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Abstract

We propose a methodology for extracting social network structure $patio-temporal datasets that describe times-
tamped occurrences of individuals. Our approach identifies tempgiains of dense agent activity and links are drawn
between individuals based on their co-occurrences across theberigg events”. The statistical significance of these
connections is then tested against an appropriate null model. Suchwioaknalows us to exploit the wealth of analyti-
cal and computational tools of network analysis in settings where thelyimgeconnectivity pattern between interacting
agents (commonly termed tlaejacency matrixis not given a priori. We perform experiments on two large scale datase
(> 10° points) of great tiParus majorwild bird foraging records and illustrate the use of this approach by exagiine
temporal dynamics of pairing behaviour, a process that was préyiees hard to observe. We show that established
pair bonds are maintained continuously, whereas new pair bonds farmiable times before breeding, but are charac-
terised by a rapid development of network proximity. The method pegbbgre is general, and can be applied to any
system with information about the temporal co-occurrence of interaatjegts.

Keywords: network analysis, spatio-temporal data streams, anincidlsoetworks

1 Introduction

We use the termgraph or networkto describe the simplified version of the pattern of intdoant in a system, such
as an animal population, where nodes are individual estéi@ edges represent some form of association, interaction
similarity or behavioural correlation between nodes. kashme way that a map is a simplified (though useful) version
of a landscape, a network describes titygologyof a real-world system by focusing on the connectivity pateof its
individual components [1].

The key motivation for employing network analysis toolshattthe web of interconnections between individuals can
provide us insights on the underlying mechanisms that gother system under study [2]. For example in an ecological
context, the position and role of animals in the network meyeiimportant fithess consequences [3] both for the indalidu
and the population as a whole [4]. Additionally, the netwpdcadigm gives us the flexibility to look at the system at
various resolutions and model any type of interaction; akxaooperative, competitive, etc [4].

Despite the advantages of the network paradigm and the lwekHnalytical and computational tools for network
analysis [5-8], the problem of capturing any given systera gsaph is not always trivial. Not all systems possess an
obvious “web-like” structure (such as the Internet), whéieinterconnections between participating entities ppaeent
from direct observation (computers that are connecteditfirghysical cables). Additionally, collected data (frosldi
studies, sensor observations, world-wide web etc) mayaqtuice the associations between the observed agents,chus n
relational structure can be directly defined. For examplsystems such as animal populations the underlying network
of social affiliations needs to be inferred through proxigshsas the behaviour (mobility patterns, foraging habit} et
individual animals.

This work focuses on the problem of finding tbhederlying social network structuref a population that can only
be observed through the spatial trajectories of its indi@ldnembers. We use as a case study a setting where individual
wild birds are marked with transponder devices and throyggraoriate logging hardware we are able to identify their
position at various sites in their natural habitat. The olegon data collected in this manner consists of a longastref
timestamped records where no obvious interaction or saffiihtion is apparent. By assuming tredcial structurds a
latent factor that affects the way birds visit locationstfie sense that socially affiliated individuals have simitenbility
patterns), we propose a methodology that extrascéal networkfrom such spatio-temporal data stream. Although we
demonstrate our method in an ecological context, our agproan be generalised to any setting where agents perform
timestamped “check-ins” at various locations.
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The paper is organised as follows; in Section 2 we outline exyoeriment settings and discuss our data format.
In Section 3 we present our contribution, which is a methogyplfor extracting network structure from timestamped
observation data. In Section 4 we apply our method to the hiildl dataset and show that the extracted networks reflect
actual processes that take place in the population, by iiogas mating pair formation. We conclude this paper in $ecti
5 by discussing the next steps of our research, both in tefrmethod development and data collection extensions. The
MATLAB code that implements the methods presented in the papedis availablé to the community.

2 Data collection

This work lies within the context of a large ongoing studylod great tit (GT)Parus majorpopulation at Wytham Woods
near Oxford, United Kingdom. Thousands of individual biede marked with transponders and a grid of sensor-enabled
locations generates hundreds of thousands of records @atdr.wAt each one of the sixty-seven locations in the fqrest
there is a feeder that acts as an attraction point for fogagidividuals. By placing appropriate logging hardware at
the feeder, we are able to record the presence of each individrd. Due to equipment constraints, there were only
16 loggers available at any time, and these were thus roteitechd the 67 locations following a structured randomised
design, so that each of 8 approximately equally-sized@estf the site always had two active loggers in it. More dietai
on our experiment set-up is provided in the Electronic Seimgintary Material (ESM).

