
Efficient Crowdsourcing of Unknown Experts
using Multi-Armed Bandits

Long Tran-Thanh and Sebastian Stein and Alex Rogers and Nicholas R. Jennings1

Abstract. We address the expert crowdsourcing problem, in which
an employer wishes to assign tasks to a set of available workers with
heterogeneous working costs. Critically, as workers produce results
of varying quality, the utility of each assigned task is unknown and
can vary both between workers and individual tasks. Furthermore,
in realistic settings, workers are likely to have limits on the number
of tasks they can perform and the employer will have a fixed bud-
get to spend on hiring workers. Given these constraints, theobjective
of the employer is to assign tasks to workers in order to maximise
the overall utility achieved. To achieve this, we introducea novel
multi–armed bandit (MAB) model, the bounded MAB, that naturally
captures the problem of expert crowdsourcing. We also propose an
algorithm to solve it efficiently, calledboundedε–first, which uses
the firstεB of its total budgetB to derive estimates of the workers’
quality characteristics (exploration), while the remaining (1− ε) B
is used to maximise the total utility based on those estimates (ex-
ploitation). We show that using this technique allows us to derive an
O

(

B
2
3

)

upper bound on our algorithm’s performance regret (i.e. the
expected difference in utility between the optimal and our algorithm).
In addition, we demonstrate that our algorithm outperformsexisting
crowdsourcing methods by up to 155% in experiments based on real–
world data from a prominent crowdsourcing site, while achieving up
to 75% of a hypothetical optimal with full information.

1 INTRODUCTION

Recently, businesses and other organisations have startedto turn to
a new emerging labour market to achieve their operating objectives.
Using the internet, they advertise jobs to a global audienceand hire
workers on a temporary basis to complete tasks in exchange for fi-
nancial remuneration. This so-calledcrowdsourcingpromises con-
siderable flexibility, as it quickly connects workers and contractors
across the globe without large recruitment overheads.

Existing research and technologies have so far concentrated
largely on facilitating the crowdsourcing of small units ofwork that
can be completed in minutes by untrained labourers, such as par-
ticipating in surveys, transcribing audio clips or annotating images
[5, 6]. However, a growing number of businesses are now beginning
to crowdsource work on large-scale projects that require many hours
of effort by experts in a particular field. Suchexpert crowdsourcingis
used for the development and testing of large software applications,
building websites, professionally translating documentsor organis-
ing marketing campaigns.2

In contrast to the crowdsourcing of smaller and simpler units of
work, expert crowdsourcing raises a number of challenges that need

1 University of Southampton, UK, email:{ltt08r,ss2,acr,nrj}@ecs.soton.ac.uk
2 For some examples of these, seevworker.com, odesk.com, utest.com,
trada.com or freelancer.com.

to be addressed. First, the quality of a completed task can vary greatly
both between different workers and even between subsequent tasks
completed by the same worker. For example, a highly-skilledsoft-
ware engineer might complete up to ten times as many functions
as a novice worker in a single hour, but the same skilled engineer
may occasionally struggle with a particular task, perhaps due to ad-
verse personal circumstances [1]. Second, there is typically little
or no prior knowledge about the expected quality of a worker,as
the online labour market is inherently open and dynamic in nature,
with little historical information about worker performance. To illus-
trate this, more than 85% of workers advertising onodesk.com and
vworker.com have not completed any significant amount of work
in the past.3 Finally, experts often demand widely varying prices for
their services. This can be due to differences in skill level, but is sim-
ilarly influenced by individual expectations, local wages and the cost
of living in the worker’s country of residence. As an exampleof this,
different workers onodesk.com charge from as little as $5 to over
$200 for one hour of Web design work.

Taken together, these challenges pose a critical problem toany
organisation that wishes to crowdsource a considerable amount of
work — how should it allocate tasks to unknown workers in order to
achieve the highest possible quality of service while staying within
a given budget? For example, a company implementing a large soft-
ware project may wish to maximise the number of working features
that meet at least a certain level of quality; while an organisation
crowdsourcing an online marketing campaign might be interested in
attracting the highest number of new customers.

Some researchers have explored learning the performance char-
acteristics of workers and using these to improve the outcome of a
project [11, 8], but they do not consider the financial cost ofhiring
the workers. The cost and performance of workers are balanced ex-
plicitly in other work on decision-theoretic crowdsourcing [2], and
some research has looked into how organisations can set the finan-
cial rewards for completing work units, in order to effect partici-
pation [7, 3]. However, none of this work applies in the domain of
expert crowdsourcing, where individual workers typicallyadvertise
their own heterogeneous prices and where the hiring business, or the
employer, has to select the most suitable workers.

