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Abstract. We introduce constrained DEC-POMDPs — an exten-
sion of the standard DEC-POMDPs that includes constraints on the
optimality of the overall team rewards. Constrained DEC-POMDPs
present a natural framework for modeling cooperative multi-agent
problems with limited resources. To solve such DEC-POMDPs, we
propose a novel sample-based policy iteration algorithm. The algo-
rithm builds on multi-agent dynamic programming and benefits from
several recent advances in DEC-POMDP algorithms such as MB-
DP [12] and TBDP [13]. Specifically, it improves the joint policy
by solving a series of standard nonlinear programs (NLPs), there-
by building on recent advances in NLP solvers. Our experimental
results confirm the algorithm can efficiently solve constrained DEC-
POMDPs that cause general DEC-POMDP algorithms to fail.

1 Introduction
Markov decision processes (MDPs) and their partially observable
counterparts (POMDPs) are widely used for planning under uncer-
tainty. A natural extension of these models to cooperative multi-agent
settings is provided by the decentralized POMDP (DEC-POMDP)
framework. Unlike single-agent POMDPs, there is no centralized be-
lief state during the execution of DEC-POMDPs. Rather, each agent,
with different partial information of the environment, must reason
about the decisions of the other agents and how they may affect
the environment. The complexity of finite-horizon DEC-POMDPs
has been proved to be NEXP [3], much harder than single-agent
POMDPs. Nevertheless, many exact and approximate solutions have
been developed for solving DEC-POMDPs [1, 2, 5, 11, 12, 13].

In more detail, each joint action executed in the environment
has an immediate reward specified by the reward function in DEC-
POMDPs. The goal is to find a joint policy that maximizes the long-
term accumulated reward as measured by the expected value func-
tion. However, in many real-world settings, the resources available
to the agents are limited. Typical examples are disaster-response ap-
plications where multiple battery-equipped UAVs are employed to
search for survivors given a finite amount of energy. The goal of the
UAVs is to maximize saved lives while making energy usage below
the prescribed thresholds so that they have sufficient power to return
to the charging stations. Another scenario is the rock sampling task
on Mars. Since solar power is the main energy resource of the rover-
s, they must sample as many rocks as possible before running out of
battery. In both of these cases and many other besides, the utility de-
pends on multiple factors. There is one reward (e.g., number of saved
lives and number of rocks sampled) to be maximized, but this is sub-
ject to several constraints (e.g., battery level of UAVs or the rovers)
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with respect to limited resource budgets.
To model the above problems using standard DEC-POMDPs, it

is often required to manually balance different constraints into a s-
ingle reward function until the corresponding joint policy exhibits
the desired behavior. Simply adding constraints in the state space
would not work since the resource consumption accumulates over
time and depends on both states and actions. However, tuning a
model with different constraints is generally difficult, even for do-
main experts, since the concept of value functions is not intuitive. To
address this, we extend the standard model to consider constraints.
Specifically, the consumption of resources is modeled as a set of
cost functions. For each cost function, an upper bound cost is de-
fined which is the prescribed budget for the resource such as the
battery capability of UAVs or Mars rovers. The objective is then to
find a solution that maximizes the long-term reward without violating
the constraints at each time step. This naturally models multi-agent
sequential decision-making problems involving constraints and the
constrained DEC-POMDP can be viewed as a multi-agent extension
of the single-agent constrained POMDP [6]. However, solving this
multi-agent extension is much more challenging given that DEC-
POMDPs are significantly harder than POMDPs. Additionally, our
model is fundamentally different from the work on DEC-MDPs with
temporal constraints[4, 7, 14] where each task is assigned a temporal
window during which it should be executed.

