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Abstract.
an employer wishes to assign tasks to a set of available wvkieh
heterogeneous working costs. Critically, as workers ptedesults
of varying quality, the utility of each assigned task is uokmn and
can vary both between workers and individual tasks. Fumtbes,
in realistic settings, workers are likely to have limits dre humber

We address the expert crowdsourcing problem, in whichto be addressed. First, the quality of a completed task agrgvaatly

both between dierent workers and even between subsequent tasks
completed by the same worker. For example, a highly-skiieft-
ware engineer might complete up to ten times as many furgtion
as a novice worker in a single hour, but the same skilled ergin
may occasionally struggle with a particular task, perhapstd ad-

of tasks they can perform and the employer will have a fixed bud verse personal circumstances [1]. Second, there is typittle

get to spend on hiring workers. Given these constraintgljective
of the employer is to assign tasks to workers in order to mesem
the overall utility achieved. To achieve this, we introdu@ovel
multi-armed bandit (MAB) model, the bounded MAB, that natlyr
captures the problem of expert crowdsourcing. We also m®pm
algorithm to solve it &iciently, calledbounded e—first, which uses
the firsteB of its total budgetB to derive estimates of the workers’
quality characteristics (exploration), while the rema@i{l - £) B
is used to maximise the total utility based on those estisnéd®-
ploitation). We show that using this technique allows usetw an

or no prior knowledge about the expected quality of a worksr,
the online labour market is inherently open and dynamic tunea
with little historical information about worker performea To illus-
trate this, more than 85% of workers advertisingodesk . com and
vworker.com have not completed any significant amount of work
in the past Finally, experts often demand widely varying prices for
their services. This can be due tdfdiences in skill level, but is sim-
ilarly influenced by individual expectations, local wages éhe cost
of living in the worker’s country of residence. As an examgi¢his,
different workers omdesk.com charge from as little as $5 to over

O(B?) upper bound on our algorithm’s performance regret (i.e. the$200 for one hour of Web design work.

expected dterence in utility between the optimal and our algorithm).
In addition, we demonstrate that our algorithm outperfoexisting
crowdsourcing methods by up to 155% in experiments baseeaba r
world data from a prominent crowdsourcing site, while acimg up

to 75% of a hypothetical optimal with full information.

1 INTRODUCTION

Recently, businesses and other organisations have startath to
a new emerging labour market to achieve their operatingctiloges.
Using the internet, they advertise jobs to a global audiemzkhire
workers on a temporary basis to complete tasks in exchangé fo
nancial remuneration. This so-calledbwdsourcingpromises con-
siderable flexibility, as it quickly connects workers andiractors
across the globe without large recruitment overheads.

Existing research and technologies have so far concedtrat
largely on facilitating the crowdsourcing of small unitswbrk that
can be completed in minutes by untrained labourers, suctais p
ticipating in surveys, transcribing audio clips or annioigtimages
[5, 6]. However, a growing number of businesses are now agin
to crowdsource work on large-scale projects that requineyrhaurs
of effort by experts in a particular field. SueRpert crowdsourcings
used for the development and testing of large software egjins,
building websites, professionally translating documemntsrganis-
ing marketing campaigrts.

In contrast to the crowdsourcing of smaller and simplersunit
work, expert crowdsourcing raises a number of challengatsnibed

e

Taken together, these challenges pose a critical probleamyo
organisation that wishes to crowdsource a considerableuatraf
work — how should it allocate tasks to unknown workers in otde
achieve the highest possible quality of service while staywithin
a given budget? For example, a company implementing a laftje s
ware project may wish to maximise the number of working fesgu
that meet at least a certain level of quality; while an orgation
crowdsourcing an online marketing campaign might be istekin
attracting the highest number of new customers.

Some researchers have explored learning the performame ch
acteristics of workers and using these to improve the outécofra
project [11, 8], but they do not consider the financial coshiohg
the workers. The cost and performance of workers are balagxce
plicitly in other work on decision-theoretic crowdsourgif], and
some research has looked into how organisations can sentre fi
cial rewards for completing work units, in order tffext partici-
pation [7, 3]. However, none of this work applies in the damaf
expert crowdsourcing, where individual workers typicalyvertise
their own heterogeneous prices and where the hiring busineshe
employer has to select the most suitable workers.