One area of work that is well suited to solving the expert crowd-
sourcing problem is the field of multi-armed bandits (MABs),a class
of problems dealing with decision making under uncertainty. In these
optimisation problems, actions (i.e. pulling a single arm)have ini-
tially unknown rewards that have to be learnt through noisy obser-
vations, and the goal is to maximise the total amount of rewards by

3 In February 2012, only 62,507 out of 443,606 workers had completed at
least one hour of work or earned $1 onodesk.com, while 43,899 out of
376,966 workers had completed at least one job onvworker.com.

sequentially choosing different actions over time. Among existing
MABs, one particularly pertinent piece of work is the budget–limited
MAB [9], which addresses a similar problem to the one of expert
crowdsourcing. In particular, within budget–limited MABs, the ac-
tions have different costs (i.e. the price of hiring different experts),
and are constrained by a certain total budget (i.e. the crowdsourc-
ing budget of the employer). However, it is not directly applicable to
the expert crowdsourcing setting, because it is assumed that individ-
ual workers can perform an unlimited amount of tasks and indeed the
optimal solution of the budget–limited MAB often assigns most tasks
to a single worker. This is not realistic in crowdsourcing, where, due
to the workers’ individual preferences and other commitments, they
cannot be assumed to complete an arbitrary number of tasks.

To address these shortcomings, we first extend the budget–limited
MAB model to fit the expert crowdsourcing problem. We denote this
new model as thebounded MAB. In particular, it describes the ex-
pert crowdsourcing problem as a budget-limited MAB with theaddi-
tional constraint that workers can only complete a limited (bounded)
number of tasks. Note that existing MAB algorithms do not address
this limitation. Thus, they may fail in tackling the boundedMAB,
since they may provide an invalid solution (i.e. a solution that ex-
ceeds the task limits). Given this, we develop a novel algorithm,
calledboundedε–first, that efficiently tackles the bounded MAB as
follows: To deal with the unknown performance characteristics of
workers, our algorithm divides its budget into two amounts (as dic-
tated by anε parameter) to be used in two sequential phases — an
initial explorationphase, during which it uniformly samples the per-
formance of a wide range of workers using the first part of its budget,
and anexploitationphase, during which it selects only the best work-
ers using its remaining budget. In the latter, the algorithmchooses the
best set of workers by solving abounded knapsackproblem [4]. The
intuition behind the use of the bounded knapsack is that if weknew
the real expected value of each worker’s performance utility, then the
expert crowdsourcing problem could be reduced to a bounded knap-
sack problem. However, since the bounded knapsack is NP–hard, an
exact algorithm (i.e. a method that provides optimal solution) might
not be able to guarantee polynomial running time. Thus, we use an
efficient approximation approach,bounded greedy[4], to estimate
the optimal solution of the bounded knapsack. We show that using
this algorithm allows us to establish theoretical guarantees for its
performance. More specifically, we prove that theperformance re-
gret (i.e. the difference between the performance of a particular al-
gorithm and that of the theoretical optimal solution) of thebounded
ε–first approach is at mostO

(

B
2
3

)

with a high probability, whereB is
the total budget. Thissub–lineartheoretical bound implies that our
algorithm has thezero–regretproperty; that is, asB is increased, the
average regret(i.e. the performance regret divided by the total bud-
get) tends to 0. Note that this property is a key measure of efficiency
within the bandit literature. Indeed, the zero–regret property guaran-
tees that our algorithmasymptotically convergesto the optimal so-
lution with probability 1 asB tends to infinity (for more details, see
[10]). In addition, to demonstrate the empirical efficiency of the pro-
posed approach, we evaluate its performance by using real data from
odesk.com, a prominent expert crowdsourcing site. In carrying out
this work, we advance the state of the art as follows:

• We propose the first approach that addresses the expert crowd-
sourcing problem.

• We show that our approach outperforms current crowdsourcing
techniques by up to 155%, and achieves 75% of the optimal.

In addition, we make theoretical contributions to MABs as follows:

• We introduce a new version of MABs, called the bounded MAB

model, that extends the budget–limited MAB by taking the limits
of single arm pulls into account.

• We propose boundedε–first, the first algorithm that efficiently
tackles the bounded MAB model.

• We devise the first theoretically proven upper bound for the per-
formance regret of the boundedε–first algorithm.

The remainder of this paper is structured as follows. In Section 2, we
formally describe the problem we address, in Section 3, we outline
our algorithm and then analyse its performance bounds in Section 4.
In Section 5, we evaluate it empirically and Section 6 concludes.

2 MODEL DESCRIPTION

We first introduce the bounded MAB model (Section 2.1). Following
this, we describe the expert crowdsourcing problem, and show how
we can map it to the bounded MAB model (Section 2.2).

2.1 Bounded Multi–Armed Bandits

The budget–limited MAB model consists of a slot machine withN
arms, denoted by 1,2, . . . ,N. At each time stept, an agent chooses
a non–emptysubsetS (t) ⊆ {1, . . . ,N} to pull (action). By pulling
arm i, the agent has to pay a pulling cost, denoted byci , and re-
ceives a non–negative reward drawn from a distribution associated
with that specific arm. The agent has a cost budgetB, which it can-
not exceed during its operation time (i.e. the total cost of pulling
arms cannot exceed this budget limit). Now, since reward values are
typically bounded in real–world applications, we assume that each
arm’s reward distribution has bounded supports. Letµi denote the
mean value of the rewards that the agent receives from pulling arm
i. Within our model, the agent’s goal is to maximise the sum of re-
wards it earns from pulling the arms of the machine, with respect to
the budgetB. However, the agent has no initial knowledge of theµi

of each armi, so it must learn these values in order to deduce a policy
that maximises its sum of rewards. Given this, our objectiveis to find
the optimal pulling algorithm, which maximises the expectation of
the total reward that the agent can achieve, without exceeding B.

