
Determining Intent using Hard/Soft Data and
Gaussian Process Classifiers

Steven Reece and Stephen Roberts
Robotics Research Group
Dept. Engineering Science

Oxford University, UK
Email: {reece, sjrob}@robots.ox.ac.uk

David Nicholson and Chris Lloyd
BAE Systems

Advanced Technology Centre
PO Box 5, Filton, Bristol, UK

Email: {david.nicholson2, chris.m.lloyd}@baesystems.com

Abstract—Modern applications of data fusion are rarely
starved of data but they look more challenging because the
data can be diverse (hard and soft), uncertain and ambiguous,
and often swamped by irrelevant detail. This paper presents a
mathematical framework for dealing with these issues. It manages
diverse data by representing it in the common format of a
kernel matrix. Uncertainty is managed by interpreting the kernels
as the covariance matrices of Bayesian Gaussian Processes.
Finally, irrelevant detail is managed by automatically detecting
the relevant (or, conversely, the irrelevant) components within a
multi-source dataset. The framework is illustrated by applying it
to a synthetic vehicle-borne Improvised Explosive Device intent
recognition scenario. The results provide a proof-of-principle and
encourage future work to develop practical implementations of
algorithms in support of sense making and intelligence analysis.

Keywords: Detection, Classification, Learning, Data Fu-
sion, Gaussian Processes

1. Introduction
With the ongoing proliferation of sensor types and sensing

modalities in civilian and military settings, information fusion
must be able to deal with large volumes of heterogeneous
data. In particular, the ‘hard’ data associated with physical
sensor devices has become increasingly augmented by ‘soft’
data associated with human sources. Often, these data types
complement one another because hard sources make objective
measurements of target states (e.g. identity, position) whereas
soft sources make subjective judgements about target states
(e.g. intent). Thus a combination of sources is likely to im-
prove target state estimation in terms of overall completeness
and accuracy [1].

The complex target of interest in this paper is the ‘pattern
of life’ associated with a counter-insurgency (COIN) scenario
involving vehicle movements between specific buildings in a
fictitious town. Based on surveillance reports from hard and
soft sources stationed in the town, intelligence analysts would
like to classify this pattern as a signature of either benign
or hostile intent. For example, routine delivery of goods to
a shopping mall in the former case or vehicle-borne delivery
of an Improvised Explosive Device (IED) to the mall in the
latter. The focus of this paper is the formulation and proof-of-
principle testing of a mathematical framework for representing
and fusing heterogeneous data sources to provide inference in

support of intelligence analysts.
A kernel-based mathematical framework is described here

for representing disparate hard/soft data as well as performing
inference with this data. This framework can be used to design
regressor and classifier algorithms, with a specific focus in this
paper on binary classification problems though this is easily
extendable. The kernel-based approach is able to quantify the
different forms of uncertainty inherent in the data. Further,
as the method is Bayesian it provides a principled way of
quantifying uncertainty in the inferences. Finally, the approach
is able to determine the relevant information sources within
a potentially large array of data streams. Consequently, the
intelligence analyst is able to assign limited sensing resources
to the most informative data streams.

The paper is organised as follows. Section 2 outlines related
work in the algorithmic and application areas of interest.
The next two sections describe the core components of our
framework – kernel representations, Gaussian Processes, and
Automatic Relevance Determination. Section 5 describes an
illustrative COIN scenario that was used to test the framework,
with experimental results and analysis reported in Section 6.
Finally, Section 7 contains the main conclusions and future
research challenges.

2. Related Work

Hard-soft fusion is an emerging topic of both theoretical
and applied importance within the information fusion com-
munity. This has been recognised by the recent publication
of a textbook on the subject [1], a special session at Fusion
2010 [2], a multi-million dollar Multidisciplinary University
Research Initiative on network-based hard-soft information
fusion funded by the US Army Research Office, and the
creation of a large hard-soft dataset for promoting algorithm
development and analysis [3].

A mathematical framework for heterogeneous data fusion
can be approached from either a parametric or a non-
parametric modelling perspective. The parametric approach
specifies fixed parametric models of the state space based on
domain knowledge, whereas in the non-parametric approach
these models are determined from data.

