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Abstract

We propose a methodology for extracting social network structure fromspatio-temporal datasets that describe times-
tamped occurrences of individuals. Our approach identifies temporalregions of dense agent activity and links are drawn
between individuals based on their co-occurrences across these “gathering events”. The statistical significance of these
connections is then tested against an appropriate null model. Such framework allows us to exploit the wealth of analyti-
cal and computational tools of network analysis in settings where the underlying connectivity pattern between interacting
agents (commonly termed theadjacency matrix) is not given a priori. We perform experiments on two large scale datasets
(> 10

6 points) of great titParus majorwild bird foraging records and illustrate the use of this approach by examining the
temporal dynamics of pairing behaviour, a process that was previously very hard to observe. We show that established
pair bonds are maintained continuously, whereas new pair bonds form at variable times before breeding, but are charac-
terised by a rapid development of network proximity. The method proposed here is general, and can be applied to any
system with information about the temporal co-occurrence of interactingagents.
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1 Introduction

We use the termsgraph or network to describe the simplified version of the pattern of interactions in a system, such
as an animal population, where nodes are individual entities and edges represent some form of association, interaction,
similarity or behavioural correlation between nodes. In the same way that a map is a simplified (though useful) version
of a landscape, a network describes thetopologyof a real-world system by focusing on the connectivity patterns of its
individual components [1].

The key motivation for employing network analysis tools is that the web of interconnections between individuals can
provide us insights on the underlying mechanisms that govern the system under study [2]. For example in an ecological
context, the position and role of animals in the network may have important fitness consequences [3] both for the individual
and the population as a whole [4]. Additionally, the networkparadigm gives us the flexibility to look at the system at
various resolutions and model any type of interaction; sexual, cooperative, competitive, etc [4].

Despite the advantages of the network paradigm and the wealth of analytical and computational tools for network
analysis [5–8], the problem of capturing any given system asa graph is not always trivial. Not all systems possess an
obvious “web-like” structure (such as the Internet), wherethe interconnections between participating entities are apparent
from direct observation (computers that are connected through physical cables). Additionally, collected data (from field
studies, sensor observations, world-wide web etc) may not capture the associations between the observed agents, thus no
relational structure can be directly defined. For example, in systems such as animal populations the underlying network
of social affiliations needs to be inferred through proxies such as the behaviour (mobility patterns, foraging habits etc) of
individual animals.

This work focuses on the problem of finding theunderlying social network structureof a population that can only
be observed through the spatial trajectories of its individual members. We use as a case study a setting where individual
wild birds are marked with transponder devices and through appropriate logging hardware we are able to identify their
position at various sites in their natural habitat. The observation data collected in this manner consists of a long stream of
timestamped records where no obvious interaction or socialaffiliation is apparent. By assuming thatsocial structureis a
latent factor that affects the way birds visit locations (inthe sense that socially affiliated individuals have similarmobility
patterns), we propose a methodology that extracts asocial networkfrom such spatio-temporal data stream. Although we
demonstrate our method in an ecological context, our approach can be generalised to any setting where agents perform
timestamped “check-ins” at various locations.
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The paper is organised as follows; in Section 2 we outline ourexperiment settings and discuss our data format.
In Section 3 we present our contribution, which is a methodology for extracting network structure from timestamped
observation data. In Section 4 we apply our method to the wildbird dataset and show that the extracted networks reflect
actual processes that take place in the population, by focusing on mating pair formation. We conclude this paper in Section
5 by discussing the next steps of our research, both in terms of method development and data collection extensions. The
MATLAB code that implements the methods presented in the paper is made available1 to the community.

2 Data collection

This work lies within the context of a large ongoing study of the great tit (GT)Parus majorpopulation at Wytham Woods
near Oxford, United Kingdom. Thousands of individual birdsare marked with transponders and a grid of sensor-enabled
locations generates hundreds of thousands of records each winter. At each one of the sixty-seven locations in the forest,
there is a feeder that acts as an attraction point for foraging individuals. By placing appropriate logging hardware at
the feeder, we are able to record the presence of each individual bird. Due to equipment constraints, there were only
16 loggers available at any time, and these were thus rotatedaround the 67 locations following a structured randomised
design, so that each of 8 approximately equally-sized sections of the site always had two active loggers in it. More details
on our experiment set-up is provided in the Electronic Supplementary Material (ESM).