In this paper, we propose Sample-Based Policy Iteration (SBPI)
for solving constrained DEC-POMDPs. This borrows ideas from dy-
namic programming of standard DEC-POMDPs and constructs the
policies from the last step up to the first step. The approximation
is motivated especially by MBDP [12] where a portfolio of top-
down heuristics is used to sample belief-cost pairs. The belief-cost
pairs contain information about reachable belief states and admissi-
ble costs [9] for the current step. Intuitively, the admissible costs are
the remain in resource, e.g. battery, that can be used in the future step-
s without violating the constraints. At each iteration, the joint poli-
cies are improved for the corresponding belief-cost pairs. The policy
improvement procedure is formulated as a standard NLP that can be
solved by any off-the-shelf NLP solver such as Snopt and Ipopt. We
use stochastic polices with a fixed amount of memory so the algo-
rithm has linear time and space complexity over horizons. Given this,
the main contribution of this paper lies in the general solution frame-
work for constrained DEC-POMDPs, as well as the approximation
we make for solving large problems. It is straightforward to extend
our work to include other constrains such as integer and stochastic
constraints or take advantage of the many NLP solvers developed in
the optimization community. In short, this is the first work toward-
s solving constrained DEC-POMDPs. Moreover, our experimental
results on standard benchmark problems confirm the advantage of



SBPI compared to TBDP [13] and its variant.
The remainder of the paper is organized as follows. We first intro-

duce standard DEC-POMDPs and its constrained extensions. Then,
we review the DP framework and present the SBPI algorithm. Final-
ly, we show the empirical results and conclude the paper.

2 Background
2.1 Decentralized POMDPs
Formally, a decentralized POMDP (DEC-POMDP) is defined as a
tuple 〈I, S, b0, {Ai}, P, {Ωi}, O,R, T 〉, where:

• I is a set of agents identified by 1, 2, · · · , n ∈ I .
• S is a finite set of system states and b0 ∈ ∆(S) is the initial state

distribution.
• Ai is a finite set of actions for agent i, and ~A = ×i∈IAi is the

joint action set.
• P : S × ~A → ∆(S) is a state transition function and P (s′|s,~a)

denotes the probability of the next state s′ when taking joint action
~a in state s.
• Ωi is a finite set of observations for agent i, and ~Ω = ×i∈IΩi is

the joint observation set.
• O : S× ~A→ ∆(~Ω) is an observation function andO(~o|s′,~a) de-

notes the probability of observing joint observation ~o after taking
~a with outcome state s′.
• R : S× ~A→ < is a reward function andR(s,~a) is the immediate

reward after taking joint action ~a in state s.
• T is the time horizon of the problem.

A local policy of agent i, qi, is a mapping from the set of observa-
tion sequences Ω∗i = (o1

i , o
2
i , · · · , oti) to its action setAi, and a joint

policy is a set of local policies, ~q = 〈q1, q2, · · · , qn〉, one for each
agent. The value function of a joint policy ~q is defined as:

Vr(s, ~q ) = R(s,~a) +
∑
s′,~o

P (s′|s,~a)O(~o |s′,~a)Vr(s′, ~q~o) (1)

where ~a is the joint action specified by joint policy ~q and ~q~o is the
joint sub-policy of ~q after observing the joint observation ~o. The goal
of solving a DEC-POMDP is to find a joint policy ~q ∗ that maximizes
the expected value of b0:

~q ∗ = arg max
~q

∑
s∈S

b0(s)Vr(s, ~q) (2)

Notice that DEC-POMDPs are equivalent to POMDPs when there is
only one agent. While the execution of policies is inherently decen-
tralized with only local information for each agent, the computation
of policies during the planning phase can be centralized.

2.2 Constrained DEC-POMDPs
The constrained DEC-POMDP is formally defined as a tuple
〈I, S, b0, {Ai}, P, {Ωi}, O,R, T, {Ck}Kk=1, {ck}Kk=1〉 with the fol-
lowing additional components:

• Ck(s,~a) is the cost of type k incurred for executing action ~a in
state s and all the costs are non-negative, i.e. Ck(s,~a) ≥ 0.

• ck is the upper bound on the cumulative cost of type k.

For example, in the UAV coordination problem, the cost function
Ck(s,~a) is the energy usage for action ~a in state s and the upper
bound ck is the total capability of the battery pack.

