPP regions involves the mean of the uncertain states, since
those determine the position of the RIPP, it involves the covariance of the uncertain
states, since the computation of the Chebychev bound (44) involves the covariance
matrix, and finally the parameters αix and αiy determine the size of the RIPP region.

We assume without loss of generality that the system noise νit for all agents and for
all time steps is zero-mean. (If the noise had a non-zero mean, we could subtract this
mean from the system equations as deterministic disturbance and would have reduced
this noise to zero-mean noise again.) For system noise with vanishing mean the mean
µi
t

of agent i’s uncertain state follows the recursive rule

µi
t

= µi
t−1 + Buit−1 , (52)

as one can easily check. Please note that the mean always depends linearly on the
control inputs.

The covariances of the uncertain states xit do not depend on any control inputs,
but only on the covariances of the prior distribution xi0 and the noise terms νi1:t. The
recursive formula for the evolution of the covariances is

Cov(xit) = AiCov(xit−1)(Ai)T + Cov(νit−1) (53)

+ AiCov(xit−1,ν
i
t−1) + Cov(νit−1,x

i
t−1)(Ai)T .

This property can be derived from basic matrix manipulations and covariance matrix
properties. In Section 2, we assumed that covariances of the prior distributions xi0
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and the noise terms νit are known in advance, so the agents can recursively compute
the covariance of their uncertain state at time step t.

The chance constraint bound δ1,2t can be understood as a bound on the maximum
joint probability mass of x1

t and x2
t that is allowed to come closer than a minimum

distance. We will split this upper bound on the joint probability into two parts γ1t
and γ2t and distribute these parts onto the agents to construct a RIPP region for each
agent. We propose that agents 1 and 2 split the chance constraint bound δ1,2t into
parts according to

γ1t =
1

d
δ1,2t and γ2t =

d− 1

d
δ1,2t , (54)

with free parameter d > 1. In our simulations in Section 8, we used an even split at
d = 2. One could also employ a negotiation algorithm to find a split that is optimal
for the agents and this will be subject of future work. Equations C(x1

t , E
1
t ) = γ1t and

C(x2
t , E

2
t ) = γ2t then uniquely determine the α-size parameters for the RIPP regions.

Now we have everything we need to construct the RIPP regions for agents 1 and 2,
the means and covariances of their uncertain states and a size for the RIPPs. Denote
by E1

t and E2
t the RIPPs constructed from these parameters.

Finally, all we have left to do is to define the constraint that ensures that these
RIPPs do not overlap:

Definition 1 (Constraint Ct). The expected values µ1
t

and µ2
t

have a distance of more

than 1
2 (α1

t,x+α2
t,x)+ε in the x-direction, i.e. |µ1

t,x−µ2
t,x| > 1

2 (α1
t,x+α2

t,x)+ε or a distance

of more than 1
2 (α1

t,y +α2
t,y) + ε in the y-direction, i.e. |µ1

t,y−µ2
t,y| > 1

2 (α1
t,y +α2

t,y) + ε.

Recall that the parameters αit,x and αit,y in this definition are directly related to the

lateral lengths of the RIPP Eit . Constraint Ct is then a simple constraint on the means
of the uncertain states of agents 1 and 2 depending on the sizes of the RIPP regions.

The following theorem proves that controls for agents 1 and 2 for that constraint Ct
holds, satisfy that the probability of a collision between agent 1 and 2 at time step t
is less or equal than the bound δ1,2t , i.e. they are feasible for the problem with bounds
on inter-agent collision probabilities.

Theorem 2. Let F c be the feasible region for inter-agent collision avoidance and x1
t ,

x2
t the uncertain positions of agents 1 and 2 at time step t. Further let γ1t and γ2t be

as above such that γ1t + γ2t = δ1,2t and let E1
t and E2

t be RIPPs so that C(xit, E
i
t) = γit.

Then for any control sequences u11:H for agent 1 and u21:H for agent 2 for that constraint
Ct is satisfied at time step t ≤ H, the probability of a collision of agents 1 and 2 is
below δ1,2t

Pr((x1
t ,x

2
t ) /∈ F c) ≤ δ

1,2
t . (55)

It follows that if the control sequences also satisfy the other constraints in the
formulation of the original problem in Section 2 they are feasible for the MPC problem
with chance constraints on the probability of inter-agent collisions!