Formally, let A be an arm–pulling algorithm, giving a finite se-
quence of pulls. LetNB

i (A) be the random variable that represents
the total number of pulls of armi by A, with respect to the budget
limit B.4 Thus, we have:

NB
i (A) =

∑

t

I {i ∈ SA (t)},

whereSA (t) is the subset thatA chooses to pull at time stept and
I {i ∈ SA (t)} denotes the indicator function whether armi is chosen
to be pulled att. To guarantee that the total cost of the sequenceA
cannot exceedB, we have:

P















N
∑

i

NB
i (A) ci ≤ B















= 1.

In addition, within our model, we assume that the agent cannot pull
each armi more thanLi times in total. That is:

∀i : P
(

NB
i (A) ≤ Li

)

= 1.

Now, letGB (A) be the total reward earned by usingA to pull the arms
within budget limitB. The expectation ofGB (A) is:

�

[

GB (A)
]

=

N
∑

i

�

[

NB
i (A)

]

µi .

4 Note thatNB
i (A) is a random variable since the behaviour ofA depends on

the observed rewards.

Then, letA∗ denote an optimal solution that maximises the expected
total reward, that is:

A∗ = arg max
A

N
∑

i

�

[

NB
i (A)

]

µi .

Note that in order to determineA∗, we have to know the value of
µi in advance, which does not hold in our case. Thus,A∗ represents
a theoretical optimum value, which is unachievable in general (but
which we will use in Section 5 to benchmark our approach).

Nevertheless, for any algorithmA, we can define the regret forA
as the difference between the expected total reward forA and that of
the theoretical optimumA∗. More precisely, lettingR(A) denote the
regret, we have the following:

RB (A) = �
[

GB (A∗)
]

− �
[

GB (A)
]

.

The objective here is to derive a method of generating a sequence of
arm pulls that minimises this regret for the class of boundedMAB
problems defined above.

Note that if we set the limitsLi = ∞ for each armi (i.e. there is no
pull limit) and we restrict|S (t)| = 1 for eacht (i.e. the agent can only
pull a single arm at each time step), we get the budget–limited MAB,
and in addition, if we setB = ∞ (there is no budget limit either), we
get the standard MAB model (for more details, see [9, 10]).

2.2 Expert Crowdsourcing

Given the bounded MAB model above, we now show how to map
the expert crowdsourcing problem to bounded MABs. In particular,
within an expert crowdsourcing system, an employer (agent)can as-
sign tasks to a finite set of workers. This set of workers is usually
determined through an open call for participation by the employer,
to which qualified and available workers respond.5 Each workeri
corresponds to an arm and assigning a single task to that worker can
be regarded as pulling the arm. This incurs a costci that is set by the
worker, and the outcome of the assignment is of variable utility with
unknown meanµi (this corresponds to the rewards in the bounded
MAB). As described in Section 1, each workeri has a different max-
imum number of tasksLi that can be assigned to it. Finally, the em-
ployer has a total budgetB to spend on crowdsourcing and it wishes
to maximise the overall sum of the achieved utility.

To illustrate this, an employer may wish to carry out a large soft-
ware development project, where each task represents a single hour
of work by one of the workers. The utility generated by such a task
is the number of working features that meet certain quality require-
ments. However, workers charge different prices per hour,ci , and
have different skill levels, represented by their expected number of
working features they can implement per hour,µi . The employer now
has a set budget to spend on developers, e.g.,B = $5,000, and wishes
to maximise the total number of working features.6 In so doing, it
wants to choose the best subset of workers who provide the optimal
solution. However, the employer has to take into account thework-
ing hour preferences of each worker, that limits the total number of
hours a worker can work on the project.

Given the mapping and the illustrative example above, the map-
ping between expert crowdsourcing and bounded MABs is trivial.
With a slight abuse of notation, hereafter we will use both standard
terms of MAB (i.e. arms, pulls, and agent) and expert crowdsourc-
ing (i.e. workers, task assignment, employer). In what follows, we

5 To illustrate this, although there are 100,000s of workers on oDesk.com,
typically only up to 20 respond to each such job advert (see Figure 1 for an
example).

6 This is a realistic budget — in February 2012, over $19 million were spent
onoDesk.com, with an average spend per project of over $4,000.

propose an efficient algorithm to tackle the bounded MAB. We then
continue with its theoretical and empirical performance analysis.