Solving a constrained DEC-POMDP corresponds to finding an op-
timal joint policy ~q ∗ computed by Equation 2 subject to the cumu-
lative cost constraints:

∀k ∈ 1..K, E
~q ∗

[
T∑

t=1

Ck(st, ~a t)
∣∣∣b0] ≤ ck (3)

where ~a t is the joint action specified by the joint policy ~q ∗. Sim-
ilarly, the k-th expected cumulative cost can be recursively defined
as:

Vc(s, ~q )k = Ck(s,~a) +
∑
s′,~o

P (s′|s,~a)O(~o |s′,~a)Vc(s
′, ~q~o)k (4)

Therefore, the cost constraints for a joint policy ~q in state s can be
simply written as:

∀k ∈ 1..K, Vc(s, ~q )k ≤ ck (5)

The solution of a constrained DEC-POMDP is to maximize the val-
ue function in Equation 1, while making all accumulated costs below
the prescribed thresholds as described in Equation 5. Generally, con-
strained DEC-POMDPs are harder than standard DEC-POMDPs as
they have the same worst-case policy space and each agent has no
information about the cost occurred by the other agents.

3 Multi-Agent Dynamic Programming
In standard DEC-POMDPs, an agent’s policy is usually represented
as a decision tree and a joint policy as a collection of trees, one for
each agent. When running a policy tree, the agent follows a path
from the root to a leaf node depending on its received observations
and the actions at the nodes of the path are executed. Offline planning
algorithms usually take input of the DEC-POMDP model and output
a joint policy tree that maximizes the expected value. Then the joint
policy is distributed and each agent takes its own part for execution.
Generally, it is intractable for large problems to directly search for
the best joint policy trees since the number of all possible joint trees
grows double-exponentially with the horizon.

Our approach is based on the exact dynamic programming (DP) al-
gorithm for standard DEC-POMDPs [5]. It incrementally constructs
policy trees from the last step towards the first step. At each itera-
tion, it performs an exhaustive backup on each of the sets of trees to
create new policy trees for each agent. In the backup operation, for
each action and each resulting observation, a branch to any of the
previous-step trees is considered. The DP iteration also recursively
computes the values for every new joint policy. If all policy trees are
generated for every step in the horizon, the total number of complete
policy trees for each agent is of the order O(| ~A||~Ω|

T

). This double
exponential blow-up presents the key challenge for the DP solution
and it will quickly run out of memory even for toy problems. Given
this, a crucial step of the multi-agent DP operator is to prune dom-
inated policy trees. A policy tree qi of agent i is dominated if for
every possible belief point and every possible policy of the other a-
gents there exists at least one other policy tree q′i that is as good as
or better than qi. This test for dominance is performed using a linear
program and removing a dominated policy tree does not reduce the
value of the optimal joint policy [5].

To solve constrained DEC-POMDPs with the DP method, there
are two additional steps. The first one is an update step that recur-
sively computes the expected costs for every k ∈ 1..K according to
Equation 4. This is analogous to the evaluate step where the value



Algorithm 1: Multi-Agent Dynamic Programming
Input: A constrained DEC-POMDP model.
∀i ∈ I,QT

i ← initialize all last-step policy trees
for t=T−1 to 1 do // Bottom-up iterations.
∀i ∈ I,Qt

i ← exhaustive backup Qt+1
i

V t
r ← recursively evaluate all joint policies ~Qt

∀k, V t
c ← recursively update all expected costs

repeat
i← randomly select an agent in I
qti ← find a policy tree in Qt

i where
// A constraint is violated.
∀ b ∈ ∆(S),∀ qt−i ∈ Qt

−i:
∃ k ∈ 1..K, V t

c (b, ~q t)k > ck
Qt

i ← Qt
i − {qti} // Prune the policy.

until no more pruning is possible.

return ∀i ∈ I,Q1
i

function of each joint policy is computed by Equation 1. The second
step consists of eliminating policy trees that certainly violate at least
one of the constraints. This can be done for a policy qi and every k
by checking if the following optimization problem has no solution:

max ε with variables x(s, q-i) for every pair of s, q-i
s.t.