Table 1: Sample format of our data
| BirdID | timestamp | location ID |

N199642 | 1/9/2007 10:02:15 (am la
TE80535| 1/9/2007 10:02:30 (am la
V260952 | 1/9/2007 10:02:30 (am 2b
V260952 | 1/9/2007 10:02:45 (am 2b
N199642| 1/9/2007 10:12:15 (am lc

The data generated from this scheme consists of a long stEimestamped observations as shown in Table 1. Each
row represents a single record that captures the ID of tltedbimg with the time and location where the foraging event
took place. In this format, shown in Table 1, our data stresunly a transactions table in a relational database cqntext
which restricts our analysis to a handful of relatively sienpounting operations such as finding the total appearasfces
a given bird, total birds that visited a specific feeder, etc.

What we are interested in is to find an appropriate mapping isfgpatio-temporal stream to a relational space,
where social affiliations between individuals are reveddgdhe similarity of their feeder visitation patterns. Weske
to characterise the overall social network of the poputatibmarked birds, and explore the ability of this approach to
recover relationships between mated pairs of individubteoved independently during breeding season data dohiect
We further wish to explore the temporal dynamics of the fdiomaof mated pairs. In biological terms, the process by
which pairs of individuals develop relationships that l¢adnating is poorly understood in most natural populations,
since the majority of work involves observations of pairshet time of breeding, after pair formation has occurred. As
a consequence, we have little knowledge of when such rektiips form, and when they become distinguishable from
other social relationships between individuals.

In the following section we introduce a method, based on bowe goals, that extracts network structure given such
spatio-temporal data. In Section 4 we present the appicati this approach to thearus Majordata set.

3 Network inference from spatio-temporal data

3.1 The time-window problem

A typical approach for building a network from data such @&sdhes we presented in Section 2, would involve discretising
the stream using a fixedggregationor time windowAt and assuming that if two individuals are recorded within an
interval At then there is a link between them in the network [9-12, 20 ost obvious problem with this approach is
that of finding the appropriate size for the time window. Aappropriately small\¢ may lead to a network that does not
capture important connections, while a very lafgewould overload the graph with “junk” links.

Using our wild-bird data as an example, we take a single dagish of observations (in a format similar to the one
shown in Table 1) and split that stream into time intervalsiaé A¢. We then place links between thé individual
birds (nodes) based on the number of times they were recavitleith a temporal distance akt. We seek to examine the
changes that take place in the network as we vary the timeomirsize by monitoring theetwork load(NL), which is the
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fraction of M links in the network over all possible pair combinatiaj(sV? — N) of N nodes. We can see in Fig. 1(a)
that NL increases along with the size &At, because more links are placed between nodes. An examptavafidtwork
topology changes for various selections of time window $zis shown in Fig. 1(b), while Kringst al.in [20] have
performed similar experimentation considering more netwoetrics such as average degree, average weight, chgsteri
coefficients, etc.

Between all these different network topologies that relsatn varying At, there is no direct way of showing which
one is the most appropriate. Additionally, even if we had eqmrior knowledge on the appropriate time window size or
even a specific quality function for finding its optimum valuee have still made the strong assumption thats fixed
throughout the data stream. This corresponds to the bakefthe “interaction radius” between individualscienstant
across our observation period and is not affected by terhpbamges in the overall system.

Network load across various time window sizes
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Figure 1: In Fig. 1(a) we plot the network load for variouseimindow sizes, spanning from 10 seconds to half an hour.
We can see that especially for early increaseAbthere is a large inclusion of links in the network. We also kitaree
cases of different time window sizes (dashed vertical lara show in Fig. 1(b) how the graph topology changes based
on theAt value.

In the current work we shall pursue a different approach tolding networks from spatio-temporal records, which

2In this example and throughout this paper we are consideghgarks that arendirectedwith nodes that have no self-edges.



exploits the inhomogeneodensity profileof our data stream thus avoiding schemes such as multiptgd20hin order to
select an appropriatdt. This methodology, which we will call @M Events (Gaussian mixture model for event streams)
is complemented with an appropriate null model that allos/goudistinguish between links that denote social tie and the
ones that result from coincidence.