3 THE BOUNDED ε–FIRST ALGORITHM

Recall that within our setting,µi are unknowna priori. Given this,
the agent has toexplorethese values by repeatedly pulling a partic-
ular arm in order to estimate its expected reward value. However,
if it solely focuses on exploration, the agent typically fails to max-
imise (i.e.exploit) the total expected reward. In contrast, if it stops
exploring too quickly, it may fail in determining the best arms to pull.
Given this, the key challenge of bounded MABs (and of other bandit
models in general) is to find an efficient trade–off between explo-
ration and exploitation. Within this section, we propose anefficient
algorithm that efficiently trades off exploration with exploitation by
splitting exploration from exploitation. In so doing, we first describe
the exploration phase of the algorithm in Section 3.1. Following this,
we describe the exploitation phase in more detail (Section 3.2).

3.1 Uniform Exploration

Within the exploration (or trial) phase, we dedicate anε portion of
budgetB to estimate the expected reward values of the arms. First,

we repeatedly pull the arms in the first
⌊

εB
∑N

i=1 ci

⌋

time steps. That is,

S (t) = {1, . . . ,N} if 1 ≤ t ≤
⌊

εB
∑N

i=1 ci

⌋

. Following this, we sort the

arms by their cost in an increasing (non–decreasing) order,and we
sequentially pull the arms starting from the one with lowestcost, one
after the other, until we exceed the remaining budget. We repeat the
last step until none of the arms can be further pulled. Given this, if
xexplore

i denotes the number of times we pull armi within the explo-

ration phase, we have

⌊

ǫB
∑N

i=1 ci

⌋

≤ xexplore
i . The reason of choosing this

method is that, since we do not know which arm will be chosen to
pull in the exploitation phase, we need to treat them equallyin the
exploration phase. Hereafter we refer to the allocation sequence per-
formed by the uniform algorithm asAuni.

3.2 Bounded Knapsack based Exploitation

In this section, we first introduce the foundation of the method used
in this phase of our algorithm, the bounded knapsack problem. We
then describe an efficient approximation method for solving this
knapsack problem, which we subsequently use in the second phase
of our boundedǫ-first algorithm.

The bounded knapsack problem is formulated as follows. Given N
types of items, each typei has a corresponding valuevi , and weight
wi . In addition, there is also a knapsack with weight capacityC. The
bounded knapsack problem selects integer units of those types that
maximise the total value of items in the knapsack, such that the total
weight of the items does not exceed the knapsack weight capacity.
However, each itemi cannot be chosen more thanLi times. That is,
the goal is to find thenon–negative integers x1, x2, . . . , xN that

max
N

∑

i=1

xivi s.t.
N

∑

i=1

xiwi ≤ C, ∀i : 0 ≤ xi ≤ Li . (1)

Note that if we set eachLi = 1, we get the standard knapsack (or the
0−1 knapsack) model. Since the bounded knapsack is a well–known
NP–hard problem, exact algorithms (i.e. methods that achieveop-
timal solutions) cannot guarantee low computation cost.7 However,

7 There are pseudo–polynomial exact algorithms, but as we will show later,
we can achieve efficient performance with polynomial approximations.

near–optimal approximation methods have been proposed to solve
this problem, such as bounded greedy or greedy (a detailed survey of
these algorithms can be found in [4]). In particular, here wemake use
of a simple, but efficient, approximation method, thebounded greedy
algorithm, which hasO

(

N log N
)

computational complexity, where
N is the number of item types [4]. This algorithm works as follows:
Let vi

wi
denote thedensityof typei. At the beginning, we sort the item

types in order of the value of their density. This needsO
(

N logN
)

computational complexity. Then in the first round of this algorithm,
we identify the item type with the highest density and selectas many
units of this item as are feasible, without either exceedingthe knap-
sack capacity or its item limitLi. Then, in the second round, we iden-
tify the densest item among the remaining feasible items (i.e. items
that still fit into the residual capacity of the knapsack), and again
select as many units as are feasible, without exceeding the remain-
ing capacity or the corresponding item limit. We repeat thisstep in
each subsequent round, until there is no feasible item left.Clearly,
the maximal number of rounds isN. The reason for choosing this
algorithm is that it provides a well behaved sequence of items (i.e.
they are ordered by density), that can be efficiently exploited in the
theoretical performance analysis.

Now, we reduce the task assignment problem in the exploitation
phase to a bounded knapsack problem as follows. Let ˆµi denote the
estimate ofµi after the exploration phase. This estimate can be calcu-
lated by simply taking the average of received reward samples from
arm i. Given this we aim to solve the following integer program:

max
N

∑

i=1

µ̂i x
exploit
i s.t.

N
∑

i=1

ci x
exploit
i ≤ (1− ǫ) B, (2)

∀i : 0 ≤ xexploit
i ≤ Li − xexplore

i .

wherexexploit
i is the number of times we pull armi in the exploita-

tion phase. In order to solve this problem, we use the abovemen-
tioned bounded greedy algorithm for the bounded knapsack. Having
the value of eachxexploit

i , we now run the exploitation algorithm as
follows: At each subsequent time stept, if the number of times arm
i has been pulled does not exceedxexploit

i , then we pull that arm att.
Hereafter we refer to this exploitation approach asAgreedy.