∑
s,q-i

x(s, q-i)Vc(s, ~q )k + ε ≤ ck,
∑
s,q-i

x(s, q-i) = 1

If this problem has no solution, it indicates that for every possible
belief state and every possible policy of the other agents, the expected
cost of qi exceeds the threshold (i.e., Vc(b, ~q )k > ck). Note that
∀s,~a Ck(s,~a) ≥ 0, any policy tree built based on qi will also violate
the constraint according to Equation 4. Hence policy qi is useless for
constructing the new policy trees and can be eliminated from the
candidate set. The main procedures are illustrated in Algorithm 1.

Unfortunately, this DP algorithm has several drawbacks that lim-
it its scalability. Firstly, as mentioned earlier, the number of policy
trees still grows quickly even with the pruning techniques. Howev-
er, most of the policy trees kept in memory turn out to be useless
for the construction of the optimal policy and should be eliminat-
ed early on. Secondly, a policy tree can only be eliminated if it vi-
olates at least one of the constraints for every possible belief and
the other agents’ policies. This is inefficient since it only guarantees
that every intermediate joint policy ~q satisfies the overall constraints
Vc(b, ~q )k ≤ ck. The upper bound is very loose especially at the ear-
ly stage of iterations. Obviously, the execution of a joint policy from
the beginning to the current step will have some cost. Ideally, this
should be considered when pruning policy trees. However it cannot
predict how much the cost is exactly until the algorithm reaches the
root of the trees. Moreover, the other agents also maintain a large
set of policy trees that should be eliminated at the pruning step. To
address these, we propose Sample-Based Policy Iteration (SBPI).

4 Sample-Based Policy Iteration
In standard DEC-POMDPs, the MBDP algorithm [12] first gener-
ates a set of reachable belief states using top-down heuristics and
then keeps only a fixed number of the best policies for these be-
liefs. It offers linear time and space complexity w.r.t the time hori-
zon and can solve much larger problems with essentially arbitrarily
long horizons. Intuitively, we can apply similar ideas to constrained
DEC-POMDPs and test the constraints when choosing the best poli-
cies as follows. First, a set of belief states are sampled by some pre-

Algorithm 2: Sample-Based Policy Iteration
Input: A constrained DEC-POMDP model.
∀i ∈ I,Qi ← initialized with a random policy
for t=T to 1 do // Bottom-up Iterations.

for m=1 to M do
(b, d)← sample a reachable belief and cost
~Qt ← improve the joint policy at (b, d)

V t
r ← recursively evaluate all joint policies ~Qt

∀k, V t
c ← recursively update all expected costs

return ∀i ∈ I,Qi
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Figure 1. Example of Stochastic Policy for Two Agents

computed heuristics. Then, we backup the policies and for each be-
lief point prune new policies that violate the constraints using the
same method as described in the previous section. However, this sim-
ple idea still suffers from the exponential growth in the number of
policies since the upper bounds of the costs are still very loose.

In this work, we borrow ideas from MBDP and its succes-
sors [12, 13] for efficient policy generation, and address the looseness
by reasoning about the potential cost of the current step when sam-
pling the beliefs. Specifically, at each iteration, SBPI first samples
pairs of beliefs and the accumulated costs (bt, dt) up to the current
step using heuristics. Then it searches the best joint policy for each
belief-cost pair by solving a NLP. Algorithm 2 outlines the main pro-
cesses of SBPI. In the following subsections, we first introduce our
NLP formulation and then present our belief-cost sampling method.

4.1 Stochastic Policy Improvement
We use stochastic policies [13] instead of deterministic policy trees
to represent the solutions for two main reasons. First, the stochastic
policies are parameterized. This enables us to search over the policy
space by optimization methods instead of enumerating all possible
policy trees. Second, as discussed in [6], the randomization intro-
duced by the stochastic policies is useful for avoiding sub-optimality
of deterministic policies. Note that a constrained DEC-POMDP is e-
quivalent to a constrained POMDP when there is only one agent. The
stochastic policies used in this paper are similar to finite state con-
trollers (FSC) [2] but with layered structures, which is also called
periodic FSC [8]. Each policy has a total of T layers and each layer
contains a fixed number (M ) of nodes.

Formally, each node of the stochastic policy for agent i can be
defined as a tuple qi = 〈ψi, ηi〉, where

• ψi : Qi → ∆(Ai) is an action selection function that specifies a
distribution over the actions, i.e. p(ai|qi).