Table 1: Sample format of our data
Bird ID timestamp location ID

N199642 1/9/2007 10:02:15 (am) 1a
TE80535 1/9/2007 10:02:30 (am) 1a
V260952 1/9/2007 10:02:30 (am) 2b
V260952 1/9/2007 10:02:45 (am) 2b
N199642 1/9/2007 10:12:15 (am) 1c

... ... ...

The data generated from this scheme consists of a long streamof timestamped observations as shown in Table 1. Each
row represents a single record that captures the ID of the bird along with the time and location where the foraging event
took place. In this format, shown in Table 1, our data stream is only a transactions table in a relational database context,
which restricts our analysis to a handful of relatively simple counting operations such as finding the total appearancesof
a given bird, total birds that visited a specific feeder, etc.

What we are interested in is to find an appropriate mapping of this spatio-temporal stream to a relational space,
where social affiliations between individuals are revealedby the similarity of their feeder visitation patterns. We seek
to characterise the overall social network of the population of marked birds, and explore the ability of this approach to
recover relationships between mated pairs of individuals observed independently during breeding season data collection.
We further wish to explore the temporal dynamics of the formation of mated pairs. In biological terms, the process by
which pairs of individuals develop relationships that leadto mating is poorly understood in most natural populations,
since the majority of work involves observations of pairs atthe time of breeding, after pair formation has occurred. As
a consequence, we have little knowledge of when such relationships form, and when they become distinguishable from
other social relationships between individuals.

In the following section we introduce a method, based on the above goals, that extracts network structure given such
spatio-temporal data. In Section 4 we present the application of this approach to theParus Majordata set.

3 Network inference from spatio-temporal data

3.1 The time-window problem

A typical approach for building a network from data such as the ones we presented in Section 2, would involve discretising
the stream using a fixedaggregationor time window∆t and assuming that if two individuals are recorded within an
interval∆t then there is a link between them in the network [9–12,20]. The most obvious problem with this approach is
that of finding the appropriate size for the time window. An inappropriately small∆t may lead to a network that does not
capture important connections, while a very large∆t would overload the graph with “junk” links.

Using our wild-bird data as an example, we take a single day’sworth of observations (in a format similar to the one
shown in Table 1) and split that stream into time intervals ofsize∆t. We then place links between theN individual
birds (nodes) based on the number of times they were recordedwithin a temporal distance of∆t. We seek to examine the
changes that take place in the network as we vary the time window size by monitoring thenetwork load(NL), which is the

1http://www.robots.ox.ac.uk/ ˜ parg/software.html
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fraction ofM links in the network over all possible pair combinations1
2 (N

2 −N) of N nodes2. We can see in Fig. 1(a)
that NL increases along with the size of∆t, because more links are placed between nodes. An example of how network
topology changes for various selections of time window sizeis is shown in Fig. 1(b), while Kringset al. in [20] have
performed similar experimentation considering more network metrics such as average degree, average weight, clustering
coefficients, etc.

Between all these different network topologies that resultfrom varying∆t, there is no direct way of showing which
one is the most appropriate. Additionally, even if we had some prior knowledge on the appropriate time window size or
even a specific quality function for finding its optimum value, we have still made the strong assumption that∆t is fixed
throughout the data stream. This corresponds to the belief that the “interaction radius” between individuals isconstant
across our observation period and is not affected by temporal changes in the overall system.
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Figure 1: In Fig. 1(a) we plot the network load for various time window sizes, spanning from 10 seconds to half an hour.
We can see that especially for early increases of∆t there is a large inclusion of links in the network. We also mark three
cases of different time window sizes (dashed vertical line)and show in Fig. 1(b) how the graph topology changes based
on the∆t value.

In the current work we shall pursue a different approach for building networks from spatio-temporal records, which

2In this example and throughout this paper we are considering networks that areundirectedwith nodes that have no self-edges.
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exploits the inhomogeneousdensity profileof our data stream thus avoiding schemes such as multiple runs [20] in order to
select an appropriate∆t. This methodology, which we will call GMMEvents (Gaussian mixture model for event streams)
is complemented with an appropriate null model that allows us to distinguish between links that denote social tie and the
ones that result from coincidence.