A common parametric approach to tackle information fu-

sion problems is to represent them as probabilistic graphical
models, such as Kalman Filters, Hidden Markov Models, or
richer Bayesian Networks [4]. These models encode domain
knowledge in the structure of the graph and employ Bayesian
methods to fuse conditional probability data at the nodes. In
practice, parametric models may be very difficult to construct
and implement due to limited domain knowledge. This is
of particular concern in the complex and asymmetric COIN
domain.

Random Finite Set theory (RFS) is a promising candi-
date theory for the fusion of disparate information [5]. RSF
transforms all types of data, whether qualitative statements or
quantitative values, into a common quantitative representation,
the random finite set. Fuzzy logic, rough set theory, possibility
theory and probability theory all have a corresponding for-
mulation within RFS theory. Consequently, RFS can encode
the disparate forms of uncertainty inherent in the data and
inference can be performed using all the data available.
However, the RFS requires parametric models to transform
data into random finite sets. These can be learned from a
sufficient supply of training data.

A non-parametric approach is investigated here, motivated
by the requirement for flexibility in the absence of deep
domain models and recognising the trend for ever increasing
volumes of heterogeneous data with which to potentially learn
models in the application domains of interest. For the COIN
domain, the specific approach being sought must also satisfy
the following requirements:

• Representation of heterogeneous (hard and soft) data in
a common mathematical format;

• Automatic detection and exclusion of irrelevant data;
• Maintenance and evaluation of uncertainty and risk

throughout.
While non-parametric methods have a long history of applica-
tion in data mining and machine learning, there is currently a
gap for a framework that addresses all these requirements. The
purpose of this paper is therefore to present such a framework
and provide some initial proof-of-principle testing.

3. Kernels for Heterogeneous Data
Given multiple heterogeneous data inputs relating to a

scenario, the first requirement is to represent them in a
common mathematical format. This section describes a kernel
representation of data which represents data independent of its
type in the common format of a kernel matrix.

A scenario may be described succinctly by a heterogeneous
feature vector. A feature vector can contain hard and soft data,
sequential events, relationships between events or virtually any
information relating to the scenario. For example, the feature
vector V = ⟨‘Jim’, 1604, ‘large bag’, ‘soon afterwards’⟩ de-
scribes the scenario ‘Jim arrived at 1604 with a large bag. He
left soon afterwards’. Let ϕi denote a function which extracts
the ith feature from the feature vector:

ϕi(V) , [V]i .

It is assumed that each feature vector contains the same
sequence of data types. That is, ϕi(V) has the same type for
all V. This allows individual features to be compared between
feature vectors using distance measures tailored to specific
types of data, whether it is nominal, ordinal, hard or soft. It
is also assumed that each feature vector is complete and does
not contain missing values. Relaxing these assumptions is a
subject for future research.

Entire feature vectors may be compared by using kernels
which transform individual features of different types into a
common space. Each kernel, K, takes as input two values,
x1 = ϕi(V1) and x2 = ϕi(V2), corresponding to the same
feature in different feature vectors and returns a value
indicating how close the two features actually are. There are
various kernels for representing heterogeneous data types.
Common examples include:

The Squared Exponential Kernel:

KSE(x1, x2) = A exp

(
− (x1 − x2)

2

L2

)
for any x1, x2 ∈ R. The Squared Exponential kernel provides
a smooth proximity measure over the continuous quantitative
inputs x. Here, L ≥ 0 and A ≥ 0 are hyperparameters and
are called the input scale and the output scale respectively.

The Nominal Kernel:

KN (x1, x2) = A exp

(
−I(x1, x2)

L

)
where the indicator function I(x1, x2) = 1 if x1 and x2

are the same and zero, otherwise. The inputs, x, can take
any nominal values including tags. Again, the input scale L
specifies the degree of similarity of the inputs and is learned
from the training data.

The Rank Kernel:

KR(x1, x2) = A exp

(
−M(x1, x2)

L

)
for any ranked inputs where R(x) indicates the
rank of x within the rank order. The rank distance
M(x1, x2) = |R(x2) − R(x1)| is the absolute difference
between the input rankings.