• ηi : Qi × Ωi → ∆(Qi) is a node transition function that de-
fines the probability distribution over the next nodes q′i when oi is
observed, i.e. p(q′i|qi, oi).



Table 1. Nonlinear Program for Policy Improvement

Maximize
∑

~a

∏
i x(ai|qi)

[
R(b,~a) +

∑
s′,~o Pr(s

′, ~o |b,~a)
∑

~q ′
∏

i y(q′i|qi, ai, oi)Vr(s′, ~q ′)
]
, s.t.

(1) The cost constraints:

∀k
∑

~a

∏
i x(ai|qi)

[
Ck(b,~a) +

∑
s′,~o Pr(s

′, ~o |s′,~a)
∑

~q ′
∏

i y(q′i|qi, ai, oi)Vc(s
′, ~q ′)k

]
≤ ck − dk

(2) The probability constraints:∑
ai
x(ai|qi) = 1, ∀ai, oi

∑
q′i
y(q′i|qi, ai, oi) = x(ai|qi), ∀ai, oi x(ai|qi) ≥ 0, y(q′i|qi, ai, oi) ≥ 0.

where x(ai|qi), y(q′i|qi, ai, oi) are variables of each agent i’s policy qi, ∀k dk are the admissible costs, and

R(b,~a) =
∑

s b(s)R(s,~a), Ck(b,~a) =
∑

s b(s)Ck(s,~a), P r(s′, ~o |b,~a) =
∑

s b(s)P (s′|s,~a)O(~o |s′,~a)

The value function of a joint stochastic policy ~q in state s can be
computed as:

Vr(s, ~q ) =
∑

~a

∏
i p(ai|qi)[R(s,~a) +

∑
s′ P (s′|s,~a)·∑

~oO(~o |s′,~a)
∑

~q′
∏

i p(q
′
i|qi, oi)Vr(s′, ~q ′)]

(6)
For a given joint belief b, the value of joint policy ~q is Vr(b, ~q) =∑

s∈S b(s)Vr(s, ~q). Similarly, we have the expected cost function
for the k-th constraint as:

Vc(s, ~q )k =
∑

~a

∏
i p(ai|qi)[Ck(s,~a) +

∑
s′ P (s′|s,~a)·∑

~oO(~o |s′,~a)
∑

~q′
∏

i p(q
′
i|qi, oi)Vc(s

′, ~q ′)k]
(7)

Then, the cost function for a joint belief can be defined as
Vc(b, ~q)k =

∑
s∈S b(s)Vc(s, ~q)k for every constraint k.

Before the improvement procedure, each node qi of every agent i
is initialized with random parameters ψi, ηi. Then, for each sampled
belief point (b, d) and joint policy node ~q, a NLP as described in
Table 1 is formulated with the objective of maximizing the expected
value. The cost constraints ensure that the new joint policy uses only
bounded resources and the probability constraints guarantee that the
corresponding parameters of the new policy are probabilities. This
NLP can be efficiently solved with any off-the-shelf solver, with the
output containing the new parameters for the joint node.

For problems with many agents, the number of variables and con-
straints may grow beyond the capability of NLP solvers. They may
run out of memory or take too much time to find the solution. To
alleviate this, we can use an approximation as follow: (1) Select a
subgroup of agents with heuristics; (2) Improve the agents’ policies
in this group while keeping policies of the other agents fixed; (3) Re-
peat (1) and (2) several times until no improvements are possible for
all agents. The heuristics for agent selections are of domain depen-
dence. In domains such as disaster response, each UAV is assigned
to a region and linked with a network structure. One possible heuris-
tic would be to randomly choose an agent and group the agents with
some predefined tree-width in the network. Therefore, agents with
their nearest neighbors can improve their policies together simulta-
neously using smaller NLPs.

4.2 Belief and Cost Sampling
In standard DEC-POMDPs, a joint belief state is a probability distri-
bution over the states, i.e. b ∈ ∆(S). Unlike single-agent POMDPs,
the execution of DEC-POMDP policies does not require maintaining
a belief state over time. Given policy node qti at time t, agent i selects
an action ati ∼ p(Ai|qti), executes it, receives a subsequent observa-
tion ot+1

i , then updates its policy node to qt+1
i ∼ p(Qt+1

i |qti , ot+1
i ).