3.2 Identification of gathering events

Let our spatio-temporal daf, a sample of which we showed in Table 1, to be representeé iotmD = {b.,t.,¢,}%_;
whereZ is the total number of records tuplesin our database (e.g. the number of rows of Table 1). If we akimgle
tuple {b.,t.,£.}, we read it as “the bird, appeared at time, at the feeding locatio#i,”. Note that{t.}Z_, denotes
event timetherefore for every timestamyp there is a corresponding bird appearabceAdditionally, given a specific
bird 7 out of total V birds, there can be many record$or which b, = ¢, as a single individual may appear many times
in the data. Our goal is to find an appropriate mapping fromstreamD to anadjacency matrixA € RY*N  where
a;; # 0 denotes a link between birdsindj. To keep the notation uncluttered, from now on we will focagtee case of
a single location and show later that results can be easilgrgéised to the multi-site case.

Consider the plot of Fig. 2, which illustrates how bird aativat a particular feeding location are spread throughout
a small sample of our observation timeline. Each stem reptesan actual sensor capture of a specific birdt time
t,. We can see that the records are not uniformly spread admsshut they are “packed” in small observation-dense
regions. Indeed, if we take the whole data stream and extradtistogram of the time differencéét,) = ¢, — t,_;
between every pair of consecutive observations, as sedg.iBFwve find a broad power-law tail with exponent2.5 for
§(t.) > 103. This non-Poissonian decay of inter-record timestampsigalith the fact that mogi(¢, ) take small values,
implies that the observation profile is comprised of temppifacused bursts of recording activity, which can be saen
flocks of foraging individuals

Observation density profile from a single recording location, during a 3-hour period
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Figure 2: We plot bird arrivals as recorded at a specific looabver the course of 3-hour period. We can see that
the visitation profile is temporally focused, consistingbofsts of bird activity. Our goal is to identify such regionfs
increased observation density and examine which indivedorticipate in these gathering events.

Our main hypothesis is that birds not only visit the feedepas of such small flocks but also havereferenceo
the members of the flock they choose to forage with. Such negibincreased observation density, can be vieweld as
gathering eventsf socially affiliated birds. We seek tusterour Z observations in a way such that closely-appearing
individuals, based on their arrival timestamyp are assigned to the same gathering e¥ent

We perform this clustering scheme using a Gaussian mixtoaemwith an appropriate configuration that allows us
to automatically infer the effective numbér of events/clusters (see ESM). The result is described byaeargation-to-
clusterresponsibility matrix@™ € R?*% whereZ is the total number of bird observations,the number of clusters and
the elementg~.1, 7.2, ..., 72k } Of @ach row denote a membership score of a single observatman event.

As there is a one-to-many correspondence between a given aird timestamps,, a single bird can be recorded
many times in the observation stream or, in other wordsetheg many tuple$t., b, } for whichb, = i. Therefore, we
seek to map the observation-to-cluster maftic RZ* X to a bird-to-cluster matri8 € RV*X . We start by taking each
row~y, = {v. }_, of I" and set the largest element to 1 and all the others to zers allbivs us to describe participation
scoresy,, and all the other measures we derive from them, as intedeediaccurrences For each individual bird
i € {1,..., N}, we identify the subseg; of rows~, of I" that correspond to observations regardinyVe thus set each
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Figure 3: We calculate the time differené&,) = ¢, — t,_, between every pair of consecutive observations at each
location in our two data streams (seasons 2007-8 and 20@8¢eDplot the histogram of those values on a logarithmic
scale. Thei(t,) that refer to pairs where — 1 is the last observation of day— 1 andz the first observation of day
have been ommitted, in order avoid bias in the results (tisame bird feeding activity during night time).

row b; of B as the sunb; = >°___ ~.. The resulting matriB € RV** can be seen as a representation bifartite
or two-mode networkhat is a graph with two types of nodes;birds andK events, as shown in Fig. 4(a). Each element
b denotes the number of times each bird was observed at a sgeciging group.
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Figure 4: Our method identifies gathering events from thetisun our observation stream as seen in Fig. 4(a). Then
individuals are assigned to such events creating a bipargtwork. In Fig. 4(b) we recover the bird-to-bird social
network, via an appropriatene-mode projectigrbased on the co-participation of individuals to these t/en

3.3 Building the social network

The bipartite network we extracted in Section 3.2 and shawkig. 4(a) describes the event participation structurdef t
bird population, that is the weighted allocationsdhirds to i foraging events, encoded B € RY* X Although this
finding is important by itself, as it allows us to quantify teucture of such small foraging groups in terms of the numbe
individual characteristics, relatedness of their membé&rswe seek to move one step further and extract the bikirtb-
social networkbased on the mutual participation of individuals to suchese

Therefore, we seek to define an appropri@te-mode projectioB € RV*K — A ¢ RV*N shown in Fig. 4, so
that a linka,; between a paif, j in the resulting network will express how strongly the twodsiforage together. We start
by definingco-occurrenceof individuals: andj as the number of times they were recorded in the same foragmg.