3.2 Identification of gathering events

Let our spatio-temporal dataD, a sample of which we showed in Table 1, to be represented in the formD = {bz, tz, ℓz}
Z
z=1

whereZ is the total number of records ortuplesin our database (e.g. the number of rows of Table 1). If we takea single
tuple{bz, tz, ℓz}, we read it as “the birdbz appeared at timetz at the feeding locationℓz”. Note that{tz}Zz=1 denotes
event time, therefore for every timestamptz there is a corresponding bird appearancebz. Additionally, given a specific
bird i out of totalN birds, there can be many recordsz for which bz = i, as a single individual may appear many times
in the data. Our goal is to find an appropriate mapping from thestreamD to anadjacency matrixA ∈ R

N×N , where
aij 6= 0 denotes a link between birdsi andj. To keep the notation uncluttered, from now on we will focus on the case of
a single location and show later that results can be easily generalised to the multi-site case.

Consider the plot of Fig. 2, which illustrates how bird arrivals at a particular feeding location are spread throughout
a small sample of our observation timeline. Each stem represents an actual sensor capture of a specific birdbz at time
tz. We can see that the records are not uniformly spread across time, but they are “packed” in small observation-dense
regions. Indeed, if we take the whole data stream and extractthe histogram of the time differencesδ(tz) = tz − tz−1

between every pair of consecutive observations, as seen in Fig. 3, we find a broad power-law tail with exponent≃ 2.5 for
δ(tz) > 103. This non-Poissonian decay of inter-record timestamps, along with the fact that mostδ(tz) take small values,
implies that the observation profile is comprised of temporally-focused bursts of recording activity, which can be seenas
flocks of foraging individuals.
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Figure 2: We plot bird arrivals as recorded at a specific location over the course of 3-hour period. We can see that
the visitation profile is temporally focused, consisting ofbursts of bird activity. Our goal is to identify such regionsof
increased observation density and examine which individuals participate in these gathering events.

Our main hypothesis is that birds not only visit the feeder aspart of such small flocks but also have apreferenceto
the members of the flock they choose to forage with. Such regions of increased observation density, can be viewed asK
gathering eventsof socially affiliated birds. We seek toclusterourZ observations in a way such that closely-appearing
individuals, based on their arrival timestamptz, are assigned to the same gathering eventk.

We perform this clustering scheme using a Gaussian mixture model, with an appropriate configuration that allows us
to automatically infer the effective numberK of events/clusters (see ESM). The result is described by an observation-to-
clusterresponsibility matrixΓ ∈ R

Z×K , whereZ is the total number of bird observations,K the number of clusters and
the elements{γz1, γz2, ..., γzK} of each row denote a membership score of a single observationz to an eventk.

As there is a one-to-many correspondence between a given bird i and timestampstz, a single bird can be recorded
many times in the observation stream or, in other words, there are many tuples{tz, bz} for which bz = i. Therefore, we
seek to map the observation-to-cluster matrixΓ ∈ R

Z×K to a bird-to-cluster matrixB ∈ R
N×K . We start by taking each

rowγz = {γzk}
K
k=1 of Γ and set the largest element to 1 and all the others to zero. This allows us to describe participation

scoresγzk, and all the other measures we derive from them, as integer valued occurrences. For each individual bird
i ∈ {1, ..., N}, we identify the subsetZi of rowsγz of Γ that correspond to observations regardingi. We thus set each
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Figure 3: We calculate the time differenceδ(tz) = tz − tz−1 between every pair of consecutive observations at each
location in our two data streams (seasons 2007-8 and 2008-9)and plot the histogram of those values on a logarithmic
scale. Theδ(tz) that refer to pairs wherez − 1 is the last observation of dayd − 1 andz the first observation of dayd
have been ommitted, in order avoid bias in the results (thereis no bird feeding activity during night time).

row bi of B as the sumbi =
∑

z∈Zi
γz. The resulting matrixB ∈ R

N×K can be seen as a representation of abipartite
or two-mode network, that is a graph with two types of nodes;N birds andK events, as shown in Fig. 4(a). Each element
bik denotes the number of times each bird was observed at a specific foraging group.
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(a) The bird-to-event bipartite networkB ∈ R
N×K

(b) The bird-to-bird social network
A ∈ R

N×N

Figure 4: Our method identifies gathering events from the bursts in our observation stream as seen in Fig. 4(a). Then
individuals are assigned to such events creating a bipartite network. In Fig. 4(b) we recover the bird-to-bird social
network, via an appropriateone-mode projection, based on the co-participation of individuals to these events.