One area of work that is well suited to solving the expert ctow
sourcing problem is the field of multi-armed bandits (MABsElass
of problems dealing with decision making under uncertaimtghese
optimisation problems, actions (i.e. pulling a single ahaye ini-
tially unknown rewards that have to be learnt through noisyes-
vations, and the goal is to maximise the total amount of rds/éay

1 University of Southampton, UK, emailtt08r,ss2,acr,n{{@ecs.soton.ac.uk
2 For some examples of these, se®rker . com, odesk . com, utest. com,
trada.comor freelancer.com.

3 In February 2012, only 62,507 out of 443,606 workers had detag at
least one hour of work or earned $1 odesk.com, while 43,899 out of
376,966 workers had completed at least one jolwwrker . com.



sequentially choosing fierent actions over time. Among existing

MABS, one particularly pertinent piece of work is the buddieited

model, that extends the budget-limited MAB by taking theittm
of single arm pulls into account.

MAB [9], which addresses a similar problem to the one of ekper ¢ We propose boundee-first, the first algorithm that fBciently

crowdsourcing. In particular, within budget—limited MABhe ac-
tions have dterent costs (i.e. the price of hiringftérent experts),
and are constrained by a certain total budget (i.e. the ourd-
ing budget of the employer). However, it is not directly apable to
the expert crowdsourcing setting, because it is assuméedhtiigid-
ual workers can perform an unlimited amount of tasks anddddiee
optimal solution of the budget-limited MAB often assignssttasks
to a single worker. This is not realistic in crowdsourcindiese, due
to the workers’ individual preferences and other commitisetiney
cannot be assumed to complete an arbitrary number of tasks.
To address these shortcomings, we first extend the budgétedi
MAB model to fit the expert crowdsourcing problem. We denbte t
new model as théounded MABIn particular, it describes the ex-
pert crowdsourcing problem as a budget-limited MAB with #uleli-
tional constraint that workers can only complete a limitedunhded)
number of tasks. Note that existing MAB algorithms do notradd
this limitation. Thus, they may fail in tackling the boundisthB,
since they may provide an invalid solution (i.e. a solutibattex-
ceeds the task limits). Given this, we develop a novel aflgorj
calledboundeds—first, that eficiently tackles the bounded MAB as
follows: To deal with the unknown performance charactassof
workers, our algorithm divides its budget into two amounats dic-

tackles the bounded MAB model.
e We devise the first theoretically proven upper bound for the p
formance regret of the boundesdfirst algorithm.

The remainder of this paper is structured as follows. IniBea@, we
formally describe the problem we address, in Section 3, vitneu
our algorithm and then analyse its performance bounds iticeet.

In Section 5, we evaluate it empirically and Section 6 cotefu

2 MODEL DESCRIPTION

We first introduce the bounded MAB model (Section 2.1). Reifg
this, we describe the expert crowdsourcing problem, and $tawv
we can map it to the bounded MAB model (Section 2.2).

2.1 Bounded Multi-Armed Bandits

The budget-limited MAB model consists of a slot machine vith
arms, denoted by, 2,...,N. At each time step, an agent chooses
a non—emptysubsetS (t) € {1,...,N} to pull (action). By pulling
armi, the agent has to pay a pulling cost, denotedchyand re-
ceives a non—negative reward drawn from a distribution @ated
with that specific arm. The agent has a cost budyethich it can-
not exceed during its operation time (i.e. the total cost wfimg

tated by are parameter) to be used in two sequential phases — amrms cannot exceed this budget limit). Now, since rewardeshbre
initial explorationphase, during which it uniformly samples the per- typically bounded in real-world applications, we assurag trach
formance of a wide range of workers using the first part ofuiddet,  arm’s reward distribution has bounded supports. Lelenote the
and arexploitationphase, during which it selects only the best work- mean value of the rewards that the agent receives from gudlim
ers using its remaining budget. In the latter, the algorithwoses the i, Within our model, the agent’s goal is to maximise the sumeef r

best set of workers by solvingtmunded knapsagbroblem [4]. The
intuition behind the use of the bounded knapsack is that ikmewv
the real expected value of each worker’s performanceytitien the
expert crowdsourcing problem could be reduced to a boundag-k
sack problem. However, since the bounded knapsack is N&-¢uar
exact algorithm (i.e. a method that provides optimal sohjtimight
not be able to guarantee polynomial running time. Thus, veeaus
efficient approximation approachpunded greedy4], to estimate
the optimal solution of the bounded knapsack. We show thagus
this algorithm allows us to establish theoretical guaresitior its
performance. More specifically, we prove that gexformance re-