Thus, given the event membership profilgsandb; for 7 andj respectively, we define the total co-occurrenegsas
aij = Zle min(b;x, bjx), whereK is the number of foraging groups aag is effectively thdink weightbetween and

4 in the resulting social network described by the adjacenayimA € RV>*Y, Note that other association indices, such
as the ones presented in [13] can be used depending on tHemrobntext.

3.4 Co-occurrences: social tie versus coincidence

The next issue we seek to address is the statistical sigmificaf the extracted link weights. Building the adjacency
matrix A € RV>*¥ in the manner described in Section 3.3 makes the very stresigngption that if two individuals
participate in the same gathering event, they have somedbsuacial affiliation. This assumption, known in the animal
social network literature as tH@ambit of the GrougGoG) [14], may lead us to adjacency matrices encumbered wit
“junk” links, produced by co-occurrences that happenediance. Such coincidences are also frequent in settingswher
there are natural peak-hours in the data collection perndd#so when the sensor hardware act as attraction poirfts, as
example the bird feeders in our study. Hence, we seek to dafiagpropriataull modelthat describes how “statistically
surprising” a given link weight would be, if there was no urigieg social preference in the foraging habits of the bird
population. From previous sections we have discussed Hsareations occur in bursts (as shown in Fig. 2) that denote
small foraging groups of birds that arrive together at tiegiées. This is captured by the bird-to-event maBix RV <X,
where each elemeanf;, in the row vectob, denotes the number of times birdppeared at the gathering evént

Consider each row vectdy; as a draw from a multinomial distributio® (n;, p;), with parameters,; = Zszl bik
andp;r = b;x/n;. The values of the parameter vect{(mk}szl can be viewed as preference profilef a bird i to
each foraging everk. If our hypothesis that social affiliation between birdsats event membership holds, then closely
interacting birds, j will have similar preference profilgs; andp;.

Let us now propose an element shufflingf p,; so thatp; — o(p;) and draw a new event occurrence ve(tiﬁ)r) from
the multinomial distributiontM (n;, o(p;)). Performing this permutation and sampling scheme indegrethdfor all birds
i € {1,..., N} leads to a new bird-to-event bipartite network describeBBY € RV > X This new matrixB () preserves
many key characteristics of the original data, among thesnetlent membership structure, because bird appearances
remain concentrated i regions of increased observation density. Quantities asd¢he number of individualy’, and
the total records;, of bird 7 in the data are also retained.

The key difference introduced B(®) is that, although a bird’s uneven participation preferepgacross foraging
groups is preserved (as the permutég, ) has the same entropy ps), the shufflings “breaks” all correlations between
b, andb; induced by latent social affiliation between individualand j. In other words, under our null model birds
still forage in small groups, but witho social preference to which other members of the grouplikforage with We
repeat this procesk-times and for each generated bird-to-event mai¥ we extract the bird-to-bird matriA (%) using
the same one-mode projection presented in Section 3.3. Bgrating multiple instances & (? in this manner, we are
effectively drawing samples from tlensembler family of graphs;(©) that contains all possible network configurations
generated by the null model. Our goal is to examine if our nkesknetworkA is an unlikely case of ().

The randomisation process generafesalues of the weight of each link betweémandj. From the histogram we
get the empirical distributiot(a,;| Ho) that denotes the probability of having a link of weigh} given that the null
hypothesisH, holds. We examine how statistically surprising is each okesklink a;; by performing a hypothesis
test, given an appropriate significance lewglby examining the likelihoogp = P(x > a;;|Hy) of co-occurrences as
large asa;;. Note that the key point of a null model is that co-occurrsnbappen between individuals, but not as a
result of an underlying social structure. In other words, lihks in A(®) areindependentinderHy, henceP(A|H,) =
[1;; P(ai;|Ho). Thus our significance test lies in examining how well thideipendence assumption can explain the
observed co-occurrences encoded in each link of

3.5 Integrating information from multiple locations

We briefly expand our graph inference scheme to the mulétion setting. For each recofd., b, £, } in our data stream,
we now have an additional terp € {1, ..., L} that denotes the index of the location where observatitmok place.