3.3 Building the social network

The bipartite network we extracted in Section 3.2 and shown in Fig. 4(a) describes the event participation structure of the
bird population, that is the weighted allocations ofN birds toK foraging events, encoded byB ∈ R

N×K . Although this
finding is important by itself, as it allows us to quantify thestructure of such small foraging groups in terms of the number,
individual characteristics, relatedness of their membersetc, we seek to move one step further and extract the bird-to-bird
social networkbased on the mutual participation of individuals to such events.

Therefore, we seek to define an appropriateone-mode projectionB ∈ R
N×K → A ∈ R

N×N , shown in Fig. 4, so
that a linkaij between a pairi, j in the resulting network will express how strongly the two birds forage together. We start
by definingco-occurrenceof individualsi andj as the number of times they were recorded in the same foraginggroup.
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Thus, given the event membership profilesbi andbj for i andj respectively, we define the total co-occurrencesaij as
aij =

∑K

k=1 min(bik, bjk), whereK is the number of foraging groups andaij is effectively thelink weightbetweeni and
j in the resulting social network described by the adjacency matrixA ∈ R

N×N . Note that other association indices, such
as the ones presented in [13] can be used depending on the problem context.

3.4 Co-occurrences: social tie versus coincidence

The next issue we seek to address is the statistical significance of the extracted link weights. Building the adjacency
matrix A ∈ R

N×N in the manner described in Section 3.3 makes the very strong assumption that if two individuals
participate in the same gathering event, they have some formof social affiliation. This assumption, known in the animal
social network literature as theGambit of the Group(GoG) [14], may lead us to adjacency matrices encumbered with
“junk” links, produced by co-occurrences that happened by chance. Such coincidences are also frequent in settings where
there are natural peak-hours in the data collection period and also when the sensor hardware act as attraction points, asfor
example the bird feeders in our study. Hence, we seek to definean appropriatenull modelthat describes how “statistically
surprising” a given link weight would be, if there was no underlying social preference in the foraging habits of the bird
population. From previous sections we have discussed that observations occur in bursts (as shown in Fig. 2) that denote
small foraging groups of birds that arrive together at the feeders. This is captured by the bird-to-event matrixB ∈ R

N×K ,
where each elementbik in the row vectorbi denotes the number of times birdi appeared at the gathering eventk.

Consider each row vectorbi as a draw from a multinomial distributionM(ni,pi), with parametersni =
∑K

k=1 bik
andpik = bik/ni. The values of the parameter vector{pik}

K
k=1 can be viewed as apreference profileof a bird i to

each foraging eventk. If our hypothesis that social affiliation between birds affects event membership holds, then closely
interacting birdsi, j will have similar preference profilespi andpj .

Let us now propose an element shufflingσ of pi so thatpi → σ(pi) and draw a new event occurrence vectorb
(0)
i from

the multinomial distributionM(ni, σ(pi)). Performing this permutation and sampling scheme independently for all birds
i ∈ {1, ..., N} leads to a new bird-to-event bipartite network described byB(0) ∈ R

N×K . This new matrixB(0) preserves
many key characteristics of the original data, among them the event membership structure, because bird appearances
remain concentrated inK regions of increased observation density. Quantities suchas the number of individualsN , and
the total recordsni, of bird i in the data are also retained.

The key difference introduced inB(0) is that, although a bird’s uneven participation preferencepi across foraging
groups is preserved (as the permutedσ(pi) has the same entropy aspi), the shufflingσ “breaks” all correlations between
bi andbj induced by latent social affiliation between individualsi andj. In other words, under our null model birds
still forage in small groups, but withno social preference to which other members of the group theywill forage with. We
repeat this processR-times and for each generated bird-to-event matrixB(0) we extract the bird-to-bird matrixA(0) using
the same one-mode projection presented in Section 3.3. By generating multiple instances ofA(0) in this manner, we are
effectively drawing samples from theensembleor family of graphsG(0) that contains all possible network configurations
generated by the null model. Our goal is to examine if our observed networkA is an unlikely case ofG(0).