In order to prove Theorem 2, we will first establish the following Lemma.
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Lemma 1. Let F c, x1
t , x

2
t , P

1
t and P 2

t be as above. If constraint Ct is satisfied, the
inequality

Pr((x1
t ,x

2
t ) /∈ F c) ≤ P 1

t + P 2
t (56)

holds, where as in the previous section P it = Pr(xit /∈ Eit).

Proof. By marginalization we have

Pr((x1
t ,x

2
t ) /∈ F c)

= Pr((x1
t ,x

2
t ) /∈ F c,x1

t ∈ E1
t ,x

2
t ∈ E2

t )

+ Pr((x1
t ,x

2
t ) /∈ F c,x1

t ∈ E1
t ,x

2
t /∈ E2

t )

+ Pr((x1
t ,x

2
t ) /∈ F c,x1

t /∈ E1
t ,x

2
t ∈ E2

t )

+ Pr((x1
t ,x

2
t ) /∈ F c,x1

t /∈ E1
t ,x

2
t /∈ E2

t ) .

(57)

We will first show that the probability

Pr((x1
t ,x

2
t ) /∈ F c,x1

t ∈ E1
t ,x

2
t ∈ E2

t ) (58)

is zero by showing that (E1
t ×E2

t )∩F c = ∅ from which the claim follows because then
the event x1

t ∈ E1
t ∧ x2

t ∈ E2
t ∧ (x1

t ,x
2
t ) ∈ F c has zero probability mass. We have

F c ⊂ F c∞ := {(x, y)| ‖x− y‖∞ < ε} because of the the norm inequality ‖x‖∞ ≤ ‖x‖2.

Hence, (E1
t ×E2

t )∩F c ⊂ (E1
t ×E2

t )∩F c∞ and we will show (E1
t ×E2

t )∩F c∞ = ∅, then
(E1

t × E2
t ) ∩ F c = ∅ and the probability (58) will be zero. Let x1t ∈ E1

t and x2t ∈ E2
t ,

and for contradiction assume that (x1t , x
2
t ) ∈ F c∞. For the x-coordinates of x1t and x2t

we have that |x1t,x − x2t,x| < ε and also for the y-coordinates |x1t,y − x2t,y| < ε since by
the definition of F c∞ it holds that ‖x1t − x2t‖∞ = max{|x1t,x − x2t,x|, |x1t,y − x2t,y|} < ε.
For the expected values we have |µ1

t,x − µ2
t,x| ≤ |µ1

t,x − x1t,x| + |x1t,x − x2t,x| + |x2t,x −
µ2
t,x| < ε + 1

2α
1
t,x + 1

2α
2
t,x because |x1t,x − µ1

t,x| ≤ 1
2α

1
t,x and |x2t,x − µ2

t,x| ≤ 1
2α

2
t,x per

definition of the boxes E1
t and E2

t . The same is true for the y-coordinate and, thus,
we have constructed a contradiction to the assumption that constraint Ct holds. Thus,
Pr((x1

t ,x
2
t ) /∈ F c,x1

t ∈ E1
t ,x

2
t ∈ E2

t ) = 0 holds if constraint Ct is satisfied.
For the second summand in (57), we have

Pr((x1
t ,x

2
t ) /∈ F c,x1

t ∈ E1
t ,x

2
t /∈ E2

t ) (59)

≤ Pr(x1
t ∈ E1

t ,x
2
t /∈ E2

t ) (60)

= Pr(x1
t ∈ E1

t )Pr(x2
t /∈ E2

t ) = (1− P 1
t )P 2

t ,

where the inequality follows from the fact that intersecting with an additional event
can only decrease their probability mass. The first equality follows from the assumed
independence of the position estimates of agents 1 and 2.

The third and fourth summand in (57) can be bounded with the same arguments
as the second summand, with the fourth summand being bounded by P 1

t P
2
t . Through
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summation of all the bounds, we obtain

Pr((x1
t ,x

2
t ) /∈ F c) (61)

≤ (1− P 1
t )P 2

t + (1− P 2
t )P 1

t + P 1
t P

2
t (62)

= P 1
t + P 2

t − P 1
t P

2
t . (63)

Since both P 1
t ≥ 0 and P 2

t ≥ 0 hold and then also P 1
t P

2
t ≥ 0, we have the slightly

more coarse inequality

Pr((x1
t ,x

2
t ) /∈ F c) ≤ P 1

t + P 2
t . � (64)

