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Abstract

Non-intrusive appliance load monitoring is the process of breaking down a house-
hold’s total electricity consumption into its contributing appliances. In this paper
we propose an approach by which individual appliances are iteratively separated
from the aggregate load. Our approach does not require training data to be col-
lected by sub-metering individual appliances. Instead, prior models of general
appliance types are tuned to specific appliance instances using only signatures ex-
tracted from the aggregate load. The tuned appliance models are used to estimate
each appliance’s load, which is subsequently subtracted from the aggregate load.
We evaluate our approach using the REDD data set, and show that it can disag-
gregate 35% of a typical household’s total energy consumption to an accuracy of
83% by only disaggregating three of its highest energy consuming appliances.

1 Introduction

Non-intrusive appliance load monitoring (NIALM), or energy disaggregation, aims to break down
a household’s aggregate electricity consumption into individual appliances [1]. The motivations for
such a process are twofold. First, informing a household’s occupants of how much energy each
appliance consumes empowers them to take steps towards reducing their energy consumption [2].
Second, should a recommender system seek to inform an occupant of potential savings through
deferring appliance use to a time of day when electricity is either cheaper or has a lower carbon
footprint, it is necessary to additionally determine the time of use of each appliance. For an energy
monitoring system to be both practical and widely applicable, it is essential to take advantage of
existing infrastructure rather than designing new hardware. Smart meters constitute an ideal data
collection platform for NIALM solutions, and are currently being deployed on national scales.

Recent approaches using machine learning techniques for energy disaggregation from smart me-
ter data fall into two categories. The first group of approaches typically assume that sub-metered
(ground truth) data is available to train appliance models prior to performing disaggregation [3]. The
second group uses unsupervised disaggregation methods [4, 5], which typically require the labelling
of detected appliances, assume knowledge of the number of household appliances or require all
the appliances in the home to modelled. Although attractive from a machine learning perspective,
such assumptions are impractical in practice and limit many potential applications. It is therefore
necessary to design approaches which are capable of disaggregating individual appliances from an
aggregate load without explicit knowledge about the type and number of appliance within the home,
or access to sub-metered training data.

It is exactly these challenges that we address in this paper, and to do so, we propose a principled
approach in which generic prior models of appliance types are tuned to specific appliance instances
using only aggregate data from the home in which disaggregation is being performed. We focus
on common appliance types which consume a large proportion of the home’s energy, particularly
those whose use may be deferred by the household occupants (e.g. clothes dryer). In our approach,
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clean appliance signatures are identified within the aggregate signal by applying the Expectation-
Maximisation (EM) algorithm to small overlapping windows of aggregate data, which are then used
to tune generic models of appliance types to the household’s specific appliances. Next, the ap-
pliances’ loads are modelled using hidden Markov models (HMMs) and disaggregated using an
extension of the Viterbi algorithm, before being subtracted from the aggregate load. The extension
of the Viterbi algorithm that we use filters the aggregate signal, in parallel to performing disaggre-
gation, such that all other appliances’ observations are ignored. These steps are repeated until all
appliances for which general models are available have been disaggregated from the aggregate load.

2 Problem description

Formally, the aim of NIALM is as follows. Given a discrete sequence of observed aggregate
power readings x = x1, . . . ,xT , determine the sequence of operational states of each appliance
z(n) = z

(n)
1 , . . . , z

(n)
T where each appliance n ∈ {1, . . . , N}. The operational state of an appliance

corresponds to a certain behaviour (e.g. ‘on’ or ‘turning off’) and each time slice t represents an
instant in time a minute after t− 1.

3 Energy disaggregation using iterative hidden Markov models

Our approach models each appliance as a hidden Markov model (HMM). In the HMM, each latent
discrete variable in the Markov chain represents the state of the appliance at an instant in time.
In each time slice, each appliance emits an observation based on its state. A HMM is completely
described by three parameters: the probability of the appliance’s starting state, π, the probability
matrix of transitions between states, A, and the set of emission functions, φ, which in our case are
assumed to be Gaussian distributed. These parameters are learnt from aggregate data as described
in Section 3.1 and used to disaggregate appliance loads in Section 3.2.

The appliance models described thus far are similar to that used by Kim et al. [5]. However, a
key difference in our model is the use of the change in aggregate power demand between consec-
utive readings as the observation sequence. This results in states which are able to capture both
constant and instantaneous changes in each appliance’s power demand. Figure 1 shows an ‘on-off’
state transition diagram used by our approach to model the refrigerator, in which each state repre-
sents constant or a change in the appliance’s power demand. Figure 2 shows a more complex state
transition diagram used to model the clothes dryer. The later model is less restrictive, as it allows
‘turn on’ states to immediately follow ‘turn off’ states, which is common behaviour exhibited by
the clothes dryer but never the refrigerator, given the sampling rate of aggregate observations. Such
modelling has the benefit that Markov states only emit non-zero observations when the appliance’s
power demand changes, e.g. they turn on or off. This minimises the effect each appliance has on
the aggregate observation sequence, and therefore greatly reduces the likelihood that two or more
non-zero observations generated by different appliances will occur within the same time slice.

3.1 Training using aggregate data

Our novel training approach takes generic models of appliance types (e.g. all clothes dryers) and
trains them to specific appliance instances (e.g. a particular clothes dryer model) using only a house-
hold’s aggregate power demand. This approach differs from the unsupervised approach used by
Kim et al. [5], in that we make use of a prior belief of appliance behaviour and power demand.
This training process directly corresponds to learning values for the HMM parameters π, A and φ.