The randomisation process generatesR values of the weight of each link betweeni andj. From the histogram we
get the empirical distributionP (aij |H0) that denotes the probability of having a link of weightaij given that the null
hypothesisH0 holds. We examine how statistically surprising is each observed link aij by performing a hypothesis
test, given an appropriate significance levelα, by examining the likelihoodp = P (x ≥ aij |H0) of co-occurrences as
large asaij . Note that the key point of a null model is that co-occurrences happen between individuals, but not as a
result of an underlying social structure. In other words, the links inA(0) areindependentunderH0, henceP (A|H0) =∏

ij P (aij |H0). Thus our significance test lies in examining how well this independence assumption can explain the
observed co-occurrences encoded in each link ofA.

3.5 Integrating information from multiple locations

We briefly expand our graph inference scheme to the multi-location setting. For each record{tz, bz, ℓz} in our data stream,
we now have an additional termℓz ∈ {1, ..., L} that denotes the index of the location where observationz took place.

We start by segmenting our dataD = {tz, bz, ℓz}
Z
z=1 intoL streams, so that eachD(ℓ) contains records referring only

to locationℓ. For eachD(ℓ) we perform the network extraction process as presented in Sections 3.2 and 3.3 leading to
L adjacency matricesA(ℓ) ∈ R

Nℓ×Nℓ , whereNℓ ≤ N the subset of birds recorded at locationℓ. Significance tests, as
described in Section 3.4, are performed independently for eachℓ, in order to preserve the unique visitation and location
load statistics of each site.

Each matrixA(ℓ) ∈ R
Nℓ×Nℓ generated in this scheme captures a subset of the overall connectivity profile in the

population. As the interpretation of link weight is the number of co-occurrences between two individuals, the overallaij

is simply the summationaij =
∑L

ℓ=1 a
(ℓ)
ij over multiple sites.

In the next section we will demonstrate how these methodologies are applied to the wild-bird dataset described in
Section 2.
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4 Results

4.1 Application on the wild-bird dataset

We apply GMMEvents on the dataset of wild-bird foraging records presented in Section 2. Our observations consist of
two main streams;D7,8 that covers the activity ofN7,8 = 770 birds from August 2007 to March 2008 andD8,9 that spans
from August 2008 to March 2009 and containsN8,9 = 753 birds.

Instead of applying our method on the whole 2-season data stream directly, we start by breaking it down into 24-hour
segments. Our aim is to produce a collection of network snapshots that would allow us to study the day-by-day changes
in the population’s sociality. An example of the observation data is shown in Fig. 5(a), where we can see the isolated
observation-rich regions (blue stem lines) that refer to each particular day. Note that the night period (no-observation
zones in between days) acts as a natural separator in our datastream, as no bird foraging activity takes place during that
time.

(a)

(b)

(c)

(d)

Figure 5: In Fig. 5(a), we show a segment of our data stream profile for a duration of four days. We pick a single day
“data-chunk” of observations and break it down into separate streams that refer to bird records at each particular location,
as shown in Fig. 5(b). For each location-specific stream, we use our method to identify gathering events, as shown in
coloured nodes on the right of the bipartite graph in Fig. 5(c). We assign birds (black nodes on the left of the graph)
into such events based on their participation strength. We project the bird-to-event bipartite graph of Fig. 5(c) into an
one-mode network based on co-occurrences in gathering events, as shown in Fig. 5(d). We remove any links (marked
with double lines) that can be explained away by the null model.

We proceed by breaking down each daily segment of our data into sub-streams that correspond toL different feeding
locations, shown in Fig. 5(b) for the9th of September 2007. We then apply GMMEvents at each locationℓ separately, as
co-occurrences need to be defined both in terms of temporal and spatial proximity. On each one of those feeder-specific
streams for that day, our method identifies bursts in the observation density profile and builds a bipartite networkB(ℓ)

between birds and gathering events, as shown in Fig. 5(c). The weight of each linkb(ℓ)ik denotes the number of times bird
i appeared in the gathering eventk. Based on Section 3.3, we then perform one-mode projection of this bipartite network
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into a bird-to-bird social network, shown in Fig. 5(d), described by the adjacency matrixA(ℓ). The weight of each link
a
(ℓ)
ij =

∑K

k min(b
(ℓ)
ik , b

(ℓ)
jk ) denotes the total number of co-occurrences between birdi andj across allK gathering events

that took place at locationℓ. The statistical importance of eacha(ℓ)ij is then tested against the null model we formulated in
Section 3.4, where all links below the significance threshold (marked with double lines in Fig. 5(d)) are removed. For our
significance test we usedR = 104 samples of the null ensemble along with a standardα = 0.05 importance threshold.