We have thus shown that the probability of a collision Pr((x1
t ,x

2
t ) /∈ F c) can be

bounded from above by the probabilities that the uncertain states x1
t and x2

t are
outside the RIPP regions E1

t and E2
t . Summarizing the results of Lemma 1 and the

construction of the RIPPs together with Theorem 1 we can deduce Theorem 2:

Pr((x1
t ,x

2
t ) /∈ F c) ≤ P 1

t + P 2
t (65)

≤ C(x1
t , α

1
t ) + C(x2

t , α
2
t ) = γ1t + γ2t (66)

= δ1,2t (67)

if constraint Ct holds, where C(x1
t , α

1
t ) and C(x2

t , α
2
t ) are the Chebychev bounds as

defined in (44).
The theorem warrants that if we solve the chance constrained MPC problem with

RIPP constraints of the form Ct, then the obtained controls are automatically feasible
for the chance constrained MPC problem with full constraints on inter-agent collision
probabilities. Hence, the novel RIPP constraints allow us to find solutions to the
MPC problem with the complicated probabilistic coupling constraints without any
knowledge about the agents’ uncertain states besides the covariance and also without
ever computing or evaluating the probability of a collision of two agents.

It suggests itself that controls found for the MPC problem with RIPP constraints
are slightly more suboptimal than controls for the MPC problem with full proba-
bilistic constraints, since the RIPP constraints are a conservative tightening. While
this is true, we will provide empirical evidence in our simulations that the degree of
subtoptimality is very low.

6.3 Constraint Formulation for RIPP Method

In this section we will outline how the RIPP constraints can be formulated as mixed
integer constraints. In summary, the RIPP constraints for a time instance t can be
constructed as follows:

• For all agents i = 1, . . . ,M we determine Cov(xit) according to (53). Please note,
that this is not done at run time of the mixed integer linear optimization routine
but before this routine is started.
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• Also before the mixed integer solver starts, for all agent combinations 1 and 2 and
upper bounds on the collision probability δ1,2t we determine the RIPP regions
such that C(x1

t , E
1
t ) and C(x2

t , E
2
t ) equal 1

dδ
1,2
t and d−1

d δ1,2t respectively.

• Then we replace the probabilistic collision avoidance constraint (6) by the mixed
integer linear formulation of constraint Ct.

• Then the mixed integer linear optimization routine solves the MILP.

Constraint Ct for agents 1 and 2 is that at least one of the coordinates in the 2D-plane
of their expected values have a distance of at least 1

2 (α1
t,x+α2

t,x)+ε or 1
2 (α1

t,y+α2
t,y)+ε

respectively. We have already highlighted in the last section how the covariances of
the uncertain states of the agents can be determined and how the size of the RIPP
regions is obtained. The position of the RIPP region depends on the mean of an
agent’s uncertain positions. Since this mean depends on the applied control inputs, it
becomes a decision variable and it is determined through

µi
t

= µi
t−1 +

t−1∑
k=1

Buik (68)

for each agent i. Now we model the RIPP constraint Ct for a time step t in the planning
horizon and a pair of agents denoted by 1 and 2 as constraints for the mixed integer
optimization routine. Therefor, we introduce constraints on the distance of the means
to model the RIPP constraint Ct

µ1
t,x − µ2

t,x ≥
1

2
(α1
t,1 + α2

t,1) + ε or (69)

µ2
t,x − µ1

t,x ≥
1

2
(α1
t,1 + α2

t,1) + ε or (70)

µ1
t,y − µ2

t,y ≥
1

2
(α1
t,2 + α2

t,2) + ε or (71)

µ2
t,y − µ1

t,y ≥
1

2
(α1
t,2 + α2

t,2) + ε , (72)

where again the subscripts x and y denote the components of the means in the x and y
axis. Since a mixed integer linear solver can not directly understand these logical “or“-
constraints, we formulate them as logical “and“-constraints with the ”Big M”-method
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as in Sec. 5.2

µ1
t,x − µ2

t,x ≥
1

2
(α1
t,1 + α2

t,1) + ε−Mob
1
t,1,2 and (73)

µ2
t,x − µ1

t,x ≥
1

2
(α1
t,1 + α2

t,1) + ε−Mob
2
t,1,2 and (74)