2



The generic model of an appliance type consists of prior knowledge of the appliance’s state transi-
tion matrix and its power demand. The prior state transition matrix consists of a binary matrix, in
which ones represent possible transitions between two states. We represent our prior belief of each
appliance’s demand as expected values of the Gaussian emission function’s mean and variance.

Our approach to train such general models to specific appliance instances is as follows. First, data to
train the appliance model must be extracted from the aggregate load. This is achieved by running the
EM algorithm on small overlapping windows of aggregate data. The EM algorithm is initialised with
our prior appliance’s state transition matrix and power demand. Our prior state transition matrix is
sparse as it contains mostly zeros, therefore restricting the range of behaviours that it can represent
[6]. As such, the model will reject windows which contain observations which cannot be explained
by the appliance model. Therefore, this process effectively identifies windows of aggregated data
which were generated by only the modelled appliance. Next, the extracted appliance signatures are
used to train the appliance model using a single application of the EM algorithm.

3.2 Disaggregation via extended Viterbi algorithm

The disaggregation task aims to infer each appliance’s load given only the aggregate load and the
trained appliance’s model. We propose an extension of the Viterbi algorithm [7] which is able to
filter out other appliances and disaggregate the modelled appliance in parallel.

The Viterbi algorithm can be used to determine the optimal sequence of states in a HMM given
a sequence of observations. For the Viterbi algorithm to be applicable in our scenario, it must be
robust to other unmodeled appliances contributing emissions to the observed load. To do this, we
extend this algorithm by allowing the forward pass to filter out observations for which the joint
probability is below a predefined threshold. We then evaluate the joint probability of a sequence by:

p(x, z|π,A,φ) = p(z1|π)
T∏

t=2

p(zt|zt−1,A)
∏
t∈S

p(xt|zt,φ) (1)

This is similar to the Viterbi algorithm’s joint probability evaluation apart from the product over
emissions, which are only collected over the filtered set of observations, S, instead of the full se-
quence, t1, . . . , T . Figure 3 shows an example of a sequence in which one observation, x2, has been
filtered out. It is important to note that in such a situation, the Viterbi algorithm still evaluates the
probability of z2 taking any possible value. This ensures the approach is robust even in situations in
which the modelled appliance’s ‘turn on’ or ‘turn off’ observation has been filtered out.

4 Results

The proposed approach has been evaluated using the REDD data set [3]. The dataset comprises
six houses, for which both household aggregate and circuit-level power demand data are collected.
Both sets of power measurements were down sampled to one measurement per minute to mimic
the maximum reporting rate of meters being deployed in the UK smart meter roll out. We chose to
disaggregate three of the highest energy consuming appliances: the refrigerator, the microwave and
the clothes dryer. Of the six houses, only houses 1, 2 and 3 contained each of these appliances on
isolated circuits and had been metered continuously for at least 7 days.

To date, only one other approach [3] has been benchmarked on this data set. Kolter and Johnson’s
method makes use of sub-metered data to train the model and also requires that all appliances must
be modelled. Our approach does not require all appliances to be modelled, and therefore a direct
performance comparison is not possible. However, we benchmark against two variations of our own
algorithm that mimic the unsupervised and sub-metered training approaches.

We discuss each of the two objectives of NIALM separately. First, when the aim is to inform
the household occupants which appliances are consuming the most energy, performance should
be assessed according to how accurately a NIALM can infer the actual energy consumption of
each appliance. Figure 4 shows a comparison for illustrative purposes of the estimated and actual
disaggregated energy as would be provided to the household occupants of house 1. It is interesting to
note that just 3 appliances account for 35% of the household’s total energy consumption, of which
83% was correctly disaggregated by our approach. Table 1 shows how accurately our approach
estimated the energy consumption of each individual appliance, averaged over the three houses. It
can be seen that the disaggregation error for models trained using aggregate data is comparable to
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Figure 4: Estimated and actual percentage of disaggregated energy of house 1

Table 1: Disaggregation error averaged over houses 1-3
Appliance No training Aggregate training Sub-metered training

Refrigerator 55% 15% 14%
Clothes dryer 428% 28% 24%
Microwave 54% 22% 10%

Table 2: Usage classification rates averaged over houses 1-3 (Corr. class. = Percentage actual uses
correctly classified, False det. = Percentage detected uses which were false)

Appliance No training Aggregate training Sub-metered training
Corr. class. False det. Corr. class. False det. Corr. class. False det.

Refrigerator 48% 23% 74% 24% 81% 15%
Clothes dryer 38% 77% 89% 6% 94% 6%
Microwave 24% 36% 71% 24% 78% 20%

that for models trained using sub-metered data. Table 1 also shows the improvement in performance
after training using aggregate data compared to just using the generic models.

Second, when the aim is to identify the uses of each appliance, a different evaluation metric is re-
quired. Unlike the previous application, rare misclassifications do not cancel out over time, and
instead might result in incorrect advice being given to the household occupants. Table 2 shows the
percentage of actual appliances uses that were correctly classified and the percentage of detected
uses that were false, for each training method averaged across the three houses. Again, the perfor-
mance of approach trained using aggregate data is comparable to that using sub-metered data.

5 Conclusion

In this paper, we have proposed an approach to NIALM capable of independently disaggregating the
energy consumption of individual appliances from a household’s aggregate load. We have proposed
a novel method by which generic models of appliance types can be tuned to specific appliance
instances using only aggregate data. Through evaluation using real aggregate and circuit-level data
from three households, we have shown that similar performance can be achieved by tuning the
generic models using aggregated data compared to using sub-metered data. Future work will look at
extending this approach to more high energy consuming appliances using data from a greater number
of households. We also aim to investigate the gain of disaggregating appliances in parallel, instead
of iteratively, to resolve conflicts caused by two or more appliances changing state simultaneously.
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