Kernels may also be placed over probability distributions.
For example, let Pl(h | C) and Pm(h | C) be the probabilities
of an object having height, h, when an individual or a pop-
ulation uses the words ‘largish’ or ‘medium’, respectively, in
some context C. We may use the Hellinger distance (or many
others [6]) to determine the correlation between the outputs
of two objects, x1 and x2, whose heights are qualitatively
labelled Q(x1) ∈ {l,m} and Q(x2) ∈ {l,m}, respectively:

KP (x1, x2) = A exp

(
−H(x1, x2)

L

)
and H(x1, x2) =

1
2

∫
dh(

√
PQ(x1)(h | C)−

√
PQ(x2)(h | C))2).

Kernels can be combined in a number of ways, for example,
by addition:

Knew(x1, x2) = K1(x1, x2) +K2(x1, x2) + . . .+Kn(x1, x2).

or by multiplication:

Knew(x1, x2) = K1(x1, x2)×K2(x1, x2)× . . .×Kn(x1, x2).

In general, a kernel sum is appropriate for combining dis-
junctive inputs for which different outputs are correlated if
any element of the input vectors are close. A kernel product
is more appropriate when outputs are correlated only if the
entire input vectors are close.

Kernel combination may be used to place kernels over entire
feature vectors. The feature kernel, KV(V1,V2), measures
the closeness of two feature vectors, V1 and V2. Firstly,
choose an appropriate kernel, Ki, for each feature, ϕi(V).
Then individual kernels are combined, for example, using the
product rule into a single feature vector kernel:

KV(V1,V2) =
∏
i

Ki(ϕi(V1), ϕi(V2)) .

The product of kernels is more appropriate for representing
the COIN scenario investigated later in Section 5 as we
classify behaviour as benign or hostile based on all relevant
information. That is, a test feature vector will share the same
class label as a training sample only when all the relevant
features in the test scenario are ‘close’ to the corresponding
features in the training sample.

4. Gaussian Processes
The second requirement is to identify a mathematical ap-

proach to heterogeneous data fusion using kernels which offers
a principled approach to the evaluation of uncertainty and risk.

The Gaussian Process (GP), Support Vector Machines
and Kernel Density Estimators are all examples of kernel
based methods. GPs were chosen as the basis for our
mathematical framework because they provide a principled
Bayesian approach to uncertainty and also impose an intuitive
interpretation on the kernel, K. In GPs the kernel is often
called the covariance function as K(x1, x2) is the covariance
between the output values at x1 and x2.

4.1. Gaussian Process Regression
A GP is often regarded as a ‘Gaussian distribution over
functions’ [7]. It can be thought of as the generalisation
of a Gaussian distribution over a finite vector space to a
function space of infinite dimension. Just as a Gaussian is
fully specified by its mean and covariance matrix, a Gaussian
process is fully described by its mean and covariance function
K. Although these functions can be infinitely dimensional,
GPs are used to infer, or predict, function values at a finite
set of test points using the observed data. The training data
D = {(x1, y1), . . . , (xn, yn)} is drawn from a noisy process:

yi = f(xi) + ϵi (1)

where ϵi is independent identically distributed Gaussian noise
with variance σ2. For convenience both inputs and outputs
are aggregated into X = {x1, . . . , xn} and Y = {y1, . . . , yn}
respectively. The GP estimates the value of the function f
at arbitrary test points X∗ = {x∗1, . . . , x∗m}. The basic GP
regression equations are given in [7]:

f̄∗ = m(X∗) +K(X∗, X)[K(X,X) + σ2I]−1×
(Y −m(X)) , (2)

Cov(f∗) = K(X∗, X∗)−K(X∗, X)×
[K(X,X) + σ2I]−1K(X∗, X)T (3)

where I is the identity matrix, m(·) is the prior function
mean1, f̄∗ is the posterior function mean and Cov(f∗) is the
posterior covariance. The matrix K(X,X) denotes the joint
prior distribution covariance of the function at inputs X . This
covariance matrix has elements:

K(xi, xj) = Cov(f(xi), f(xj)) .

The matrix K(X∗, X), obtained from the kernel K, is the
covariance between the function at the prediction points, X∗,
and the training inputs, X . Many covariance functions have
been designed to capture various properties of the modelled
phenomenon including smoothness, periodicity and stationar-
ity. They are constructed to guarantee that any matrix obtained
from them is a covariance matrix (i.e. positive semi-definite)
irrespective of the choice of inputs X . Kernels can be linearly
or multiplicatively combined to form new kernels as described
in Section 3.