µ1
t,y − µ2

t,y ≥
1

2
(α1
t,2 + α2

t,2) + ε−Mob
3
t,1,2 and (75)

µ2
t,y − µ1

t,y ≥
1

2
(α1
t,2 + α2

t,2) + ε−Mob
4
t,1,2 and (76)

bit,1.2 ∈ {0, 1} and (77)

4∑
i=1

bit,1,2 ≤ 3 , (78)

with large positive number Mo. Please note, that the proceeding is exactly the same
as in Section 5.2: if one of the binary variables bit,1,2 equals one it is possible that the
corresponding constraint on the distance of the means is not satisfied. Since at least
one of the four constraints in the “or”-formulation above has to be satisfied in order to
guarantee that the means are far enough apart, we limit the number of binary variables
bit,1,2 that are allowed to be equal to one by three. The equality constraint (68) for the
mean and the inequality constraints (73)- (78) form the mixed integer linear constraints
equivalent to the RIPP constraint Ct.

7 Complexity Analysis - Number of Binary Constraints

In this section we provide a theoretical analysis of the complexity of the MILPs result-
ing from the sample-based approximation of the probability of inter-agent collisions
and from the RIPP constraints.

In general, solving even reasonably large linear programs can be performed effi-
ciently by standard methods such as the interior points or simplex methods [22, 23].
However, solving programs that also include binary or integer variables is generally
NP-hard [23]. Recent work like [6, 7, 8, 9] has shown that in practice for problems
of moderate sizes MILP solvers are efficient enough to employ them under real time
requirements. The restriction of the manageability of MILPs to problems with only
moderately many integer variables is the motivation why we will understand the num-
ber of binary variables as a measure of the complexity of the program when comparing
the complexity of different formulations of inter-agent collision avoidance constraints.

First, we will analyze the number of binary variables the constraints derived from
the sample-based approximation of collision probabilities introduce to the program.
According to the collision avoidance constraint (6), each agent has to check for a

collision with every other agent at each time instance, resulting in M(M−1)
2 H checks

for collisions. In each of these, the approximated chance constraint (26) has to be
evaluated, resulting in N2 “sample evaluations”. For every “sample evaluation”,
we have a fixed number bcc of binary variables. So all in all, we have at least
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bccN
2 1
2M(M − 1)H ∈ O(N2M2H) binary variables. Hence, the number of binary

variables of the approximated inter-agent collision chance constraint depends quadrat-
ically on the number of agents and quadratically on the number of samples in the state
approximations. Since the accuracy of the approximation (26) of the chance constraint
depends on the number of samples, a quadratic dependence of the number of binary
variables on the number of samples is a major drawback of this formulation.

Next, we count the number of binary variables the mixed integer linear formulation
of the RIPP constraints introduces to the MILP. Again, we have to evaluate collision
avoidance at every time instance in the planning horizon and for every pairing of

agents. As a result, the total number of collision avoidance checks remains HM(M−1)
2 .

However, each of these checks requires only a fixed number bmb of binary variables
that is independent of the number of samples of the state representations. This can be
easily seen from the construction of the RIPP constraints, since the constraints only
depend on the means of the uncertain states of the agents and not on any samples! The

overall number of binary variables for inter-agent collision avoidance is bmbH
M(M−1)

2 ∈
O(HM2).

For general multi-robot or multi-UAV systems, the number of agents will typically
be in the tens, whereas the number of samples to represent an agent’s position esti-
mate will usually be in the hundreds. Hence, we achieved a significant reduction of
complexity with this approximative formulation of inter-agent collisions.

8 Simulations

In our simulations, we consider path planning for multiple UAVs whose movements
are affected by wind disturbances. We assume that the UAVs all fly at the same fixed
height and therefore consider collision avoidance in the two-dimensional plane. The
task of the UAVs is to reach a certain goal point on a direct path as quickly as possible
in order to save fuel. Bounds on the control inputs are given through bounds on the
maximum acceleration and bounds on the maximum speed at which the UAVs can fly.
We assume that the same bounds on acceleration and speed apply for all UAVs.