We start by segmenting our dafa= {t.,b.,¢.}Z_, into L streams, so that ead*) contains records referring only
to location/. For eachD®) we perform the network extraction process as presenteddtioBe 3.2 and 3.3 leading to
L adjacency matriceA () ¢ RN¢+xNe, whereN, < N the subset of birds recorded at locatibnSignificance tests, as
described in Section 3.4, are performed independentlydoh & in order to preserve the unique visitation and location
load statistics of each site.

Each matrixA(©) ¢ RNexNe generated in this scheme captures a subset of the overalectivity profile in the
population. As the interpretation of link weight is the nuenlof co-occurrences between two individuals, the overall
is simply the summation;; = Sr_, a,§§> over multiple sites.

In the next section we will demonstrate how these methodedogre applied to the wild-bird dataset described in
Section 2.



4 Results

4.1 Application on the wild-bird dataset

We apply GumEvents on the dataset of wild-bird foraging records preseint Section 2. Our observations consist of
two main streamsP- g that covers the activity aV; s = 770 birds from August 2007 to March 2008 afid 4 that spans
from August 2008 to March 2009 and contaiNgy = 753 birds.

Instead of applying our method on the whole 2-season datarstdirectly, we start by breaking it down into 24-hour
segments. Our aim is to produce a collection of network dmatpghat would allow us to study the day-by-day changes
in the population’s sociality. An example of the obserataata is shown in Fig. 5(a), where we can see the isolated
observation-rich regions (blue stem lines) that refer tchgaarticular day. Note that the night period (no-obseovati
zones in between days) acts as a natural separator in oustdzdian, as no bird foraging activity takes place during that
time.

Observation density profile across 4 days
| 8-Sep-2007 9-Sep-2007 10-Sep-2007 11-Sep-2007,
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| |
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Figure 5: In Fig. 5(a), we show a segment of our data strearilgpfor a duration of four days. We pick a single day
“data-chunk” of observations and break it down into segas&eams that refer to bird records at each particularitotat
as shown in Fig. 5(b). For each location-specific stream, seecaur method to identify gathering events, as shown in
coloured nodes on the right of the bipartite graph in Fig.).5We assign birds (black nodes on the left of the graph)
into such events based on their participation strength. kbgqt the bird-to-event bipartite graph of Fig. 5(c) into a
one-mode network based on co-occurrences in gatherindss\anshown in Fig. 5(d). We remove any links (marked
with double lines) that can be explained away by the null rhode

We proceed by breaking down each daily segment of our daiasiri-streams that corresponditdifferent feeding
locations, shown in Fig. 5(b) for tr#" of September 2007. We then apply@ Events at each locatiohseparatelyas
co-occurrences need to be defined both in terms of tempodadzetial proximity. On each one of those feeder-specific
streams for that day, our method identifies bursts in therghtien density profile and builds a bipartite netwdsk’)
between birds and gathering events, as shown in Fig. 5(& wiight of each Iinlbgﬁ) denotes the number of times bird
i appeared in the gathering evéntBased on Section 3.3, we then perform one-mode projecfitisbipartite network



into a bird-to-bird social network, shown in Fig. 5(d), delsed by the adjacency matri&(©). The weight of each link
a%) = ZkK min(bfﬁ), bg,‘,?) denotes the total number of co-occurrences between bindj across allK” gathering events
that took place at locatiof The statistical importance of eacﬁ) is then tested against the null model we formulated in

Section 3.4, where all links below the significance thredlfolarked with double lines in Fig. 5(d)) are removed. For our
significance test we use@ = 10* samples of the null ensemble along with a standate 0.05 importance threshold.

Figure 6: The Wytham woods Parus Major wild bird social netwat the 9" of September 2007, with/ = 240 nodes,

M = 491 edges, created by integrating all location-specific sytdggahown in Fig. 5(d). Note that not all 770 birds of
the 2007-8 season have been recorded during that day anshdigduals no connections have been removed from the
network.