Algorithm 3: Belief and Cost Sampling
Input: A constrained DEC-POMDP model and time h.
∀s ∈ S, b(s)← 0
∀k ∈ 1..K, dk ← 0
for n=1 to N do // Sample N times.

s← randomly draw a state from b0

for t=1 to h do
∀i ∈ I, ai ← select an action w.r.t the policy qti
run a simulator of the system with (s,~a)
∀i ∈ I, oi ← get agent i’s observation
∀k ∈ 1..K, dk ← dk + Ck(s,~a)
s← get the new system state

b(s)← b(s) +
∏

i p(q
t
i |qt−1

i , oti)

normalize b and ∀k ∈ 1..K, dk ← dk/N
return (b, d1..K)

However, a joint belief state is useful for the DP process to com-
pute the expected value of a joint policy and identify the best one.
Although a belief state can be recursively computed by Bayesian up-
dating bt+1 = Pr(S|bt,~at, ~o t+1), it is generally inefficient since
each belief state is a vector of size |S|. In this paper, we adopt sam-
pling methods to generate the set of belief states.

With the stochastic policy representation, a random policy has
been provided for sampling. The basic procedure we consider is the
use of a particle filter. Starting from b0, we run the the simulation N
times and collect a set of weighted state particles. The j-th particle
is a pair 〈sj , wj〉 and the total weight of the particle is w =

∑
j wj .

Then, the particle set represents the state distribution as:

b(s) =
1

w

N∑
j=1

{wj : sj = s} (8)

where {wj : sj = s} = wj if sj = s and 0 otherwise. This se-
quential importance sampling process will converge to the true dis-
tribution if N is sufficiently large. One key issue with the filtering
algorithm is to decide the weight wj for each particle. Since we will
use the joint belief to improve ~q t, the weight can be set as:

wj =
∏
i∈I

p(qti |qt−1
i , oti) (9)

where qt−1
i is the last sampled policy and oti is the observation re-

ceived by agent i after we run the joint action associated with ~q t−1.
Obviously, wj is the joint probability transiting from ~q t−1 to ~q t

given the joint observation ~o t.
To obtain information on the cumulative cost for each sampled

belief, we introduce a new variable dhk representing the expect-



ed cumulative cost that has been incurred up to time step h, i.e.
dhk =

∑
t Ck(st,~at). Then the expected cumulative cost that can

be additionally incurred for the remaining time steps without violat-
ing the overall constraint is the difference between ck and dhk , which
is called the admissible cost [9] at time step h. Note that we use the
expected accumulated cost instead of the actually incurred cost when
improving the policies. When sampling the beliefs, we collect pairs
of the state and the cost and use the average value to estimate the
expected accumulate cost as shown in Algorithm 3.

5 Experiments
5.1 Experimental Settings
For each problem, we defined cost functions Ck(s,~a) as well as the
corresponding upper bounds ck. Specifically, we assume that agents
are battery-equipped and each action takes a certain amount of ener-
gy. The total capability of the battery packs is the upper bound that
can be consumed during the process. Generally speaking, the upper
bound can be set to an arbitrary value. However, if the upper bound
is very large, none of the policies will violate the constraint. On the
other hand, if the upper bound is too small, none of the valid policies
exist subject to the constraint. To illustrate the usefulness of con-
straints, we deliberately chose the upper bound so that only a subset
of the policies are valid for the constraints.

We compared our results with TBDP [13] — currently the lead-
ing algorithm for finite-horizon DEC-POMDPs — which consistent-
ly outperforms other approximate algorithms. To date, there is no
algorithm in the literature focusing on constrained DEC-POMDPs.
For comparisons, therefore we solved each benchmark problem with
the standard version of TBDP that ignores the constraints (TBD-
P) and a variation that takes input of a new reward that linearly
mixes the original reward and costs (TBDP-MIXED): R̃(s,~a) =
R(s,~a) −

∑
k Ck(s,~a). TBDP-MIXED illustrates an example of

the technique that fits the rewards and costs into a single reward
and solves the constrained DEC-POMDPs with standard solvers. Al-
though more sophisticated methods of combining reward and costs
may exist, they are domain-dependent.