Each kernel has a set of hyperparameters, θ, which include
the input and output scales (and also σ). We write K(X,X, θ)
when referring to specific hyperparameter values. The most
likely values for these hyperparameters, along with σ, can be
estimated from the marginal likelihood:

θ = argmaxθ′Pr(Y | X, θ′)

where Pr(Y | X, θ′) = N(Y ; 0,K(X,X, θ′)).

4.2. The Binary Gaussian Process Classifier
The key problem addressed in this paper is how to classify
feature vectors into one of two classes denoted y = 0 or y = 1,
indicating a hostile or benign event, for example. The GP
regressor considered so far can be extended to classification
problems [7]. As identical scenarios are re-encountered they
may exhibit behaviours associated with each class occasion-
ally. For example, a small van driven by a nervous driver
may only occasionally be hostile, but not necessarily all of
the time. To accommodate a distribution over class labels for
each scenario we model the probability of class membership,
Pr(y = 1 | x) for each scenario x. For binary classification
Pr(y = 0 | x) = 1− Pr(y = 1 | x).

The scenarios, x, are expressed as feature vectors and form
the inputs of our GP classifier. The outputs are the probability

1Often a zero prior function is chosen: m(x) = 0 for all x.

distributions Pr(y = 1 | x). Since the output is a probability
function then the output space must be confined to the range
[0, 1]. Following [7] we choose to map from the Gaussian
process latent regressor function, f , onto y ∈ [0, 1] via the
sigmoid function, g(f(x)):

g(f(x)) =
1

1 + exp(−sf(x))

where s > 0 is the sigmoid sensitivity. Also, following [7], we
define the latent function so that it has a direct probabilistic
interpretation:

Pr(y = 1 | x) = g(f(x)) .

The sigmoid serves a further purpose, it allows near step-
wise changes in probability across class boundaries whilst
requiring only smoothly varying functions in the latent space.
Thus, we can use simple off-the-shelf covariance functions,
K, such as the squared-exponential, without the need to
define change-points or declare kernel non-stationarities at the
class boundaries. The sigmoid function approximately maps a
normal distributed latent function into a Beta distributed class
probability, Pr(y = 1 | x), for each scenario, x, since:

B(g(f(x)))
dg(f(x))

df(x)
≈ N(f(x);mx, Px) (4)

where Pr(y = 1 | x) = g(f(x)) and mx and Px are the latent
function mean and variance for some normal distribution at x.

We will now show that updating a Beta distribution in
probability space is approximately equivalent to updating a
normal distribution in latent space. Let the training samples,
D, be binary samples drawn for various scenarios. Let’s now
focus on those samples of scenario x alone and the impact that
these data have on the posterior distributions, Pr(y = 1 | x)
and Pr(y = 1 | x′), for different scenarios, x′ ̸= x. These
samples comprise Nx occurrences of scenario x where nx

of these samples are assigned class label y(x) = 1 and
Nx − nx are assigned class label y(x) = 0. The posterior
Beta distribution over Pr(y = 1 | x) can be inferred using
Bayes rule:

B(Pr(y = 1 | x) | nx, Nx, ·) ∝ Pr[nx, Nx | Pr(y = 1 | x)]
× B(Pr(y = 1 | x) | ·) . (5)

We approximate (5) via normal distributions. Since the ‘class’
draws are conditionally independent then Pr[nx, Nx | Pr(y =
1 | x)] ∝ PrBinomial(nx;Nx, P r(y = 1 | x)). The expected
number of occurrences of y(x) = 1 is NxPr(y = 1 | x)
with variance NxPr(y = 1 | x)(1− Pr(y = 1 | x)). We can
approximate the Binomial likelihood by a normal likelihood
by moment matching:

PrBinomial(nx;Nx, P r(y = 1 | x))
≈ N(nx;NxPr(y = 1 | x), NxPr(y = 1 | x)(1− Pr(y = 1 | x))) .