8.1 Model Parameters

We assume that the UAVs all have the same linear motion model given by the double
integrator model

xit = Axit−1 + Buit−1 + νit−1 (79)

with

xit = [xit, y
i
t, ẋ

i
t, ẏ

i
t]
T , uit = [ẍit, ÿ

i
t]
T , ‖uit‖∞ ≤ 12 (80)

and

A =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 , B =


0 0
0 0
1 0
0 1

 .
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We assume that the initial uncertain states of the agents have Gaussian distribution
with the following covariance

xi0 ∼ N (µi,Ci
0) , Ci

0 = diag[10−3, 10−3, 10−5, 10−5] . (81)

We assume that the target way points are given as two-dimensional positions Zi =
[Zi1, Z

i
2]T for each agent and that the objective function is the distance of the position

to the target way point (normalized for better comparability with (HMN)−1):

hi(xit) = (HMN)−1
{
|xit − Zi1|+ |yit − Zi2|

}
. (82)

The length of the planning horizon was set to H = 7 in all simulations.
The disturbance samples νit,j affecting the UAVs are drawn from the discrete Dryden

low-altitude model to simulate wind turbulence acting on the UAVs [24]. The UAVs
are assumed to fly with a maximum speed of 45 feet per s at a fixed altitude of 200
feet through a field with light turbulence with wind speed of 15 knots at 20 feet height.
The minimum distance between the UAVs is set to ε = 5 feet. The objective of UAV
i in all scenarios is to reach a certain random goal way point Zi, given as point in the
plane, as quickly as possible from a randomly placed starting position given through
the mean µi of the prior distribution xi0. The value of the control objective was divided
by H ·M ·N in all simulations for better comparability of the results. We randomly
placed obstacles of fixed size 50×50 feet each. The mixed integer linear solver we used
is CPLEX [18].

In all simulations we compared the collision avoidance from Sec. 6 using the RIPP
constraints with the ’full’ sample-based approximation of the collision probabilities
from Sec. 5. This is a highly relevant comparison since the sample-based approxi-
mations of the collision probabilities are guaranteed to converge to the true collision
probabilities when the number of samples approaches infinity and, hence, the control
inputs will converge to the optimal control inputs for the chance constrained MPC
problem without approximation! So the sample-based approximation forms a baseline
for any other collision avoidance approximation for the MPC problem with chance
constraints on collision probabilities both in the quality of the achieved objective of
the control and in run-time.

8.2 Example Scenario

In Figure 1, we plot the trajectories of two UAVs, computed with the RIPP con-
straints. The planning horizon for this example is set to H = 7, the starting parame-
ters are µ

1
= [130, 135]T , µ

2
= [130, 120]T , Z1 = [300, 250]T and Z2 = [300, 150]T with

N = 100 samples for each UAV’s uncertain state. The algorithm with our RIPP con-
straints solved the MILP to a value of the control objective of hmin = 146.8437 while
the optimal solution with sample-based approximation (SA) of inter-agent collision
probabilities achieved only a slightly better value of hmin = 141.2349. The run-time
was more than 40 times shorter with the RIPP constraints with only a small degree
of sub-optimality in the value of the control objective.
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Figure 1: The plot shows the trajectories of two UAVs passing a gap between obstacles
(depicted as solid blue boxes) computed with our novel RIPP constraints.
The lower UAV depicted by red dots waits for the upper UAV depicted by
blue squares to pass the bottleneck first. The run-time for the same scenario
computed with the sample-based approximation (SA) was almost 50 times
longer than with our novel approach, while the optimal value of the control
objective is only 4% better.

From the trajectories in Fig. 1 it can be seen that the lower UAV lets the upper
UAV pass through the gap between the obstacles, since this behavior grants a better
performance for both UAVs. Also it can be seen that our RIPP constraints do not
force a strict separation of the samples of the uncertain states as some samples are
allowed to fall below the minimum distance for example at the third time step. Our
theoretical results on the RIPP constraints guarantee that the probability of a collision
of the two UAVs does not exceed the predefined threshold.

8.3 Quantitative Results

In Fig. 2, we compare the run-time of a controller with the sample-based approximation
of the collision probabilities (SA) with a controller with our novel RIPP constraints
for collision avoidance. The UAVs’ starting positions and their target way points were
randomly drawn to lie within a certain area to insure the occurrence of inter-agent
collisions during planning. All results shown are averaged over 50 Monte-Carlo runs
with each UAV’s uncertain state approximated by 30 samples. The run-times of the
MPC algorithm with RIPP constraints for the same Monte-Carlo runs can also be
found in Table 1. It can be seen that the controller SA has prohibitively high run-
times even for small numbers of agents. Our proposed approach based on the RIPP
constraints on the other hand performs performs well with much lower run-times.