gret (i.e. the diference between the performance of a particular al-

gorithm and that of the theoretical optimal solution) of teinded
e—first approach is at moél(Bé) with a high probability, wher® is
the total budget. Thisub-lineartheoretical bound implies that our
algorithm has theero—regretfproperty; that is, a8 is increased, the

wards it earns from pulling the arms of the machine, with eespo
the budgeB. However, the agent has no initial knowledge of the

of each arm, so it must learn these values in order to deduce a policy

that maximises its sum of rewards. Given this, our objedsite find
the optimal pulling algorithm, which maximises the expé&ota of
the total reward that the agent can achieve, without exogesli

Formally, letA be an arm—pulling algorithm, giving a finite se-
quence of pulls. LeNE (A) be the random variable that represents
the total number of pulls of armby A, with respect to the budget
limit B.* Thus, we have:

NP (A) = > i e S* (),
t
whereSA (t) is the subset tha chooses to pull at time stepand
I{i € SA(t)} denotes the indicator function whether ariis chosen
to be pulled at. To guarantee that the total cost of the sequehce

average regrefi.e. the performance regret divided by the total bud- cannot excee®, we have:

get) tends to 0. Note that this property is a key measurdhaiency
within the bandit literature. Indeed, the zero—regret propguaran-
tees that our algorithmasymptotically converget® the optimal so-

lution with probability 1 asB tends to infinity (for more details, see

[10]). In addition, to demonstrate the empiricéiigency of the pro-
posed approach, we evaluate its performance by using reafrdm

N
P(Z NE(A)c < B] =1

In addition, within our model, we assume that the agent capulb
each arm more tharlL; times in total. That is:

odesk.com, a prominent expert crowdsourcing site. In carrying out
this work, we advance the state of the art as follows:

e We propose the first approach that addresses the expert crowdlow, letG® (A) be the total reward earned by usiAgo pull the arms
sourcing problem. within budget limitB. The expectation o&B (A) is:

e We show that our approach outperforms current crowdsogircin
techniques by up to 155%, and achieves 75% of the optimal.

vi: P(NP(A)<L)=1

IE[GB(A)] = iE[NP (A)]M.

In addition, we make theoretical contributions to MABs aléofes: - - - -
4 Note thatNE (A) is a random variable since the behaviourrodepends on

e We introduce a new version of MABs, called the bounded MAB the observed rewards.



Then, letA* denote an optimal solution that maximises the expectecpropose anfécient algorithm to tackle the bounded MAB. We then

total reward, that is:

N
A* = arg rrLaxZ E [NiB (A)]pi.

Note that in order to determind®, we have to know the value of
4 in advance, which does not hold in our case. ThAIstepresents
a theoretical optimum value, which is unachievable in gain@ut
which we will use in Section 5 to benchmark our approach).

Nevertheless, for any algorithy, we can define the regret féx
as the dference between the expected total reward¥and that of
the theoretical optimund*. More precisely, lettindR (A) denote the
regret, we have the following:

R®(A) = E[G®(A")| - E[G®(A)].

The objective here is to derive a method of generating a seguef
arm pulls that minimises this regret for the class of bounkli&B
problems defined above.

Note that if we set the limitk; = oo for each armi (i.e. there is no
pull limit) and we restrictS (t)| = 1 for eacht (i.e. the agent can only
pull a single arm at each time step), we get the budget—ldhivtaB,
and in addition, if we seB = o (there is no budget limit either), we
get the standard MAB model (for more details, see [9, 10]).

2.2 Expert Crowdsourcing

continue with its theoretical and empirical performancalgsis.