This approximation is reasonably accurate for all Nx but
improves for larger Nx. Scaling nx by Nx, we have:

PrBinomial(nx;Nx, P r(y = 1 | x)) ≈ N (zx;µx, Vx) (6)

where:

zx =
nx

Nx
, (7)

µx =Pr(y = 1 | x) , (8)

Vx =
Pr(y = 1 | x)(1− Pr(y = 1 | x))

Nx
. (9)

The class probability, Pr(y = 1 | x), which is necessary to
calculate the variance, Vx, can be estimated from the training
data. We use the expectation of the Beta distribution over
Pr(y = 1 | x) given the training data, D, to determine an
approximate value for Pr(y = 1 | x):

P̂ r(y = 1 | x) = nx + 1

Nx + 2
. (10)

Substituting (4) and (6) into (5) and then dividing through-
out by dg(f(x))

df(x) from (4), we have:

N(f(x);mx, Px) ∝ N(zx; g(f(x)), Vx)N(f(x);m′
x, P

′
x)
(11)

where m′
x and P ′

x are the prior Gaussian mean and variance,
respectively, and mx and Px are the posterior mean and
variance. Equation (11) demonstrates that updating a Beta
distribution in probability space is approximately equivalent
to updating a normal distribution in latent space.

The posterior class probability for scenarios other than x
are impacted by observations z(x) via GP interpolation in the
latent space. It remains to show how to infer the multivariate
latent function, f(X∗), for the inputs X∗, given data z(X).
Invoking Bayes rule:

Pr[f(X∗) | z(X)] ∝
∫

Pr[f(X∗) | f(X)] Pr[z(X) | f(X)]

× Pr[f(X)] df(X) .

Since each datum, zx, is conditionally independent (and using
(6)):

Pr(z(X) | f(X)) =
∏
x∈X

Pr(zx | f(x))

≈
∏
x∈X

N (zx; g(f(x)), Vx)

where Vx is defined in (9). Thus, the posterior Beta distribution
over Pr(y = 1 | x∗) is updated using the appropriate Binomial
likelihood function when direct observations of the class of
x∗ are made. However, the posterior Beta distribution is also
moderated by observations of closely related scenarios through
Gaussian process interpolation in the latent space.

As f(X) is a Gaussian process but the sigmoid function, g,
is non-linear, the posterior Pr(f(X∗) | z(X)) can be inferred
using the Extended Kalman Filter (EKF). Within the EKF
implementation the latent function values of the test points,
X∗ = {x∗

1, . . . , x
∗
L}, are stacked to form the L state vector,

f(X∗). The prior mean over f(X∗) is chosen to be zero as
this induces the appropriate prior mean of 0.5 for the class
probabilities Pr(y = 1 | x∗) for all x∗ ∈ X∗. The EKF initial
state covariance, K, is exactly the latent function Gaussian
process covariance kernel. This is the feature vector product
kernel described in Section 3.

The sample class counts, zx = nx/Nx, for M feature
vectors x ∈ X in the training set are also stacked, z(X).
Consequently, the EKF equations for the mean, f̂(X∗), and
covariance, Cov(f)(X∗), for the Gaussian, Pr(f(X∗) | D) at
the test points are:

f̂(X∗) =W GT (z(X)− 0.5) , (12)
Cov(f)(X∗) =K(X∗, X∗)−W G K(X,X∗) (13)

where the L × M matrix, W is the Kalman gain W =
K(X∗, X) GT (G K(X,X) GT+Q), the M×M matrix G is
the diagonal sigmoid Jacobian matrix with diagonal elements:

G(x, x) = s g(f(x)) (1− g(f(x))) (14)

and the M×M matrix Q is the diagonal count variance matrix
with elements:

Q(x, x) = Vx . (15)

We approximate the sigmoid Jacobian (14) at the expected
probability g(f(x)) = P̂ r(y = 1 | x) defined in (10).

The class probability for a test point, x∗, is obtained by
marginalising the latent function at x∗:

P̂ r(y = 1 | x∗, D) =

∫
g(f(x∗))Pr(f(x∗) | D) df .

Following [8], we approximate the posterior class mean as
follows (where f(x∗) ∼ N(f̂(x∗), P (x∗))):

P̂ r(y = 1 | x∗) = g(κ(x∗)f̂(x∗)) (16)

where:

κ(x∗) =

(
1 +

πP (x∗)

8

)−1/2

.

An alternative Expectation-Propagation approach to latent
function inference in classification problems is presented
in [7].