In the experiments, we computed the policies of each benchmark
and evaluated them by a simulator designed for the model. It checked
every constraint at each step and terminated when any of the con-
straints were violated. Each value was produced by the simulator
with 100 trials. We reported the values of accumulated rewards (To-
tal Value) and the percentage of trials where constraints are violated
(Failure Rate). All results are averaged over 20 runs of the algorithms
on each of the problems. SBPI was implemented in Java 1.6 and ran
on a Mac OSX machine with 2.66GHz Intel Core 2 Duo CPU and
2GB of RAM available for JVM. Nonlinear programs were solved
using Snopt with the AMPL interface.

5.2 Experimental Results
The Cooperative Box Pushing problem [11] is a common benchmark
for DEC-POMDPs with two agents pushing 3 boxes (1 large and 2
small boxes) in a 3×4 grid. This domain has totally 100 states, 4 ac-
tions and 5 observations for each agent. We defined the cost function
as: 0.5 for action turn-left and turn-right, 1.0 for action
move-forward and 0.0 for action stay. The upper bound costs
were set to 10 for T=20 and 50 for T=100. As can be seen from Ta-
ble 2, SBPI achieved higher value than TBDP and TBDP-MIXED,
and also had much lower failure rate. The policies computed by TB-
DP violated the constraints throughout the 100 trials and had a failure

Table 2. Results of Benchmark Problems (20 runs)

Horizon Value/Rate SBPI TBDP TBDP-MIXED

Cooperative Box Pushing

20
Total Value 19.4875 0.0 13.3785
Failure Rate 1.65% 100% 83.5%

100
Total Value 157.6120 0.0 0.7630
Failure Rate 1.2% 100% 99.8%

Stochastic Mars Rover

20
Total Value 10.1082 0.2152 1.2058
Failure Rate 0.5% 98.5% 92.1%

100
Total Value 42.0408 0.0 16.2590
Failure Rate 0.0% 100% 73.3%

Meeting in a 3×3 Grid

20
Total Value 8.8680 4.4005 0.3560
Failure Rate 9.9% 64.6% 0.0%

100
Total Value 47.0825 33.3725 78.9795
Failure Rate 9.8% 49.55% 0.0%

Broadcast Channel

20
Total Value 8.7005 0.0 0.0
Failure Rate 2.6% 100% 100%

100
Total Value 29.4465 0.0 0.0
Failure Rate 13.2% 100% 100%

Multi-Agent Tiger

20
Total Value 53.6120 0.0 1.5515
Failure Rate 0.0% 100% 97.8%

100
Total Value 269.9140 0.0 0.0
Failure Rate 3.1% 100% 100%

rate of 100%. This suggests that the upper bounds were quite tight.
Therefore, the agents constantly ran out of battery with the policies
considering no constraints. TBDP-MIXED performed much better
than TBDP when the horizon was 20, but the performance dropped
dramatically for horizon 100 since the policy space grows double-
exponentially. In contrast, SBPI had more stable performance when
the horizon was shifted from 20 to 100.

The Stochastic Mars Rover problem [1] simulates two rovers with
the task of cooperative rock sampling on Mars. This domain has 256
states and each agent has 6 actions and 8 observations. The cost func-
tion was defined as: 0.5 for action up, down, left and right, and
1.0 for action drill and sample. The upper bound costs were set
to 24 for T=20 and 120 for T=100. In Table 2, we can see SBPI also
achieved much better performance than TBDP and TBDP-MIXED.
Interestingly, TBDP-MIXED worked better for a longer rather than
a shorter horizon as also shown in the Cooperative Box Pushing do-
main. The reason is that the actions drill and sample are critical
for the rock sampling task, but also have higher cost than the moving
actions. Given a longer horizon with a higher upper bound, it is possi-
ble to complete more tasks and thereby gain more reward. This set of
experiments show that the performance of TBDP-MIXED depends
on many factors such as the structures of reward and cost functions,
the horizon, etc. Therefore, it is difficult to design a single reward
function for a problem with multiple objectives.