Figure 6: The Wytham woods Parus Major wild bird social network at the 9th of September 2007, withN = 240 nodes,
M = 491 edges, created by integrating all location-specific subgraphs shown in Fig. 5(d). Note that not all 770 birds of
the 2007-8 season have been recorded during that day and alsoindividuals no connections have been removed from the
network.

We repeat this process for allL locations and based on Section 3.5, we combine all site-specific adjacency matrices
A(ℓ) to a single oneAt that captures the population-wide social structure on the given dayt. An example is shown in Fig.
6, where we have summarised the subgraphs (such as the one shown in Fig. 5(c)) from allL = 13 locations shown in Fig.
5(b) into a single, global network that describes wild-birdsocial organisation on the 9th of September 2007. We repeat
the process for allT 24-hour segments of our data stream, we get a stack of adjacency matrices{At}

T
t=1 that represent

daily snapshots of the wild-bird social network.
From an implementation perspective, GMMEvents runsL times for each day-segment of the data stream. For each

locationℓ,R randomisations of the bird-to-event incidence matrixB are generated and for each one we perform one-mode
projection in order to sample the weight distributions for each link pairi, j. Although it may appear computationally
prohibitive for large datasets, our method is able to analyse 2-years worth of data that correspond to about 1 million
observations in approximately 6 hours, run on a modern 8-core machine under a MATLAB implementation. This is due
to the fact that our method itself is executed on multiple small sub-streams (that refer to different locations per day) and
can be directly parallelised. OurR randomisation/sampling schemes are also independent by definition, so they can run
concurrently on different processing units. More details on computational issues are discussed in the Supplementary
Material and our source code documentation.

4.2 Using GMM Events to study the dynamics of mating pair formation

In this section we examine the validity of the graphs we extracted in Section 4.1 using GMMEvents . As the ground truth
network is not available to us in such settings, we can not directly compare our inferred topologies with some form of
given solution. Although tests on simulated data streams have been performed (see ESM), our aim is to examine how well
our dynamic network reflects meaningful quantities from ourapplication-domain perspective.

We make use of an additional dataset, compiled from anindependentfield study at Wytham woods, which provides
wild-bird mating records for each season. Suchpedigreedataset logs the IDs of individuals that formed a breeding pair
each year. Some bird pairs persist over several seasons while others only one year due to either divorce or fatalities.
We assume that if the extracted network structure is valid, then breeding individuals will be closely connected, eitherin
terms of a direct link or being in the samesocial circle. Although looking for direct links between mated individuals is
an obvious choice, it is a very strict case and thus very sensitive to missing data and noise. Therefore our approach is to
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examine if breeding pairs belong more frequently and consistently than random into social circles that denote birds with
similar foraging patterns.

Our first objective is to identify such social circles in our population. In Fig. 6, where we have visualised the network
structure of the wild-bird population for a specific day, we can see certain regions in the graph (shown in different colour)
where nodes are moredensely connectedwith their immediate neighbours than the rest of the population. Such “hot-
spots” of increased link presence are called modules orcommunitiesin the network analysis jargon [7,15]. For each daily
network described byAt we extract such communities using a Non-negative Matrix Factorisation (NMF) approach [16].

We find that the majority of mated pairs in network communities are connected through a direct link in 77.26% of
cases for the 2007-8 data and 71.57% of cases for the 2008-9 data. Reachability through a path of two links is reported
for the 14.74% of cases in 2007-8 and 17.06% of cases in 2008-9. The average path length between two members, for
the cases where both of them are observed in the data, is 1.33 (2007-8) and 1.46 (2008-9) with median value of 1 in both
datasets. Finally, there are still cases (8% in 2007-8 and 11.37% in 2008-9) of pairs where their geodesic distance spans
from 3 to 6 edges but still belong to the same community.

We monitor bird membership into these groups using a binary matrix Ct, where each elementcijt = 1 denotes that
birdsi, j appeared in the same community at dayt. This leads us to a new collection ofco-membershipmatrices{Ct}

T
t=1

that encode temporal changes in the way birds participate with each other in communities. From a summation acrosst

we get a matrixC(s) ∈ R
N×N where each elementc(s)ij denotes the total number of days in the season where the pairi, j

participated in the same community. In Fig. 7 we plot a histogram of all co-membership values (y-axis on a logarithmic
scale) based on two matricesC(s) that refer to bird co-membership values in field seasons 2007-8 and 2008-9 respectively.
We can see that for both seasons, the vast majority of pairs have never participated in the same group and the distributionis
heavily skewed. This implies a strong preferential mechanism in the population, where random individuals rarely belong
to the same social circle.
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Figure 7: We plot the co-membership values ofC(s) on a logarithmic scale. Each value (x-axis) denotes the total number
of days a random pair is observed in the same community. We cansee thatC(s) is sparse and the vast majority co-
membership values are zero. This shows that if we pick a random dyad in the population, it will most likely be never seen
in the same social circle.