4.3. Automatic Relevance Determination (ARD)
Determining the relevant features is crucial to successful clas-
sification. If we include irrelevant features in the feature vector
then class uncertainty will increase. This arises when different
feature values for irrelevant features increase the distance
between, otherwise close, feature vectors. However, excluding
relevant features also causes class uncertainty to increase. This
arises because subtle distinctions between classes will be lost if
relevant data is excluded. Fortunately, identifying the relevant
features is straightforward within the GP classifier algorithm.

Following [9] when a feature is irrelevant its input scale
is very large. For very large input scales the covariance will
be independent of that input, effectively removing it from the

Pre-processing

Pre-processing

Pre-processing

Pre-processing

In
p

u
t

V
e

ct
o

r

Label

Relevance

Detection

Fusion

Interpolation

Tr
a

in
in

g
 D

a
ta

Test Data

Label

Te
st

 D
a

ta

One vector per training, test sample

Hard-Soft Fusion Algorithms

Kernelisation

Kernelisation

Figure 1. Information architecture relating the heterogeneous input data on
the left to the inference of a class label for a test data sample on the right via
a process of kernelisation, kernel combination, relevance detection, and GP
classification.

feature vector. Our classifier performs ARD after the most
likely feature input scales have been estimated. The marginal
likelihood for the most likely input scales is λ. Each feature
is considered in turn and the likelihood, λf , is re-calculated
when the input scale for that feature is artificially set to a large
value. The ratio ρf = λ/λf is a measure of the relevance of
feature f as it indicates the classifier performance gain when
feature f is used by the classifier. A feature with ρf < 1
is detrimental to the classifier as its inclusion in the feature
vector leads to poorer performance. Consequently, the relevant
features are those for which ρf > 1. 2

The overall architecture for implementing relevance detec-
tion and the other parts of our heterogeneous data fusion
framework is show in Figure 1. The input data, on the left,
consists of multi-source data for a number of training and
test scenarios. This is pre-processed with feature extractors
appropriate for each source, such as image processing to
extract texture features or document processing to extract word
count features. All of the feature data is then represented by
kernels. The kernels for the labelled training data are combined
and relevant features are determined. The label for the test data
is then inferred from the training data by the Gaussian Process
classifier.

5. Illustrative COIN Scenario
The COIN scenario used to illustrate the application of

our mathematical framework is a vehicle-borne IED threat
detection scenario, designed originally to test parametric mod-
elling techniques [10]. The scenario, displayed in Figure 2
involves a number of building facilities and a number of
vehicles in transit between those facilities carrying out various
functions: transport, collection, and delivery. If the intent of the

2We note that, in the rare case when two important features are completely
correlated, ρf = 1 for both. Both will be excluded using our ARD
mechanism. A more robust, yet computationally less efficient approach would
be to employ an iterative ARD scheme which only removes one feature with
ρf = 1 at each iteration. Subsequent iterations would perform ARD over the
remaining potentially relevant features.

Warehouse

Truck Rental

Store

Materials

transported

Truck moved

to depot

Truck drives

to Mall

Depot

?

Figure 2. COIN scenario example [10]. It is required to infer whether the
observed pattern of vehicle movement between the buildings is indicative or
hostile or benign intent.

participants of these collective events is hostile, they culminate
in the delivery of an IED to a shopping mall. However, it is
more likely that the collective events are benign and result in
the delivery of garden and electrical supplies to the mall for
reasons of routine business and commerce.

It is assumed that this urban ‘hot spot’ has been under
observation by the authorities for some time and certain reports
have been logged. Moreover, each of these reports is labelled
according to a forensic analysis which determined whether
it formed part of a hostile or benign scenario. Consequently,
there is a set of labelled exemplars for each scenario class with
which to train the GP classifier to recognise new scenarios.

The simulated dataset for this scenario consisted of a mix
of hard (quantitative) and soft (qualitative) report types. In
total there are ten observables associated with the scenario,
seven hard and three soft. The hard data elements refer to time
stamps associated with the various vehicle arrival, departure
and wait times during the scenario. Each hard type is modelled
using a Squared Exponential kernel (see Section 3). The
soft elements refer to the sizes of the vehicles {very small,
small, medium, large, very large}, which are modelled using
the Rank kernel, and the emotional state of the driver of
the vehicle departing the depot {calm, nervous}, which is
modelled by the Nominal kernel.