3 THE BOUNDED E-FIRST ALGORITHM

Recall that within our settingy; are unknowna priori. Given this,
the agent has texplorethese values by repeatedly pulling a partic-
ular arm in order to estimate its expected reward value. Mewe
if it solely focuses on exploration, the agent typicallyigaio max-
imise (i.e.exploif) the total expected reward. In contrast, if it stops
exploring too quickly, it may fail in determining the bestregto pull.
Given this, the key challenge of bounded MABs (and of othedita
models in general) is to find arffeient trade—& between explo-
ration and exploitation. Within this section, we proposeefiitient
algorithm that éiciently trades & exploration with exploitation by
splitting exploration from exploitation. In so doing, wesfidescribe
the exploration phase of the algorithm in Section 3.1. kahg this,
we describe the exploitation phase in more detail (Sectigh 3

3.1 Uniform Exploration

Within the exploration (or trial) phase, we dedicatesaportion of
budgetB to estimate the expected reward values of the arms. First,

we repeatedly pull the arms in the firlsiﬁJ time steps. That is,
S® = (L...,NJifl<t< [Z;‘BCJ. Following this, we sort the

i=1"

Given the bounded MAB model above, we now show how to maparms by their cost in an increasing (non-decreasing) oestef,we

the expert crowdsourcing problem to bounded MABs. In paldic
within an expert crowdsourcing system, an employer (agemt)as-
sign tasks to a finite set of workers. This set of workers isaligu
determined through an open call for participation by the legsy,
to which qualified and available workers respénBach workeri
corresponds to an arm and assigning a single task to thatwoalk
be regarded as pulling the arm. This incurs a cp#iat is set by the
worker, and the outcome of the assignment is of variabléyutilith

sequentially pull the arms starting from the one with lowestt, one
after the other, until we exceed the remaining budget. Weatthe
last step until none of the arms can be further pulled. Givésy tf

X*P°"® denotes the number of times we pull aimwithin the explo-

explore

X

method is that, since we do not know which arm will be chosen to
pull in the exploitation phase, we need to treat them equalhe

ration phase, we ha\{ez,jio < The reason of choosing this
i=1

unknown mearny; (this corresponds to the rewards in the boundedexploration phase. Hereafter we refer to the allocationisece per-

MAB). As described in Section 1, each workdras a diferent max-
imum number of taskg; that can be assigned to it. Finally, the em-
ployer has a total budgé to spend on crowdsourcing and it wishes
to maximise the overall sum of the achieved utility.

To illustrate this, an employer may wish to carry out a largi-s
ware development project, where each task represents le siogr
of work by one of the workers. The utility generated by suchskt
is the number of working features that meet certain quadityuire-
ments. However, workers chargeffdrent prices per hour;, and

formed by the uniform algorithm a&.

3.2 Bounded Knapsack based Exploitation

In this section, we first introduce the foundation of the mdthised
in this phase of our algorithm, the bounded knapsack probl&ea
then describe anfiécient approximation method for solving this
knapsack problem, which we subsequently use in the secaaskph
of our bounded-first algorithm.

The bounded knapsack problem is formulated as follows. &We

haVe dffel’ent Sk”l |eVe|S, represented by their eXpeCted number Oiypes Of items’ each typd‘\as a Corresponding valuﬁ and We|gh’[

working features they can implement per haur,The employer now
has a set budget to spend on developers, B.g.$5,000, and wishes
to maximise the total number of working featufes so doing, it
wants to choose the best subset of workers who provide thimalpt
solution. However, the employer has to take into accountntbie-
ing hour preferences of each worker, that limits the totahber of
hours a worker can work on the project.

Given the mapping and the illustrative example above, thp-ma
ping between expert crowdsourcing and bounded MABs isatrivi
With a slight abuse of notation, hereafter we will use bogndard
terms of MAB (i.e. arms, pulls, and agent) and expert crowdso
ing (i.e. workers, task assignment, employer). In whatofed, we

5 To illustrate this, although there are 100,000s of workersesk . com,
typically only up to 20 respond to each such job advert (sgarkil for an
example).