We now examine if the above distribution holds for certain sub-category of pairs in the network, which we know a
priori that are connected with actual social ties. This prior information is provided by the pedigree dataset we mentioned
previously, which gives a list of node dyadsi, j that denote breeding individuals. In this list we also distinguish between
mated pairs that were formedduring our observation season, callednew pairs, and others that already existed before,
calledold pairs. In Fig. 8 we plot the cumulative distributionsF (cij), wherecij are values co-membership matrixC(s)

andi, j can be a) any node pair (blue◦-stem), b) a new pair (green�-stem) and c) old pair (red△-stem). In Fig. 8(a) we
plot the distributions that refer to the 2007-08 season, with N = 217 individuals, from which we have49 new pairs and
20 old pairs. For season 2008-9, shown in Fig. 8(b), we haveN = 203 individuals that include48 new pairs and10 old
pairs.

We can see that for both seasons presented in Fig. 8 the distributions that refer to mated pairs differ significantly
from the one for random ones, withp-values< 10−15 under a Kolmogorov-Smirnov test [17] with5% precision level for
both seasons. In contrast to the random case where valuescij are mostly zero, co-membership for mated pairs achieves
larger values thus denoting stronger and consistent graph proximity. The differences between old and new pairs are also
revealed between their respective cumulative distributions (green�-stem and red△-stem), where old pairs achieve higher

9



co-membership values due to the fact that they existed before new pairs where formed, thus they had more opportunities
during the season to participate in the same foraging flocks.
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Figure 8: We plot the cumulative co-membership distributions for three different dyad types; random pairs, mating pairs
formed in previous seasons and pairs that formed in the current season. Although for the majority of random bird pairs
in the network co-membership values are concentrated around zero, breeding individuals tend to participate much more
frequently into the same flocks.

We have already seen that co-membership distributions differ between various pair types. We will now examine
when that differentiation takes place during the observation season. We start by breaking down break-down the ob-
servation period into 8 months. For each month, we used the respective daily networks in order to find the three co-
membership distributions of interest. We then comparedP (cij |{i, j} = random pair) versusP (cij |{i, j} = old pair) and
P (cij |{i, j} = random pair) versusP (cij |{i, j} = new pair), by calculating thep-value under a Kolmogorov-Smirnov
test with a proposed significance level0.05. In Fig. 9 can see that at the beginning of the season, new pairs have similar
co-membership patterns to random ones, as they have not beenformed at such early point. But as we move through the
year, this similarity drops and from the “cloud” of random associations, breeding relationships emerge. On the other hand,
old pairs that have been already formed from previous seasons have a consistent non-random co-membership pattern, even
from very early points in the season.
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Figure 9: We compare the co-membership distributionsP (cij |{i, j} = random pair) versusP (cij |{i, j} = old pair)
(red △-line) andP (cij |{i, j} = random pair) versusP (cij |{i, j} = new pair) (green�-line) in a month-by-month
basis, using a Kolmogorov-Smirnov test. Values above the proposedα = 0.05 significance threshold imply that the two
distributions under comparison are similar. We can see thatfrom very early in the year old pairs differentiate themselves
from random, by starting to participate frequently in the same communities. On the other hand, members of new pairs in
the beginning of the year treat each other as random, while preferential mechanism that makes them flock together, starts
to build-up during early winter.

5 Discussion and future work

The network paradigm is a powerful tool for studying real-world complex systems. As there is an extensive toolset of
methods and algorithms for network analysis, in this work wehave focused on the problem of constructing the network in
the first place. In many applications, the collected data capture the behaviour of the system in some manner, like the spatial
trajectories of participating agents, but not the underlying relations between them. We address this issue by assumingthat
mobility patterns of individuals may be correlated based onsome form of underlying social connection. By identifying
observation-dense regions in the data stream, which can be seen asgathering eventsof affiliated individuals, we propose
a methodology of drawing links between agents based on theirco-participation into those events.