6. Experimental Results
The first experiment tests the claimed ability of our frame-

work to automatically determine relevant sources of data. For
this purpose an experimental dataset was generated by creating
a number of hostile and non-hostile scenario exemplars in
the ratio 1:4. The scenarios were created in such a way that
only four of the ten observable features (unknown to the
algorithms) distinguish whether they are hostile or non-hostile.
For example, a medium-sized vehicle is always used to convey
an IED payload to the mall and its wait-time at the depot is
constant. All vehicle sizes deliver to the mall in the benign
scenario and their wait-times at the depot are proportional to

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

source id

s
o

u
r
c

e
 r

e
le

v
a

n
c

e

10

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

source id

s
o

u
r
c
e
 r

e
le

v
a
n

c
e

30

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

source id

s
o

u
r
c

e
 r

e
le

v
a

n
c

e

60

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

source id

s
o

u
r
c

e
 r

e
le

v
a

n
c

e

100

Figure 3. Source relevance probabilities inferred by our framework for
different numbers of training inputs (indicated in the top right corner of
each figure). The (unknown) true relevant sources in the scenarios that were
simulated are 1, 8, 9 & 10.

their size. The observables were generated with uncertainty to
blur these subtle distinctions between the classes even further.
It would be very difficult for an analyst to determine the
relevant sources of data by visual inspection alone.

The relevance probability determined by our framework for
each source is displayed in Figure 3 for different numbers of
labelled input scenarios. This figure shows the proportion of
training instances where each source was identified as relevant.

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

scenario

p
ro

b
a

b
il

it
y

 n
o

n
−

h
o

s
ti

le

Non−hostile

Hostile

sources 8, 9

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

scenario

p
ro

b
a

b
il

it
y

 n
o

n
−

h
o

s
ti

le

Non−hostile

Hostile

sources 8, 9, 10

50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

scenario

p
ro

b
a
b

il
it

y
 n

o
n

−
h

o
s
ti

le

Non−hostile

Hostile

sources 1, 8, 9, 10

Figure 4. Improved classification performance as a result of fusing more
relevant sources

Each training instance uses a randomly selected subset of all
possible scenarios. The figure shows that for small training sets
(numbering about 30 or less) relevance can vary significantly.
However, as the number of training examples increases the
relevance probabilities should converge on 0 or 1. The true
relevant sources in this example are 1, 8, 9 & 10. The most
relevant sources (1 & 8) have indeed converged and the
relevance of the other sources is trending in the right direction.
Clearly, this performance depends on the amount of overlap in
the input scenarios but is a promising indication that relevance
detection is effective under challenging (albeit simulated) input
conditions.

The next experiments analyse the classification performance
for our heterogeneous data fusion framework. The aim is to
show how its performance depends on (a) the number and
relevancy of information sources used for classification, and
(b) the number of scenario datasets used to train the classifier.

The first experiment demonstrates how performance is im-
proved as more relevant sources are fused into the classifier.
For this experiment 60 scenarios with a hostile:non-hostile

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

scenario

p
ro

b
a

b
il

it
y

 n
o

n
−

h
o

s
ti

le

sources 1, 8

Non−hostile

Hostile

20 40 60 80 100 120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

1

scenario

p
ro

b
a

b
il

it
y

 n
o

n
−

h
o

s
ti

le

sources 1, 2, 3, 4, 5, 6, 7, 8, 9

Non−hostile

Hostile

Figure 5. Improved classification performance as a result of excluding
irrelevant sources.

ratio of 1:3 were used to train the classifier and 200 scenarios
with a true hostile:non-hostile ratio of 1:1 were used to test
the classifier.

Fig. 4 displays representative results for the classification
of the training and test scenarios when two, three, and four
(all) of the relevant vectors are fused in the classifier. These
figures plot, for each scenario numbered on the horizontal axis,
the probability of being classified non-hostile on the vertical
axis. Ignoring the classification of the training scenarios (left
of scenario 60), which is nevertheless a useful indicator of
the completeness of the training set, the classification of the
test scenarios (right of scenario 60) should fall into two
blocks on the leading diagonal. The proportion of off-diagonal
(misclassified) scenarios is notably reduced as more relevant
sources are fused by the classifier.