The Meeting in a 3×3 Grid problem [2] has 81 states, 5 actions
and 9 observations per agent. The cost function was defined as: 0.5
for action up, down, left and right, and 0.0 for action stay.
The upper bound costs were set to 20 for T=20 and 100 for T=100. In
this domain, SBPI had better performance than TBDP, as expected.
However, TBDP-MIXED worked surprisingly well, especially when
the horizon was long. We observed that the agent with this policy
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Figure 2. Results of TBDP-MIXED with Different Cost Ratios

tended to stay in a grid for a long period of time because the stay
action has 0 cost. For the instance with short horizon, this policy led
to lower reward since there were few chances for the agents to meet in
the same grid — the task of this domain. However, when the horizon
is long and the grid world is relatively small (3×3), this policy might
get high value since it had less chance to violate the constraints but
more chance to meet. For some domains such as Meeting in a 3×3
Grid, TBDP-MIXED can work better than SBPI because it is less
likely to get stuck in a local optima.

The Broadcast Channel [2] and Multi-Agent Tiger [10] problem-
s are classical benchmarks for DEC-POMDPs. We included them
here for the sake of completeness. The cost function was defined as:
(send:1.0, not-send 0.5) for Broadcast Channel (upper bound:
28 for T=20 and 140 for T=100) and (open-left, open-right:
1.0, listen 0.5) for Multi-Agent Tiger (upper bound: 30 for T=20
and 150 for T=100). We can see from Table 2 that SBPI outperforms
TBDP and TBDP-MIXED with higher value and lower failure rate
in both domains. TBDP and TBDP-MIXED violated the constraints
in almost all trials with a failure rate of near 100%.

Notice that TBDP-MIXED first computed a new reward function
that mixed the original reward and costs and then solved the new
model with TBDP. The mixed reward can be defined as R̃(s,~a) =
R(s,~a) − x · C(s,~a) with a cost ratio x. In this set of experiments,
we varied the cost ratio x and solved the Cooperative Box Pushing
problem (T=20) with TBDP-MIXED. As we can see from Figure 2,
the total values and failure rates of TBDP-MIXED fluctuate with d-
ifferent cost ratios. For the range of x ∈ (0, 10), the total values
produced by TBDP-MIXED are always lower than SBPI’s and the
failure rates are higher than SBPI’s. In the line graph, the best total
value and failure rate are achieved by TBDP-MIXED when x = 3.5.
However, the cost ratio is domain-dependent and it is generally hard
to find the “right” value with good performance.

6 Conclusions

Constrained DEC-POMDPs are a natural model of cooperative
multi-agent problems with limited resources where the goal is to find
a joint policy that maximizes the long-term reward, while keeping
the accumulated costs below the prescribed thresholds. The SBPI al-
gorithm is proposed for solving constrained DEC-POMDPs. It has
several important advantages. Like MBDP and its successors, it has
linear time and space complexity over the horizons [12]. This is a

crucial property for problems with very long horizons. Similarly to
PBVI for constrained POMDPs [6], SBPI estimates the admissible
cost by sampling with heuristics. Hence SBPI can concentrate on the
policies using only a “reasonable” amount of resources given the pre-
vious steps. At each iteration, SBPI improves policies with a series
of standard nonlinear programs. One benefit of so doing is that SBPI
can take advantage of existing NLP solvers. Another strength is that
the algorithm can be easily extended to consider other types of con-
straints such as integer and stochastic constraints. In the experiments,
SBPI performs very well on several standard benchmark problems,
outperforming the leading solver with much better social welfare and
a lower failure rate.

In terms of future work, one limitation of SBPI is with regard to
becoming stuck in local optima. To overcome this, strategy such as
random restarts may be helpful. Also from the experiments, we note
that the policy generated by SBPI may have a small chance to violate
the cost constraints since the cumulative cost function is computed
recursively using the sampled beliefs. This may cause serious issues
for some domains. Thus, it may be useful to approximate the cost
function for the whole belief space instead of a limited number of
belief points and guarantee all constraints are certainly satisfied.
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