Traditional approaches [9–12] in constructing social networks from spatio-temporal data involve discretising the ob-
servation stream based on some fixed time window∆t and drawing links between individuals when they lie within such
“interaction-radius”. Our method overcomes the practicaldifficulties of such time-slicing approach in cases when we
have no prior knowledge of how big or small the time window size should be, thus we need to perform multiple runs

11



across various∆t and select the appropriate one based on some ad-hoc quality function. Additionally, we have proposed
an appropriate null model, which allows us to examine if the co-occurrence of individuals into gathering events are a
result of a latent social tie, or coincidence. Our null modelretains the “bursty” nature of the data stream but breaks all
correlations between the individuals’ appearance patterns through an appropriate randomisation.

We applied GMMEvents into two large-scale datasets that provide wild-bird foraging records. We showed that the
inferred network topologies reflect mating pair formation events that take place in the population, where breeding indi-
viduals tend to belong into the same foraging groups more often that random dyads. We also showed that the dynamics
of community structure in the system reveal how newly formedpairs initially have a random-like behaviour, while as we
approach the mating season they start to participate more often than random into the same communities.

The communities identified here are based on temporal occurrence at feeding stations, and while the data analysed
here are extensive, they are incomplete, as observations are made for only a proportion of the time, and only for feeding-
related activity. While more complete data would be expectedto result in more completely connected communities (both
in terms of link number and connection strength), it is not necessarily the case that all communities would ultimately
be fully connected. For example, communities might be comprised of pairs of individuals that avoided each other (e.g.
territorial males, competing females) relative to the other members of the community, even thought they had links via other
individuals. As expected for individuals linked via a network, there is a variety of direct and indirect ways that individuals
within and between communities might influence each other. In the case of the present network, we might expect that
an important source of direct effects lie in the flow of information between community members about the presence of
food, but such information will also spread indirectly to other individuals via network links between communities [19].
Numerous other effects might also be considered. For example, like many animals, small passerine birds give alarm calls
that alert other individuals about the presence of predators [18]. While the individuals in the same community may be
expected to be nearest to a focal individual, other linked communities may also be influenced directly by this sort of
behaviour, and the overall inter-community network may serve as a hypothesis for the likelihood of such effects being
transmitted between individuals. So far all feeding sites have been analysed isolation until the last stage. Site-specific
network adjacency matrices are extracted and tested for significance whence they are all combined to one single adjacency
matrix. An alternative to this spatial aggregation over sites would be temporal aggregation. In this approach temporal
data could be aggregated and behaviour and feeding sites analysed directly. While such an analysis may account for
popular feeders it would not achieve the high temporal resolution of the existing approach. For instance, using a temporal
aggregation strategy, a group of birds feeding in the morning and one in the evening would all be treated as one single
group when the times of their feeding site visitation clearly suggest otherwise. A proper resolution of this conflict may
require a full spatio-temporal clustering stage and another bespoke hypothesis test to detect both spatially and temporally
insignificant events. Such a multivariate approach would alleviate the necessity to account for spatial correlations during
hypothesis testing which otherwise would be extremely hardto extract from data. Thus, in our future work we will
focus on a full spatio-temporal analysis of bird behaviour and the development of clustering models that combine data of
different characteristics, such as the bursty behaviouraland the continuous spatial data.

The next stages of our research consist of two main modules. From the perspective of the model, we seek to extend
the way we define the linkaijt between two individuals at timet so that we take into accountprior knowledgefrom
previous observations. This has the advantage of capturingthe uncertainty over the link weight, detect abrupt changes
in the network topology and handling missing observations in a principled manner. From an ecological point of view,
we currently run an improved scheme of our data collection, where we have sensors at each feeding location. This gives
us the advantage of looking at the data at much greater resolutions thus having a more accurate view of the overall bird
population’s foraging patterns.

Although the methodology we presented is applied to animal observation records, it can be extended to any system
where agents perform check-ins at certain locations and such observations are not uniformly spread in data stream, but
temporally focused. We believe methodologies and theoretical results derivedfrom the study of animal social networks
will benefit the wider field of network analysis, as individuals can be monitored from the beginning to the end of their life
span, there are no privacy issues associated with data collection and understanding the dynamics of animal interactions
provides an insight into the behaviour and evolution of complex systems.
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