We repeat this process for dll locations and based on Section 3.5, we combine all siteifgpadjacency matrices
A® to a single one\, that captures the population-wide social structure on iengdayt. An example is shown in Fig.

6, where we have summarised the subgraphs (such as the emeisteig. 5(c)) from allL = 13 locations shown in Fig.
5(b) into a single, global network that describes wild-l8atial organisation on the 9th of September 2007. We repeat
the process for all' 24-hour segments of our data stream, we get a stack of adjaceatrices{A;}~_, that represent
daily snapshots of the wild-bird social network.

From an implementation perspectivem@Events runsl times for each day-segment of the data stream. For each
location?, R randomisations of the bird-to-event incidence maBiare generated and for each one we perform one-mode
projection in order to sample the weight distributions facle link pairi, 7. Although it may appear computationally
prohibitive for large datasets, our method is able to amaBxyears worth of data that correspond to about 1 million
observations in approximately 6 hours, run on a modern 8-nwachine under a MLAB implementation. This is due
to the fact that our method itself is executed on multiple lssub-streams (that refer to different locations per dayj a
can be directly parallelised. Out randomisation/sampling schemes are also independentfioytide, so they can run
concurrently on different processing units. More detailscomputational issues are discussed in the Supplementary
Material and our source code documentation.

4.2 Using GuM Events to study the dynamics of mating pair formation

In this section we examine the validity of the graphs we et&@in Section 4.1 using v Events . As the ground truth
network is not available to us in such settings, we can netctly compare our inferred topologies with some form of
given solution. Although tests on simulated data streame haen performed (see ESM), our aim is to examine how well
our dynamic network reflects meaningful quantities fromapplication-domain perspective.

We make use of an additional dataset, compiled fronmdependenfield study at Wytham woods, which provides
wild-bird mating records for each season. Speldigreedataset logs the IDs of individuals that formed a breedirig pa
each year. Some bird pairs persist over several seasons athiérs only one year due to either divorce or fatalities.
We assume that if the extracted network structure is vaiieh toreeding individuals will be closely connected, eitiher
terms of a direct link or being in the samsecial circle Although looking for direct links between mated individsigs
an obvious choice, it is a very strict case and thus very em$d missing data and noise. Therefore our approach is to



examine if breeding pairs belong more frequently and ctersily than random into social circles that denote bird$iwit
similar foraging patterns.

Our first objective is to identify such social circles in owpulation. In Fig. 6, where we have visualised the network
structure of the wild-bird population for a specific day, vemeee certain regions in the graph (shown in different edlou
where nodes are moensely connectedith their immediate neighbours than the rest of the popuatSuch “hot-
spots” of increased link presence are called modulesomunitiesn the network analysis jargon [7, 15]. For each daily
network described by; we extract such communities using a Non-negative Matrixdfesation (NMF) approach [16].

We find that the majority of mated pairs in network commusitige connected through a direct link in 77.26% of
cases for the 2007-8 data and 71.57% of cases for the 200&9 Rleachability through a path of two links is reported
for the 14.74% of cases in 2007-8 and 17.06% of cases in 2008 average path length between two members, for
the cases where both of them are observed in the data, is2083-8) and 1.46 (2008-9) with median value of 1 in both
datasets. Finally, there are still cases (8% in 2007-8 ar@i7?%4 in 2008-9) of pairs where their geodesic distance spans
from 3 to 6 edges but still belong to the same community.

We monitor bird membership into these groups using a binalimC,, where each elemeny;; = 1 denotes that
birdsi, j appeared in the same community at dayhis leads us to a new collection ed-membershimatrices{C,}/_,
that encode temporal changes in the way birds participate egich other in communities. From a summation actoss
we get a matrixC(®) € RV*N where each elemej‘;) denotes the total number of days in the season where thé pair
participated in the same community. In Fig. 7 we plot a histagof all co-membership values (y-axis on a logarithmic
scale) based on two matric€s®) that refer to bird co-membership values in field seasons-B0Td 2008-9 respectively.
We can see that for both seasons, the vast majority of paiesiever participated in the same group and the distribigion
heavily skewed. This implies a strong preferential mecsrarin the population, where random individuals rarely bglon
to the same social circle.
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Figure 7: We plot the co-membership valued<f) on a logarithmic scale. Each value (x-axis) denotes thénotaber

of days a random pair is observed in the same community. WesearthatC(®) is sparse and the vast majority co-
membership values are zero. This shows that if we pick a rardi@d in the population, it will most likely be never seen
in the same social circle.