6 This is a realistic budget — in February 2012, over $19 miliwere spent
onoDesk. com, with an average spend per project of over $4,000.

w;. In addition, there is also a knapsack with weight capaCityhe
bounded knapsack problem selects integer units of thosss tifat
maximise the total value of items in the knapsack, such tretdtal
weight of the items does not exceed the knapsack weight itgpac
However, each itemcannot be chosen more thantimes. That is,
the goal is to find th@on—negative integers X%, . . ., Xy that

N
maxZ XVi st
i=1

N
inwisc, Vi: 0<x <L
i=1

@

Note that if we set each; = 1, we get the standard knapsack (or the
0-1 knapsack) model. Since the bounded knapsack is a well-+know
NP-hard problem, exact algorithms (i.e. methods that achigre
timal solutions) cannot guarantee low computation édstwever,

7 There are pseudo—polynomial exact algorithms, but as weshadw later,
we can achieveficient performance with polynomial approximations.



near—optimal approximation methods have been proposedite s
this problem, such as bounded greedy or greedy (a detaiteeysaf
these algorithms can be found in [4]). In particular, herewake use
of a simple, but ficient, approximation method, ttheunded greedy
algorithm, which ha$D (N log N) computational complexity, where
N is the number of item types [4]. This algorithm works as faio
Let %. denote thelensityof typei. At the beginning, we sort the item
types in order of the value of their density. This ne€dN logN)
computational complexity. Then in the first round of thisalthm,
we identify the item type with the highest density and sedsamany
units of this item as are feasible, without either exceedngknap-
sack capacity or its item limit;. Then, in the second round, we iden-
tify the densest item among the remaining feasible itenas ifems
that still fit into the residual capacity of the knapsack)d amain
select as many units as are feasible, without exceedingethain-
ing capacity or the corresponding item limit. We repeat #tep in
each subsequent round, until there is no feasible item@éarly,
the maximal number of rounds . The reason for choosing this
algorithm is that it provides a well behaved sequence of stée.
they are ordered by density), that can Ifiiceently exploited in the
theoretical performance analysis.

Now, we reduce the task assignment problem in the exploitati
phase to a bounded knapsack problem as followsul defote the

estimate ofy; after the exploration phase. This estimate can be calcu-

lated by simply taking the average of received reward sasripten
armi. Given this we aim to solve the following integer program:

N N
maxZ ﬁi)gexplon st. Z G xiexplon < (1 _ 6) B,
i=1 i=1

Vi :

@

explore

0< )S_exploit < I—i _ )ﬂ

wherex™®°" is the number of times we pull arinin the exploita-

tion phase. In order to solve this problem, we use the aboweme

tioned bounded greedy algorithm for the bounded knapsaaking
the value of each™ ", we now run the exploitation algorithm as
follows: At each subsequent time stepf the number of times arm
i has been pulled does not excedd", then we pull that arm at
Hereafter we refer to this exploitation approachAggeay

4 PERFORMANCE ANALYSIS

In this section, we first derive an upper bound for the bourddist
algorithm, for any givere value. We then show that byffeiently
tuning the value ok, we can refine the upper boundGl(Bé).

Recall that bothAy, and Agreeqy together form sequencl._sst,
which is the policy generated by the boundedirst algorithm. The
expected reward for this policy can be expressed as the suhe of
expected performance &, andAgreeay That is:

GB (Ae—first) = GEB (Auni) + G(lia)B (Agreedy) s (3)

Now, without loss of generality, we assume that the rewasttitiu-
tion of each arm has support in,[d, and the pulling cost; > 1
for eachi (our result can be scaled forff#irent size supports and
costs as appropriate). In what follows, we first derive lolweuands
for G*B (A,n) andG(-4)B (Agreedy) independently. Then, putting these
together, we have a lower bound for the expected rewar] Gfs.
Following this, we derive an upper bound for the expectedarevof
the optimal sequencg*. The diference between the lower bound of
GB (A_first) and the upper bound @8 (A*) then gives us the upper
bound of the performance regret of our proposed algorithow-H
ever, this bound is constructed using fdeng’s inequality, so it is
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Figure 1. Distribution of applicants for jobs with “Java” keyword on
oDesk. com.
correct only with a certain probability. Specifically, itégsrrect with
probability (1 - 8)N, whereg € (0, 1) is a predefined confidence pa-
rameter (i.e. the confidence with which we want the upper tdan
hold) andN is the number of arms. As a result, we have:

Theorem 1 Let0 < &,8 < 1. Suppose thatB > YL, c;. With prob-

ability (1 - p)N, the performance regret of the boundesfirst ap-
proach is at most

B(- In g‘) P

2+ eBlnax + 2N | \| ——F———|, (4)
&
where Ghax = MaX; ‘;—I' - ’;—J" (i.e. the largest distance between dif-

ferent density values).