The next experiment investigates the importance of ex-
cluding irrelevant sources from the classifier. The setup is
similar to the previous experiment but with slightly less
noise on the sources to emphasise performance differences.
Figure 5 displays the classification results in the case when
two relevant features are fused and also when another relevant
feature and five irrelevant features are combined. For this
simulated test dataset there are no misclassifications when only
the two relevant features are combined. However, inclusion
of the irrelevant features (despite the inclusion of an extra
relevant feature) introduces numerous misclassifications. This
highlights the degradation in classifier performance that is
avoided by the ability of our framework to automatically
detect the relevant sources and use only them as the basis
for generating classifications.

The final experiment analyses the classfier performance for

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

probability of false−alarm

p
ro

b
a

b
il

it
y

 o
f

d
e

te
c

ti
o

n

non−hostile

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

probability of false−alarm

p
ro

b
a

b
il

it
y

 o
f

d
e

te
c

ti
o

n

hostile

Figure 6. ROC performance results for classifying the non-hostile and
hostile scenarios with increasing number of training examples. The lowest
ROC curves are for 10 training examples and the highest are for 100 training
examples.

different training dataset sizes. Specifically, Receiver Operator
Characteristic (ROC) curves are generated by training the
classifier against 10, 20, . . . , 100 training scenario datasets,
with a hostile:non-hostile ratio of 1:4, and testing on 200
scenarios (1:1 ratio). The ROC results for classifying the hos-
tile and non-hostile scenarios in the test dataset are displayed
in Fig. 6. These results highlight the expected trend toward
lower classification error as the number of training examples
is increased. Further work is planned to explore the sensitivity
of the results to the underlying scenarios.

7. Conclusions
A novel kernel-based approach for heterogeneous (hard and

soft) data fusion has been developed and applied to a synthetic
COIN problem. Kernels allow disparate information types to
be represented in a common covariance space. The Gaussian
Process kernel method provides a rigorous probabilistic basis
on which to manage uncertainty and as a side-effect allows
relevant sources to be automatically detected.

Important areas for further research would include the
following:

• Connect the kernels more directly to features, such as
‘bag of words’ for documents, and consider distance
metrics on those feature spaces

• Consider how to scale-up the computation to handle large
(thousands) of training samples

• Consider how to relax the tacit assumption made here
that the relevance of sources is stationary throughout a
period of surveillance

• Consider how to visualise the outputs of the fusion
processes to help intelligence analysts interpret the results
and improve decision-making

References
[1] D. L. Hall and J. J. Jordan, Human-Centered Information Fusion.

Artech House, 2010.

[2] D. L. Hall, R. Nagi, J. Llinas, J. Lavery, and A. Shirkhodaie, “Multi-
disciplinary research in hard and soft information fusion.”

[3] M. A. Pravia, R. Prasanth, P. Arambel, C. Sidner, and C. Y. Chong,
“Generation of a fundamental data set for hard/soft information fusion,”
in Proceedings of the 11th International Conference on Information
Fusion (Fusion 2008), Cologne, 2008.

[4] S. Das, High-Level Data Fusion. Artech House, 2008.
[5] B. Khaleghi, A. Khamis, and F. Karray, “Random finite set theoretic

based soft/hard data fusion with application for target tracking,” in
Multisensor Fusion and Integration for Intelligent Systems (MFI), 2010
IEEE Conference on, sept 2010, pp. 50–55.

[6] S. Cha, “Comprehensive survey on distance/similarity measures between
probability density functions,” International Journal of Mathematical
Models and Methods in Applied Sciences, vol. 1, no. 4, pp. 300–307,
2007.

[7] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[8] D. Mackay, “The evidence framework applied to classification net-
works,” Neural Computation, vol. 4, no. 5, pp. 720–736, 1992.

[9] R. M. Neal, Bayesian Learning for Neural Networks, ser. Lecture Notes
in Statistics 118. New York: Springer, 1996.

[10] D. Grande, G. Levchuk, W. Stacy, and M. Kruger, “Identification of
adversarial activities: profiling latent use of facilities from structural
data and real-time intelligence,” in Proceedings of the 13th International
Command and Control Research and Technology Symposium, Seattle,
WA, 2008.