4 PERFORMANCE ANALYSIS

In this section, we first derive an upper bound for the boundedε–first
algorithm, for any givenε value. We then show that by efficiently
tuning the value ofε, we can refine the upper bound toO

(

B
2
3

)

.
Recall that bothAuni and Agreedy together form sequenceAǫ−first,

which is the policy generated by the boundedǫ–first algorithm. The
expected reward for this policy can be expressed as the sum ofthe
expected performance ofAuni andAgreedy. That is:

GB (Aǫ−first) = GεB (Auni) +G(1−ε)B
(

Agreedy

)

, (3)

Now, without loss of generality, we assume that the reward distribu-
tion of each arm has support in [0, 1], and the pulling costci > 1
for eachi (our result can be scaled for different size supports and
costs as appropriate). In what follows, we first derive lowerbounds
for GεB (Auni) andG(1−ε)B

(

Agreedy

)

independently. Then, putting these
together, we have a lower bound for the expected reward ofAǫ−first.
Following this, we derive an upper bound for the expected reward of
the optimal sequenceA∗. The difference between the lower bound of
GB (Aǫ−first) and the upper bound ofGB (A∗) then gives us the upper
bound of the performance regret of our proposed algorithm. How-
ever, this bound is constructed using Hoeffding’s inequality, so it is

 0

 50

 100

 150

 200

 10 20 30 40 50 60 70 80 90 100

C
ou

nt

Number of Candidate Workers per Job

Figure 1. Distribution of applicants for jobs with “Java” keyword on
oDesk.com.

correct only with a certain probability. Specifically, it iscorrect with
probability(1− β)N, whereβ ∈ (0, 1) is a predefined confidence pa-
rameter (i.e. the confidence with which we want the upper bound to
hold) andN is the number of arms. As a result, we have:

Theorem 1 Let 0 < ε, β < 1. Suppose thatεB ≥
∑N

j=1 cj . With prob-
ability (1− β)N, the performance regret of the boundedε–first ap-
proach is at most

2+ εBdmax+ 2N























√

B
(

− ln β2
)

∑N
j=1 cj

ε























, (4)

where dmax = maxi, j

∣

∣

∣

∣

µi
ci
−
µ j

c j

∣

∣

∣

∣

(i.e. the largest distance between dif-

ferent density values).

The proof of the theorem can be found in the Appendix. Now, by op-
timally tuning the valueε so that the upper bound given in Theorem 1
is minimised, we get:

Theorem 2 Let εopt denote the value that minimises Equation 4. By
setting the exploration budget to be Bεopt, the regret of the bounded
ε–first algorithm is at most

2+ 3B
2
3

















N2
(

− ln
β

2

) N
∑

j=1

cjdmax

















1
3

.

That is, the upper bound can be tightened toO
(

B
2
3

)

. The proof only
requires elementary algebra, and is omitted for brevity.

5 EXPERIMENTAL EVALUATION

While we have so far developed theoretical upper bounds for the per-
formance regret of our algorithm, we now turn to practical aspects
and examine its performance in a realistic setting. This allows us
to investigate whether the algorithm achieves a high utility when ap-
plied to practical expert crowdsourcing problems. To this end, we run
the algorithm on a range of problems from a large real–world dataset
and compare its results with a number of benchmarks. In the follow-
ing, we first outline the dataset we use to generate our experiments,
then describe the benchmarks and finally detail our results.

5.1 Experimental Setup

To test our algorithm on realistic settings, we use real datafrom the
expert crowdsourcing websiteoDesk.com.8 Specifically, we assume
an employer wishes to crowdsource a large-scale software project
and is looking to hire Java experts. Since only a small fraction of all
registered Java experts will be available at any time, we determine
the number of applicants by sampling from the real historical distri-
bution of applicants per Java–related job. This distribution is shown
in Figure 1 (we consider only closed jobs and truncate the distribu-
tion to the interval [2, 100], as smaller jobs are trivial and as there
were a small number of extremely large outliers).

8 This data is available through their API atdevelopers.odesk.com.

Small Moderate Large Extreme

Boundedε–first
(ε = 0.15) 59.88(0.35) 707.14(3.49) 3,833.8(18.61) 11,065(54.07)

Budget–limited
ε–first (ε = 0.05) 36.61(0.25) 360.41(1.55) 1,873(7.8) 4,062.8(16.14)

Budget–limited
ε–first (ε = 0.10) 48.62(0.27) 382.72(1.56) 1,910.8(7.81) 4,347(16.09)

Budget–limited
ε–first (ε = 0.15) 44.03(0.26) 374.15(1.55) 1,951.7(7.82) 4,206.1(16.11)

Trialsourcing 53.29(0.28) 362.80(1.61) 1,804.6(7.86) 3,864.5(16.38)

Random 26.34(0.2) 186.63(0.36) 991.2(6.97) 2,345.6(16.44)

Uniform 24.91(0.08) 135.23(0.55) 723.11(4.25) 2,167.1(13.79)

Optimal 98.09(0.53) 946.66(2.1) 4,917.1(20.17) 14,102(58.77)

Table 1. Performance evaluation of the algorithms in different job settings
with small (B = 500), moderate (B = 5,000), large (B = 30,000) and

extremely large (B = 100,000) budgets. The numbers represent the total
collected utility of each algorithm.