The proof of the theorem can be found in the Appendix. Now, fipy o
timally tuning the value: so that the upper bound given in Theorem 1
is minimised, we get:

Theorem 2 Let &, denote the value that minimises Equation 4. By
setting the exploration budget to bedg, the regret of the bounded
g—first algorithm is at most

1
2+ 38} [NZ(— |n§)ZN: cjdmax]3 .
=1

That is, the upper bound can be tightene® %) The proof only
requires elementary algebra, and is omitted for brevity.

5 EXPERIMENTAL EVALUATION

While we have so far developed theoretical upper bound$iéopér-
formance regret of our algorithm, we now turn to practicglesss
and examine its performance in a realistic setting. Thievadl us
to investigate whether the algorithm achieves a high utiibhen ap-
plied to practical expert crowdsourcing problems. To tind,eve run
the algorithm on a range of problems from a large real-woatdset
and compare its results with a number of benchmarks. In flefo
ing, we first outline the dataset we use to generate our erpets,
then describe the benchmarks and finally detail our results.

5.1 Experimental Setup

To test our algorithm on realistic settings, we use real tfata the
expert crowdsourcing websit®esk . com.® Specifically, we assume
an employer wishes to crowdsource a large-scale softwanjeqbr
and is looking to hire Java experts. Since only a small foactif all
registered Java experts will be available at any time, werdehe
the number of applicants by sampling from the real histbdstri-
bution of applicants per Java—related job. This distriouis shown

in Figure 1 (we consider only closed jobs and truncate theilois
tion to the interval [2100], as smaller jobs are trivial and as there
were a small number of extremely large outliers).

8 This data is available through their APlddvelopers.odesk. com.
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Figure 2. Performance evaluation of the algorithms in case of jobk wit

Table 1. Performance evaluation of the algorithms iffelient job settings
with small B = 500), moderateR = 5,000), large B = 30,000) and
extremely largeB = 100000) budgets. The numbers represent the total
collected utility of each algorithm.

To determine the characteristics of those workers, we sathpm
from the set of more than 30,000 Java experts registeredeondb-
site. For each expertwe use their real advertised hourly costsdor
and we randomly determine their task limitsby drawing from the
discrete uniform distribution on [5,000] (since real data on these
limits is not available through the API). That is, a worker vl
spend up to more than a working year on average on a job. ¥inedl
determine the worker’s utility distribution as the sum obtrandom
variables, ®- R +0.1-U(0, 1), whereR, is the empirical distribution
of the user’s actual ratings obtained on previous jarsiU (0, 1) is
the continuous uniform distribution on the interval 1 (to add a
small amount of noise). Trivially; is then 09 - E[R] + 0.05.

5.2 Benchmarks
To demonstrate that our algorithm outperforms the stathefart,
we compare its performance to a number of benchmark methods:

1. Budget-limited efirst: a budget-limited MAB algorithm that as-
signs all tasks to a single agent during the exploitatiorspheith-
out considering its task limits [9].

2. Trialsourcing: an existing approach that is used on the exper

crowdsourcing websiteworker.com. This first assigns a sin-

gle task to each of the applicants and then chooses the be

performing worker out of these until it reaches its task jrfol-

small budgets (smaller than $D0).
5.3 Results

To analyse the behaviour of each algorithm ifietient job scenarios,
we vary the budgeB. In particular, we first focus on four filerent
job types: (i) small B = $500); (ii) moderate B = $5,000); (iii)
largeB = $30000); and (iv) extremely largeB(= $10Q000). These
are realistic values based on real jobs that have been edbdn
oDesk. com. Additionally, for each budget, we re—sample the number
and set of experts 1000 times to achieve statistical significance, and
we calculate 95% confidence intervals for all results. Thesealts
are depicted in Table 1 (with the 95% confidence intervalsvshia
brackets). Here, we set thevalue of our algorithm to A5, while
thee value of the budget-limitegfirst is set to M5, 01, and 015,
respectively (we have also tested witlfdients values, which result

in the same broad trends).