We now examine if the above distribution holds for certaib-sategory of pairs in the network, which we know a
priori that are connected with actual social ties. Thispinéormation is provided by the pedigree dataset we meetion
previously, which gives a list of node dyadlg that denote breeding individuals. In this list we also digtiish between
mated pairs that were formettliring our observation season, calladw pairs and others that already existed before,
calledold pairs In Fig. 8 we plot the cumulative distributiods(c;;), wherec;; are values co-membership mat@x®)
andi, j can be a) any node pair (bleestem), b) a new pair (greén-stem) and c) old pair (red\-stem). In Fig. 8(a) we
plot the distributions that refer to the 2007-08 seasor) wit= 217 individuals, from which we have9 new pairs and
20 old pairs. For season 2008-9, shown in Fig. 8(b), we hdve 203 individuals that includel8 new pairs and 0 old
pairs.

We can see that for both seasons presented in Fig. 8 thebdigiris that refer to mated pairs differ significantly
from the one for random ones, withvalues< 10~'® under a Kolmogorov-Smirnov test [17] witl% precision level for
both seasons. In contrast to the random case where valuase mostly zero, co-membership for mated pairs achieves
larger values thus denoting stronger and consistent grapéinpity. The differences between old and new pairs are also
revealed between their respective cumulative distrilmstigreeril-stem and red\-stem), where old pairs achieve higher



co-membership values due to the fact that they existed éef@n pairs where formed, thus they had more opportunities
during the season to participate in the same foraging flocks.

Cummulative co-membership distributions, for season 2007-8
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Cummulative co-membership distributions, for season 2008-9
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Figure 8: We plot the cumulative co-membership distritngitor three different dyad types; random pairs, matingspair
formed in previous seasons and pairs that formed in the museason. Although for the majority of random bird pairs
in the network co-membership values are concentrated drpeiro, breeding individuals tend to participate much more
frequently into the same flocks.

We have already seen that co-membership distributionsrdifétween various pair types. We will now examine
when that differentiation takes place during the obseswateason. We start by breaking down break-down the ob-
servation period into 8 months. For each month, we used #pmeotive daily networks in order to find the three co-
membership distributions of interest. We then compdréd; |{i, j} = random paiy versusP(c;;|{s, j} = old pair) and
P(c;;jl{i,j} = random paif versusP(c;;|{i, j} = new paip, by calculating the-value under a Kolmogorov-Smirnov
test with a proposed significance leved5. In Fig. 9 can see that at the beginning of the season, new lpaie similar
co-membership patterns to random ones, as they have nofdreesd at such early point. But as we move through the
year, this similarity drops and from the “cloud” of randonsasiations, breeding relationships emerge. On the othwet,ha
old pairs that have been already formed from previous sedsmre a consistent non-random co-membership pattern, even
from very early points in the season.
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Co-membership distribution comparison, season 2007-8
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Figure 9: We compare the co-membership distributiéiis;;|{i,j} = random paiy versusP(c;;|{i, j} = old pair)

(red A-line) and P(c;;|{i,j} = random paiy versusP(c;;|{i,j} = new paiy (greenC-line) in a month-by-month
basis, using a Kolmogorov-Smirnov test. Values above tbpgsedy = 0.05 significance threshold imply that the two
distributions under comparison are similar. We can seeftbat very early in the year old pairs differentiate themsslv
from random, by starting to participate frequently in thensecommunities. On the other hand, members of new pairs in
the beginning of the year treat each other as random, wielemntial mechanism that makes them flock together, starts
to build-up during early winter.

5 Discussion and future work

The network paradigm is a powerful tool for studying realdda@omplex systems. As there is an extensive toolset of
methods and algorithms for network analysis, in this workhaee focused on the problem of constructing the network in
the first place. In many applications, the collected datéLzaghe behaviour of the system in some manner, like thésdpat
trajectories of participating agents, but not the undadyielations between them. We address this issue by asstinaing
mobility patterns of individuals may be correlated basedome form of underlying social connection. By identifying
observation-dense regions in the data stream, which caedmeasyathering eventsf affiliated individuals, we propose

a methodology of drawing links between agents based ondbegiarticipation into those events.