To determine the characteristics of those workers, we sample them
from the set of more than 30,000 Java experts registered on the web-
site. For each experti, we use their real advertised hourly costs forci ,
and we randomly determine their task limitsLi by drawing from the
discrete uniform distribution on [1, 5,000] (since real data on these
limits is not available through the API). That is, a worker would
spend up to more than a working year on average on a job. Finally, we
determine the worker’s utility distribution as the sum of two random
variables, 0.9·Ri +0.1·U(0,1), whereRi is the empirical distribution
of the user’s actual ratings obtained on previous jobs9 andU(0,1) is
the continuous uniform distribution on the interval [0, 1] (to add a
small amount of noise). Trivially,µi is then 0.9 · � [Ri] + 0.05.

5.2 Benchmarks

To demonstrate that our algorithm outperforms the state of the art,
we compare its performance to a number of benchmark methods:

1. Budget–limitedε–first: a budget–limited MAB algorithm that as-
signs all tasks to a single agent during the exploitation phase with-
out considering its task limits [9].

2. Trialsourcing : an existing approach that is used on the expert
crowdsourcing websitevworker.com. This first assigns a sin-
gle task to each of the applicants and then chooses the best-
performing worker out of these until it reaches its task limit, fol-
lowed by the second-best, and so on. This algorithm can be re-
garded as a simpler version of the boundedε–first with only one
round of exploration.

3. Random: this algorithm randomly chooses a single worker to
whom it assigns all tasks. This represents a typical expert crowd-
sourcing task allocation, where the employer chooses an applicant
from some preferred prior distribution (see, e.g.freelancer.
com or utest.com). Within our experiments, we sample this ap-
plicant from a uniform prior distribution (we have also tested with
other priors without any significant improvements).

4. Uniform : this approach uniformly assigns tasks to all applicants.
We include this to test the efficiency of pure exploration (i.e. uni-
form task assignment).

5. Optimal : this is ahypotheticaloptimal algorithm with full knowl-
edge of each worker’s meanµi . As such, it is an upper bound on
our algorithm’s performance.

9 Ratings onoDesk.com are 1 – 5 stars, which we map to the interval [0, 1].
Note we use this only to generate realistic distributions and assumeRi is
unknown to our agent. To avoid bias when only few ratings are available,
we pad this empirical distribution with samples fromU(0, 1) until it is based
on at least five samples.

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

Budget size

T
ot

al
 p

er
fo

rm
an

ce

Trialsourcing
Random
Uniform
Optimal

Boundedε–first (ε = 0.15)
ε–first (ε = 0.10)

Figure 2. Performance evaluation of the algorithms in case of jobs with
small budgets (smaller than $1,000).

5.3 Results

To analyse the behaviour of each algorithm in different job scenarios,
we vary the budgetB. In particular, we first focus on four different
job types: (i) small (B = $500); (ii) moderate (B = $5,000); (iii)
large(B = $30,000); and (iv) extremely large (B = $100,000). These
are realistic values based on real jobs that have been advertised on
oDesk.com. Additionally, for each budget, we re–sample the number
and set of experts 10,000 times to achieve statistical significance, and
we calculate 95% confidence intervals for all results. Theseresults
are depicted in Table 1 (with the 95% confidence intervals shown in
brackets). Here, we set theε value of our algorithm to 0.15, while
theε value of the budget–limitedε–first is set to 0.05, 0.1, and 0, 15,
respectively (we have also tested with differentε values, which result
in the same broad trends).

As we can see from the results, our algorithm typically outper-
forms the others by up to 155%. In particular, it outperformsthe
budget–limitedε–first (which is the best benchmark algorithm) by
23% in the case of a small budget (ε = 0.1 for the budget–limited
algorithm). In addition, our method outperforms this benchmark by
85%, 100%, and 155% in the cases of moderate, large, and extremely
large budgets, respectively. We also observe that we cannotachieve
a high performance without taking task limits into account (as is
the case with the budget–limitedε–first), or without having suffi-
cient exploration (as in the case of trialsourcing). Similarly, simple
algorithms such as pure exploration or random task allocation do not
provide good performance either. Note that our algorithm approaches
the theoretical optimum by up to 75% (in the cases of moderate, large
and extreme budgets), while it achieves 61% of the optimal solution’s
performance in the scenario with small budgets.

Note that around 80% of the jobs onodesk.com have a budget
smaller than $1,000. Given this, we next further analyse the perfor-
mance of the algorithms within this budget range. The results are
depicted in Figure 2. As we can see, for jobs with very small budgets
(i.e. smaller than $100), the performance of our algorithm is similar
to that of the budget–limitedε–first and trialsourcing. This is due to
the fact that with a small budget, longer exploration is a luxury, and
thus, those approaches perform well with only a small budgetfor ex-
ploration. However, if the budget is higher than $100, our algorithm
clearly outperforms the others by up to 60%. We can also observe
that the uniform and random algorithms are clearly worse than our
approach for any budget size.