As we can see from the results, our algorithm typically outpe
forms the others by up to 155%. In particular, it outperforiing
budget-limitede—first (which is the best benchmark algorithm) by
23% in the case of a small budget £ 0.1 for the budget—limited
algorithm). In addition, our method outperforms this benahk by
85%, 100%, and 155% in the cases of moderate, large, andrestjre
large budgets, respectively. We also observe that we cautitve
a high performance without taking task limits into accouss (s
the case with the budget—limiteg-first), or without having fti-
tcient exploration (as in the case of trialsourcing). Sinfjassimple
algorithms such as pure exploration or random task allogatd not

Jprovide good performance either. Note that our algorithpragaches

the theoretical optimum by up to 75% (in the cases of modgiatge

lowed by the second-best, and so on. This algorithm can be re@nd extreme budgets), while it achieves 61% of the optiniatien’s

garded as a simpler version of the boundefirst with only one
round of exploration.

3. Random: this algorithm randomly chooses a single worker to

whom it assigns all tasks. This represents a typical expevtd:
sourcing task allocation, where the employer chooses ditapp
from some preferred prior distribution (see, efgeelancer.

com Or utest.com). Within our experiments, we sample this ap-

plicant from a uniform prior distribution (we have also egbtvith
other priors without any significant improvements).

performance in the scenario with small budgets.

Note that around 80% of the jobs @desk.com have a budget
smaller than $D00. Given this, we next further analyse the perfor-
mance of the algorithms within this budget range. The resate
depicted in Figure 2. As we can see, for jobs with very smalgats
(i.e. smaller than $100), the performance of our algoritersiinilar
to that of the budget—limiteg—first and trialsourcing. This is due to
the fact that with a small budget, longer exploration is aiyxand
thus, those approaches perform well with only a small buftyesx-

4. Uniform : this approach uniformly assigns tasks to all applicants.Ploration. However, if the budget is higher than $100, ogoathm

We include this to test thefiéciency of pure exploration (i.e. uni-
form task assignment).

5. Optimal: this is ahypotheticaloptimal algorithm with full knowl-
edge of each worker's mean. As such, it is an upper bound on
our algorithm’s performance.

9 Ratings oroDesk. com are 1 — 5 stars, which we map to the intervallp
Note we use this only to generate realistic distributiond assumeR; is
unknown to our agent. To avoid bias when only few ratings aedlable,
we pad this empirical distribution with samples fr&h(0, 1) until it is based
on at least five samples.

clearly outperforms the others by up to 60%. We can also gbser
that the uniform and random algorithms are clearly worse tha
approach for any budget size.

Another interesting set of jobs is those with large budgetghey
present long—term investments that require careful tdskation.
Thus, we also vary the budgBtfrom $5000 to $20000, to analyse
the performance of the algorithms. In fact, this range cov&1% of
large jobs (i.e. jobs with budget $5,000). From Figure 3, we can see
that our algorithm typically outperforms the others by uR2@9%,
and it approaches about 85% of the optimum.
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Figure 3. Performance evaluation of the algorithms in case of jobk wit
large budgets (between B0 and $20000).

6 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the expert crowdsourcing noblvith
variable worker performance and heterogenous costs. $nptiob-
lem, an employer wishes to assign tasks within a limited btitiga
set of workers such that its total utility is maximised. Tdvscthis
problem, we introduced a new MAB model, the bounded MAB with
a limited number of pulls per arm. Given this, we proposedrgpts,
but dficient, bounded—first based algorithm that uses a uniform pull
strategy for exploration, and a bounded knapsack basedagipfor
exploitation. We proved that this algorithm ha® B3) theoretical
upper bound for its performance regret. Finally, we denratetl that
our algorithm outperforms state-of-the-art crowdsouwyafgorithms
within this domain by up to 155%, and also consistently agsaip

to 75% of the theoretical optimal. As a result, our work copbden-
tially form an dficient basis to crowdsourcing websites which aim to
provide dficient teams of experts, so-calledrated crowdsto meet
their customers’ business requirements (gegriusrocket.com or
blurgroup.com).