In Fig. 3 we plot the sub-optimality of our proposed approach based on RIPP con-
straints in percent of the optimal objective of the controller SA. It can be seen that
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Figure 2: Depicted are the run-times of the controller with sample-based approxima-
tion of inter-agent collision probabilities (SA) in a red dashed line. The blue
continuous line depicts the run-times of a controller with our novel RIPP
constraints. It can be seen that the controller with our RIPP constraints
has significantly lower run-times, making it feasible for applications with
real-time requirements. The controller with sample-base approximation of
inter-agent collision probabilities has prohibitively high run-times even for
small numbers of agents. Please notice that the vertical axis is in log-scale.

Run-time RIPP constraints (s)
Number of agents min max mean
2 0.14 1.12 0.19
3 0.22 0.29 0.25
4 0.28 1.09 0.37
5 0.39 0.73 0.51

Table 1: Run-times of planning with RIPP constraints, same results as in Fig. 2.
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Figure 3: Depicted is the sub-optimality of controls found with our novel RIPP con-
straints in terms of percent of the optimal objective. It can be seen that
although much faster run-times are achieved the degree of sub-optimality is
less than 5% and hence very low. This plot is read in the way that for ex-
ample for three agents the degree of sub-optimality in the optimal objective
of the RIPP controller is a little above 1%. We omitted the sub-optimality
for two agents since the percentage was very low and would have not been
noticeable on this plot.
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although much faster run-times are achieved the degree of sub-optimality measured in
the optimal value of the objective function is very low. This is a particularly important
result as the controller with the sample-based approximation of inter-agent collision
probabilities converges against the “true” controller with the “true” constraints on
inter-agent collision probabilities for increasing sample numbers. Hence, it represents
a benchmark, since its optimal solution is guaranteed to be close to the “true” optimal
solution. This means that a controller with our RIPP constraints only introduces small
sub-optimality compared to a controller that is close to the “true” optimal controller.
The slight increase in sub-optimality for higher agent numbers stems from the fact,
that the RIPP constraints introduce some conservatism and the degree of conservatism
adds up for more agents in the system.

0 20 40 60 80 100 120 140
40

60

80

100

120

140

160

180

200

(a) Robust coupling constraints.
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(b) Probabilistic coupling constraints.

Figure 4: Trajectory for two UAVs with robust and probabilistic coupling constraints
for collision avoidance. The robust contraints allow the UAVs to come closer
in the third time step than the probabilistic constraints. The robust plan
has a probability of a collision of more than 28% in the third time step,
the probabilistic plan of 0.7%. The chance constraint bound for collision
probabilities was set to 1%. It can be seen that the UAVs take much higher
risks with the robust constraints, while the probabilistic constraints allow to
precisely control how cautious the UAVs behave or how much risk they take.

8.4 Comparison with Robust Control

To the best of our knowledge there are no other approaches to model chance constraints
on the probability of inter-agent collisions, so we compare our approach to robust
control approaches. We compare our approach to coupling constraints on the states of
agents from the centralized robust MPC literature for the control of multiple UAVs [25].
This work also assume that the UAVs systems are affected by exogenous disturbances
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but does not model them stochastically but assumes them to be unknown but confined
to lie in a bounded set. So the model of the UAVs dynamics is as in Eq. 80 without
stochastic disturbance νit but with unknown but bounded disturbance with ‖νit‖∞ ≤
amax. The aim of the MPC controller is to guarantee robust constraint satisfaction,
i.e. constraints on the states of the UAVs have to be satisfied under the strongest
possible disturbance.

In our comparison we restrict ourselves to constraints that model interactions be-
tween agents. We use the same system dynamics as above, the same stochastic dis-
turbance model for our approach, the same objective and the bounds on the control
inputs are set to be bounded by ‖ui‖∞ ≤ 10. Like in [25] we model the disturbances
for robust control to be bounded by up to 10% of the control input, hence, the distur-
bances acting on the states are bounded by amax = 1. The constraints on the positions
of UAV 1 and UAV 2 resulting from the constraint tightening in [25] are

‖x1t − x2t‖∞ > ε+ 2α(t) (83)

where

α(1) = 0 , α(2) = 0 , α(t) = ‖[1 0 0 0]LB‖amax for t > 2 . (84)

and L = A + BK. The matrix K is a two-step nilpotent controller K for the system
(A,B) and it can be checked that