Another interesting set of jobs is those with large budgets,as they
present long–term investments that require careful task allocation.
Thus, we also vary the budgetB from $5,000 to $20,000, to analyse
the performance of the algorithms. In fact, this range covers 77% of
large jobs (i.e. jobs with budget> $5,000). From Figure 3, we can see
that our algorithm typically outperforms the others by up to200%,
and it approaches about 85% of the optimum.

5,000 10,000 15,000 20,000
0

500

1000

1500

2000

2500

3000

Budget size

T
ot

al
 p

er
fo

rm
an

ce

Trialsourcing
Random
Uniform
Optimal

Boundedε–first (ε = 0.15)
ε–first (ε = 0.10)

Figure 3. Performance evaluation of the algorithms in case of jobs with
large budgets (between $5, 000 and $20, 000).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the expert crowdsourcing problem with
variable worker performance and heterogenous costs. In this prob-
lem, an employer wishes to assign tasks within a limited budget to a
set of workers such that its total utility is maximised. To solve this
problem, we introduced a new MAB model, the bounded MAB with
a limited number of pulls per arm. Given this, we proposed a simple,
but efficient, boundedε–first based algorithm that uses a uniform pull
strategy for exploration, and a bounded knapsack based approach for
exploitation. We proved that this algorithm has aO

(

B
2
3

)

theoretical
upper bound for its performance regret. Finally, we demonstrated that
our algorithm outperforms state-of-the-art crowdsourcing algorithms
within this domain by up to 155%, and also consistently achieves up
to 75% of the theoretical optimal. As a result, our work couldpoten-
tially form an efficient basis to crowdsourcing websites which aim to
provide efficient teams of experts, so-calledcurated crowds, to meet
their customers’ business requirements (e.g.geniusrocket.com or
blurgroup.com).

Note that our approach does not exploit the fact that in many real–
world applications employers typically have additional information
about the applicants, which could be used to find the best workers
more quickly (e.g. reputation ratings or lists of qualifications). How-
ever, as this information might not be accurate either, it isnot trivial
how to efficiently handle it in practice. In future work, we intend to
extend our analysis to such settings.

REFERENCES

[1] F. P. Brooks,The mythical man-month : essays on software engineering,
Addison-Wesley Pub. Co, 1995.

[2] P. Dai, Mausam, and D. S. Weld, ‘Artificial intelligence for articial ar-
tificial intelligence’, inAAAI 2011, pp. 1153–1159, (2011).

[3] J. J. Horton and L. B. Chilton, ‘The labor economics of paid crowd-
sourcing’, inEC’10, pp. 209–218, (2010).

[4] H. Kellerer, U. Pferschy, and D. Pisinger,Knapsack Problems, Springer,
2004.

[5] A. Kittur, E. H. Chi, and B. Suh, ‘Crowdsourcing user studies with
mechanical turk’, inCHI’08, pp. 453–456, (2008).

[6] M. Marge, S. Banerjee, and A.I. Rudnicky, ‘Using the amazon mechan-
ical turk for transcription of spoken language’, inIEEE ICASSP’10, pp.
5270 –5273, (2010).

[7] W. Mason and D. J. Watts, ‘Financial incentives and the performance
of crowds’, inHCOMP’09, pp. 77–85, (2009).

[8] E. Simpson, S. J. Roberts, A. Smith, and C. Lintott, ‘Bayesian combi-
nation of multiple, imperfect classifiers’, inNIPS 2011, (2011).

[9] L. Tran-Thanh, A. Chapman, J. E. Munoz de Cote, A. Rogers,and N. R.
Jennings, ‘Epsilon–first policies for budget–limited multi–armed ban-
dits’, AAAI’10, 1211–1216, (2010).

[10] J. Vermorel and M. Mohri, ‘Multi-armed bandit algorithms and empir-
ical evaluation’,ECML’05, 437–448, (2005).

[11] P. Welinder, S. Branson, S. Belongie, and P. Perona, ‘The multidimen-
sional wisdom of crowds’, inNIPS 2010, 2424–2432, (2010).

APPENDIX: PROOFS
We now sketch the proof of Theorem 1. In so doing, we define someterms.
Let imax

= arg maxj
µ j
c j

. Similarly, let imin
= arg minj

µ j
c j

. Now, if we relax

the bounded knapsack problem defined in Section 3.2 (see Equation 1) such
that xi can be fractional, we get thefractional bounded knapsack. It is easy
to show that the bounded greedy algorithm provides an optimal solution to
the fractional bounded knapsack, and this optimal solutionis always at least
as high as the optimal solution of the (integer) bounded knapsack (for more
details, see [4]). Given this, let〈x̂1, . . . , x̂N〉 denote the optimal solution of
the knapsack problem defined in Equation 2 (i.e. the problem we have to
solve within the exploitation phase), that we can get by using the bounded
greedy method. In addition, recall that if we knew the real value of eachµi , the
optimal strategy within the exploitation phase would be theoptimal solution
of the bounded knapsack problem which we get from the former knapsack by
replacing ˆµi with µi . Thus, let〈x+1 , . . . , x

+

N〉 denote the optimal solution of the
fractional relaxation of this bounded knapsack, that we also get by using the
bounded greedy method. Next, we prove the following auxiliary lemmas.