Note that our approach does not exploit the fact that in meai-r
world applications employers typically have additiondbimnation
about the applicants, which could be used to find the bestewsrk
more quickly (e.g. reputation ratings or lists of qualifioas). How-
ever, as this information might not be accurate either, rioistrivial
how to dficiently handle it in practice. In future work, we intend to
extend our analysis to such settings.
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APPENDIX: PROOFS

We now sketch the proof of Theorem 1. In so doing we define sennes.
LetiM* = arg ma>5 <. Similarly, letimn = arg mlq °1 Now, if we relax

]
the bounded knapsack problem defined in Section 3.2 (sedifigud such
thatx; can be fractional, we get tHeactional bounded knapsack. It is easy
to show that the bounded greedy algorithm provides an optwiation to
the fractional bounded knapsack, and this optimal solusaways at least
as high as the optimal solution of the (integer) bounded &aelp (for more
details, see [4]). Given this, I&&,..., Xn) denote the optimal solution of
the knapsack problem defined in Equation 2 (i.e. the problearhave to
solve within the exploitation phase), that we can get by gisive bounded
greedy method. In addition, recall that if we knew the rehlea@f eachy;, the
optimal strategy within the exploitation phase would bedpémal solution
of the bounded knapsack problem which we get from the formap&ack by
replacingy; with g;. Thus, lex], . ) denote the optimal solution of the
fractional relaxation of this bounded Enapsack that we gt by using the
bounded greedy method. Next, we prove the following auwyillammas.

Lemma3 E [GSB (Auni)] > EB(Himln/C,mm) -1
Lemma 4 E[GA98 (Ageeay] > TN Rjuj - L.

Lemma 5 ]E[G(l €)B (A*)] <3 X

Proof of Lemma 3. It is easy to show that for any arijn 2N, xSplore

€B - ¢j, since none of the arms can be pulled after the stoaugi without
exceeding:B. Furthermorey; = ¢ (4i/g) > ¢ (#,mm/cim,n). Recall thay; < 1.
Thu3'

Z explore_ (Z explore ]

Proof of Lemma 4. Without loss of generality, assume that the bounded
greedy chooses the arms to pull in the order &, 1.., N. Let b denote the
largest index such thag, # O SinceAgreedyalso uses t_he bounded greedy,
we can easily show thaf*®*" = % for i < bandx®*" = | (if i > b,
then )ﬂexplon % = 0). Thusi [G(l_g)B (Agreedy)] = Z?;% Rjuj + [Rolup =

ijl Kjuj + (X — 1) up, Which concludes the proof, singg < 1.

Himin

Cimin

Mjmin

(EB - cim,n) r— €Bitimin

imin Cimin

Proof of Lemma 5. The lemma follows from the fact that the optimal solution

of the bounded knapsack cannot exceed that of its fractmmatterpart.

Proof sketch of Theorem 1 Using Hoefding's inequality for each arm

and for any positives;, we have:P (|1 — ui| > 6i) < 2 exp{—26i2xfx')'°re}. By
~in&

settingd; = szm, it is easy to prove that, with probabilitid — g)N,

=

| — wil < 6; holds for each arm Hereafter, we stricly focus on this case.
is easy to show tha [GB (A")] < eB4mx + E[GU-9)8 (A")]. This implies
1

that  R(a ) - E[6 ()]

+  (B[G* 9B (A)] - E[G B (Byeeay)).  (5)
Using Lemma 3, we can bound the first term on the right handasidellows:

pimex_ Himin ) +1=eBdnaxt 1l (6)

Cimax  Cimin
We now turn to bound the second term on the right hand side o&tan 5.
From Lemmas 4 and 5 we ng[G(lf“J)B(A*)] - IE[G(lfb‘)B(Bgreed)] <
ZJ -1 J - ZjN:1 Kjuj + 1. Since(&y, ..., &) is the optimal solution of the
fractlonal bounded knapsack that we have to solve at th@'elmiad)n phase,
we have:zg.\‘=1 Riflj = ZE\‘=1 x! . Similarly, we havezJ L X 2 ZJ 1 XiHj
(since(x], ..., %) is the real optimal solution). Recall that — ui| < 6 holds
N ¢ N <

for each arni. This implies thatzJ S1 XK~ 2t Ripj < Xy 6 (xj+ + Xj).
Note thatx; % < (1-¢)B. This
implies that

E [G(l—s)B (A*)] _E

Himax

< max

(B

Bﬂ|max _“E [GaB (Aunl)] < B(

<

<(1-¢)B. Slmllarly we havexjff

N N
[G19® (Byreea)| < (1-£)B > 26, <B Y 25,

=1 =1
explore B >

. {ZJNNJ 2211 i

equality can be easily proven by using elementary algehrastiuting these

into Equation 7, and combining with Equation 6 we concludepitoof.

@)

B
-In5
2>ﬁ_explore

Recall thaty; = and . The second in-