Traditional approaches [9—-12] in constructing social reks from spatio-temporal data involve discretising the ob
servation stream based on some fixed time windovand drawing links between individuals when they lie withircls
“interaction-radius”. Our method overcomes the practii#ficulties of such time-slicing approach in cases when we
have no prior knowledge of how big or small the time windowesghould be, thus we need to perform multiple runs
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across varioug\t and select the appropriate one based on some ad-hoc qualitjdn. Additionally, we have proposed
an appropriate null model, which allows us to examine if theoccurrence of individuals into gathering events are a
result of a latent social tie, or coincidence. Our null moghins the “bursty” nature of the data stream but breaks all
correlations between the individuals’ appearance patdmough an appropriate randomisation.

We applied GamEvents into two large-scale datasets that provide wild-Biraging records. We showed that the
inferred network topologies reflect mating pair formatimermts that take place in the population, where breeding indi
viduals tend to belong into the same foraging groups moendfiat random dyads. We also showed that the dynamics
of community structure in the system reveal how newly forrpails initially have a random-like behaviour, while as we
approach the mating season they start to participate mae tifan random into the same communities.

The communities identified here are based on temporal caucerat feeding stations, and while the data analysed
here are extensive, they are incomplete, as observatiemaade for only a proportion of the time, and only for feeding-
related activity. While more complete data would be expetdedsult in more completely connected communities (both
in terms of link number and connection strength), it is natassarily the case that all communities would ultimately
be fully connected. For example, communities might be casegrof pairs of individuals that avoided each other (e.g.
territorial males, competing females) relative to the othembers of the community, even thought they had links Viaiot
individuals. As expected for individuals linked via a netkicthere is a variety of direct and indirect ways that indivals
within and between communities might influence each othethé case of the present network, we might expect that
an important source of direct effects lie in the flow of infatmon between community members about the presence of
food, but such information will also spread indirectly tdet individuals via network links between communities [19]
Numerous other effects might also be considered. For exarilgg many animals, small passerine birds give alarm calls
that alert other individuals about the presence of preddt®8]. While the individuals in the same community may be
expected to be nearest to a focal individual, other linkethrooinities may also be influenced directly by this sort of
behaviour, and the overall inter-community network mayeexs a hypothesis for the likelihood of such effects being
transmitted between individuals. So far all feeding sitagehbeen analysed isolation until the last stage. Siteifspec
network adjacency matrices are extracted and tested foifismnce whence they are all combined to one single adjgcenc
matrix. An alternative to this spatial aggregation oveesivould be temporal aggregation. In this approach temporal
data could be aggregated and behaviour and feeding sitbsedalirectly. While such an analysis may account for
popular feeders it would not achieve the high temporal e of the existing approach. For instance, using a teaipor
aggregation strategy, a group of birds feeding in the maraimd one in the evening would all be treated as one single
group when the times of their feeding site visitation clgatiggest otherwise. A proper resolution of this conflict may
require a full spatio-temporal clustering stage and andibspoke hypothesis test to detect both spatially and teatipo
insignificant events. Such a multivariate approach woukl/alte the necessity to account for spatial correlatianing
hypothesis testing which otherwise would be extremely hardxtract from data. Thus, in our future work we will
focus on a full spatio-temporal analysis of bird behavicuwtt he development of clustering models that combine data of
different characteristics, such as the bursty behaviamndlthe continuous spatial data.

The next stages of our research consist of two main modulesn Ehe perspective of the model, we seek to extend
the way we define the link;;; between two individuals at timeso that we take into accouptior knowledgefrom
previous observations. This has the advantage of captthimgncertainty over the link weight, detect abrupt changes
in the network topology and handling missing observationa principled manner. From an ecological point of view,
we currently run an improved scheme of our data collectidmene we have sensors at each feeding location. This gives
us the advantage of looking at the data at much greater tes@uhus having a more accurate view of the overall bird
population’s foraging patterns.

Although the methodology we presented is applied to anirhakovation records, it can be extended to any system
where agents perform check-ins at certain locations ankl shiservations are not uniformly spread in data stream, but
temporally focusedWe believe methodologies and theoretical results deffired the study of animal social networks
will benefit the wider field of network analysis, as individsiaan be monitored from the beginning to the end of their life
span, there are no privacy issues associated with dataotieand understanding the dynamics of animal interastion
provides an insight into the behaviour and evolution of claxgystems.
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