Lemma 3 �
[

GεB (Auni)
]

≥ ǫB
(

µ
imin/c

imin

)

− 1.

Lemma 4 �
[

G(1−ε)B
(

Agreedy

)]

≥
∑N

j=1 x̂jµ j − 1.

Lemma 5 �
[

G(1−ε)B (A∗)
]

≤
∑N

j=1 x+j µ j .

Proof of Lemma 3. It is easy to show that for any armj,
∑N

i=1 ci x
explore
i ≥

ǫB − cj , since none of the arms can be pulled after the stop ofAuni without

exceedingǫB. Furthermore,µi = ci (µi/ci) ≥ ci

(

µ
imin/c

imin

)

. Recall thatµi ≤ 1.
Thus:

k
∑

i=1

xexplore
i µi ≥

















k
∑

i=1

xexplore
i ci

















µimin

cimin
≥

(

ǫB− cimin

) µimin

cimin
≥
ǫBµimin

cimin
− 1.

Proof of Lemma 4. Without loss of generality, assume that the bounded
greedy chooses the arms to pull in the order of 1, 2, . . . ,N. Let b denote the
largest index such that ˆxb , 0. SinceAgreedyalso uses the bounded greedy,

we can easily show thatxexploit
i = x̂i for i < b and xexploit

b = ⌊x̂b⌋ (if i > b,

then xexploit
i = x̂i = 0). Thus�

[

G(1−ε)B
(

Agreedy

)]

=
∑b−1

j=1 x̂jµ j + ⌊x̂b⌋µb ≥
∑b−1

j=1 x̂jµ j + (x̂b − 1) µb, which concludes the proof, sinceµb ≤ 1.

Proof of Lemma 5. The lemma follows from the fact that the optimal solution
of the bounded knapsack cannot exceed that of its fractionalcounterpart.

Proof sketch of Theorem 1. Using Hoeffding’s inequality for each armi,
and for any positiveδi , we have:P (|µ̂i − µi | ≥ δi) ≤ 2 exp{−2δ2i xexplore

i }. By

settingδi =

√

− ln β2
2xexplore

i

, it is easy to prove that, with probability(1− β)N,

|µ̂i − µi | ≤ δi holds for each armi. Hereafter, we stricly focus on this case. It
is easy to show that�

[

GB (A∗)
]

≤ εB
µimax

cmax
i
+ �

[

G(1−ε)B (A∗)
]

. This implies

that R(Aε−first) ≤

(

εB
µimax

cmax
i

− �
[

GεB (Auni)
]

)

+

(

�

[

G(1−ε)B (

A∗
)

]

− �
[

G(1−ε)B
(

Bgreedy

)])

. (5)

Using Lemma 3, we can bound the first term on the right hand sideas follows:

εB
µimax

cmax
i

− �
[

GεB (Auni)
]

≤ εB

(

µimax

cimax
−
µimin

cimin

)

+ 1 = εBdmax+ 1. (6)

We now turn to bound the second term on the right hand side of Equation 5.
From Lemmas 4 and 5 we get:�

[

G(1−ε)B (A∗)
]

− �
[

G(1−ε)B
(

Bgreedy

)]

≤
∑N

j=1 x+j µ j −
∑N

j=1 x̂jµ j + 1. Since〈x̂1, . . . , x̂N〉 is the optimal solution of the
fractional bounded knapsack that we have to solve at the exploitation phase,
we have:

∑N
j=1 x̂j µ̂ j ≥

∑N
j=1 x+j µ̂ j . Similarly, we have

∑N
j=1 x+j µ j ≥

∑N
j=1 x̂jµ j

(since〈x+1 , . . . , x
+

N〉 is the real optimal solution). Recall that|µ̂i − µi | ≤ δi holds

for each armi. This implies that
∑N

j=1 x+j µ j −
∑N

j=1 x̂jµ j ≤
∑N

j=1 δ j

(

x+j + x̂j

)

.

Note that ˆxj ≤
(1−ε)B

c j
≤ (1− ε) B. Similarly we have:x+j ≤ (1− ε) B. This

implies that

�

[

G(1−ε)B (

A∗
)

]

− �
[

G(1−ε)B
(

Bgreedy

)]

≤ (1− ε) B
N

∑

j=1

2δ j ≤ B
N

∑

j=1

2δ j . (7)

Recall thatδi =

√

− ln β2
2xexplore

i

andxexplore
i ≥

⌊

εB
∑N

j=1 c j

⌋

≥ εB
2
∑N

j=1 c j
. The second in-

equality can be easily proven by using elementary algebra. Substituting these
into Equation 7, and combining with Equation 6 we conclude the proof.