K =

[
−1 0 −2 0
0 −1 0 −2

]
(85)

fulfills the requirements that L2 = 0.
In Figure 4 we plot the trajectories for two UAVs computed with robust constraints

and the probabilistic constraints for collision avoidance. From the plot it becomes
apparent that the robust contraints allow the UAVs to come closer in the third time
step than the probabilistic constraints do. This fact is also reflected in the collision
probabilities for this time step: the robust plan has a probability of a collision of more
than 28% in the third time step, the probabilistic plan of 0.7%. These collision prob-
abilities were determined with 1000000 Monte-Carlo samples. The chance constraint
bound for collision probabilities was set to δ1,2t = 1% at each time step t.

It can be seen that the UAVs take much higher risks with the robust constraints,
while the probabilistic constraints allow to precisely control how cautious the UAVs
behave or how much risk they take. It could be possible to adjust the robust constraints
in such a way that the UAVs behave more cautiously for example by raising the bound
amax on the unknown but bounded disturbances. But the question remains on how
to adjust this bound such that a pre-specified collision probability can be guaranteed?
The probabilistic constraints allow the user to precisely specifiy upper bounds on these
collision probabilities and, hence, also the probability of a failure of the UAV mission
while with robust constraints it is not clear how this could be done.
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9 Conclusions

In this work we gave two methods to formulate chance constraints on the probability
of inter-agent collisions in order to make them tractable for a mixed integer linear
optimization routine. The first formulation is a straightforward sample-based approxi-
mation of the probability of collisions between agents with convergence against the true
probability as the number of samples goes to infinity. The number of binary variables
this formulation introduces to the optimization problem, however, depends quadrati-
cally on the number of samples in the approximation of the agents’ state distributions.
This renders the approach computationally infeasible since the quality of the sample
approximation of the chance constraints improves with the number of samples.

To overcome such limitations, we introduced alternative collision avoidance con-
straints that couple the agents’ control problems for coordination but are independent
of the number of samples. We constructed a region of increased probability of presence
(RIPP) for the uncertain positions of the agents and introduced constraints that these
RIPP regions do not overlap for differing agents. Because the construction of the RIPP
regions is based on a probabilistic inequality we were able to prove that controls that
satisfy the RIPP constraints are automatically feasible for MPC problem with chance
constraints on inter-agent collision probabilities.

It is remarkable that the RIPP constraints can guarantee this, solely based on means
and covariances of the uncertain states of the agents without the need to evaluate the
complicated inter-agent collision probabilities. Also, since the probabilistic inequality
we use to determine the RIPP regions holds for uncertain states with arbitrary state
distribution, our approach is not limited to Gaussian state distributions but is generally
applicable. Further we demonstrated in our simulations that the RIPP constraints not
only lead to theoretically feasible controls but also that the sub-optimality of these
controls is very low compared to controls computed with the almost optimal controls
computed with the sample-based approximation of collision probabilities. Compared to
robust collision avoidance constraints we showed in a simulation that our probabilistic
constraints are better suited for situations in which the systems under control are
affected by stochastic disturbance.

Distributed control strategies are advantageous in multi-agent systems, so future
work will be concerned with applying distributed MILP solving techniques to achieve
a decentralized architecture [26, 27].

Acknowledgements

This work was partially supported by the German Research Foundation (DFG) within
the Research Training Group GRK 1194 “Self-organizing Sensor-Actuator-Networks”.
Jan Calliess is grateful for funds via the UK EPSRC ”Orchid” project EP/I011587/1.

31



References

[1] G. Hoffmann and C. Tomlin, “Mobile sensor network control using mutual infor-
mation methods and particle filters,” IEEE Transactions on Automatic Control,
vol. 55, no. 1, pp. 32–47, 2010.

[2] A. Hayes, A. Martinoli, and R. Goodman, “Distributed odor source localization,”
Sensors Journal, IEEE, vol. 2, no. 3, pp. 260–271, 2002.

[3] A. Schwarm and M. Nikolaou, “Chance-constrained model predictive control,”
AIChE Journal, vol. 45, no. 8, pp. 1743–1752, 1999.

[4] J. R. Birge and F. V. Louveaux, Introduction to stochastic programming, ser.
Springer series in operations research. New York: Springer, 1997.
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