
Multi-unit Auctions with a Stochastic Number of
Asymmetric Bidders

Ioannis A. Vetsikas1 and Sebastian Stein2 and Nicholas R. Jennings2

Abstract. Existing work on auctions assumes that bidders are sym-
metric in their types — they have the same risk attitude and their
valuations are drawn from the same distribution. This is unrealistic
in many real-world applications, where highly heterogeneous bid-
ders with different risk attitudes and widely varying valuation dis-
tributions commonly compete with each other. Using computational
service auctions that are emerging in cloud and grid settings as a mo-
tivating example, we examine how an intelligent agent should bid in
such multi-unit auctions with asymmetric bidders. Specifically, we
describe the equilibrium bidding strategies in three different settings
that are distinguished by the levels of uncertainty about the types of
other agents. First, we consider a setting with full knowledge about
all agents’ types, then we consider the case where the types are un-
certain, but the number of bidders is known. Finally, we consider the
case where both the number of bidders and their types are uncertain.
Our experiments show that using the equilibrium strategies derived
from our full analysis leads to increased utility (typically 20− 25%)
for the participants compared to previous state-of-the-art strategies.

1 Introduction

Once confined to specialist domains such as the arts or antiques
trades, auctions have now become a pervasive feature of our daily
lives. Whether used by governments to sell bonds, by companies
to trade commodities or by private individuals to buy second-hand
goods online, auctions offer a number of key advantages. In partic-
ular, they determine prices dynamically to balance supply and de-
mand, they ensure that goods are allocated to the highest bidders,
and, finally, they can be conducted electronically over the Internet to
connect buyers and sellers on a global scale.

One particular application example of auctions that has started to
emerge recently is in the area of computational services (exempli-
fied by cloud or grid computing). Increasingly, companies rent out
spare computational resources to paying customers [3]. This allows
them to profit from otherwise idle hardware, while customers have
the flexibility of temporarily using expensive resources for demand-
ing computational tasks without having to invest in expensive hard-
ware themselves. Although much research in this area has so far
concentrated on models with fixed prices [14], auctions are increas-
ingly emerging as a suitable mechanism for balancing supply and
demand in these settings [2, 11], and they are starting to emerge in
real-world cloud systems, such as Amazon’s EC2 spot instances3 and
the SpotCloud4 platform. However, as companies are often interested
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in dynamically procuring services on demand without human inter-
vention, this raises the research question of how to build intelligent
software components, or agents, that bid automatically in these auc-
tions.

To answer this question, we can turn to a considerable body of
work that has investigated optimal bidding strategies in auctions.
Typically, research in this area has used techniques from game the-
ory to model the behavior of participants and to derive appropriate
strategies [6]. However, such work has usually made a number of
simplifying assumptions. In particular, it has been assumed that bid-
ders are symmetric (i.e., that the valuations for the good they bid on
are drawn from the same prior distribution and that they share the
same utility model) and that the number of bidders is known a priori.
These assumptions do not hold in the domain of computational ser-
vices, where bidders can be highly asymmetric [1]. In particular, their
valuations can be fundamentally different, depending on how critical
the services are to their business needs. Furthermore, risk attitudes
between different companies can vary significantly. As an example,
a large company with a considerable reputation and many stakehold-
ers may be more risk averse than a small startup company; and these
differences could be further amplified across different industry sec-
tors. Finally, because of the global nature of these auctions, the exact
number of bidders is not generally known in advance.

Some existing research has considered some of these issues sep-
arately. For example, equilibria for auctions with asymmetric bid-
ders with different prior distributions from which their valuations are
drawn have been computed in [7, 9], and an experimental evaluation
is conducted in [4]. However, these assume that the distributions and
the number of bidders are common knowledge. Other work has con-
sidered different utility models, including risk aversion [6, 8] which
apply only to symmetric settings, i.e., where all agents share the same
utility model. Furthermore, the question of auctions with stochastic
numbers of bidders has been examined in [5, 10]. A further limita-
tion is the fact that the analysis in all the aforementioned papers is
conducted for single-unit auctions.

To address these shortcomings, we examine how an intelligent
agent should bid in multi-unit service auctions with asymmetric bid-
ders, where each bidder has a different type (i.e., a particular risk
attitude and distribution from which its valuation is drawn). More
specifically, we develop equilibrium bidding strategies for three real-
istic settings that vary in their respective levels of uncertainty about
the bidders. We start by assuming the number of bidders is known
and then first consider the case where the types of all agents are pub-
lic knowledge. Second, we consider the case where types are private
knowledge, and, third, we extend our work to settings with an uncer-
tain (i.e., stochastic) number of participants.

While we use computational services as a motivating example



throughout this paper, we stress that our work applies more broadly
to any setting where bidders are highly asymmetric in their valua-
tions and risk attitudes. This could include real estate, spectrum or
government bond auctions.

The remainder of this paper is organised as follows. In the next
section, we formally present the model and the notation that will be
used in this paper. Then, we derive the systems of differential equa-
tions that characterize the Bayes-Nash equilibria in the three settings
outlined above. Afterwards, we present experiments showing that our
analysis leads to significantly increased utility for the participants
compared to state-of-the-art strategies. Finally, we conclude.

2 Model and Notation
In this section we formally describe the auction model and nota-
tion used in our analysis. We study sealed-bid, uniform-price, multi-
unit auctions, as these are widely used and because one of the key
commercial cloud offerings, Amazon’s EC2 spot instance auction, is
based on a similar model. We use the standard assumptions regarding
the format of the utility function that each agent maximizes and also
assume that the losers of the auction do not pay anything.

We will compute Bayes-Nash equilibria for sealed-bid auctions
where m ≥ 1 identical items, or services, are being sold; these equi-
libria will be defined by a set of strategies gαi(v), which map the
agents’ valuations vi to the bids bi submitted in the auction. Since,
unlike in the vast majority of related work, the bidders are asymmet-
ric, these strategies are parameterized by a parameter αi, which will
indicate the model of agent i, i.e., its risk attitude and type of valu-
ations. Thus, we assume that two agents will use the same bidding
strategy, if they have the same model (same parameter αi). The final
price, which is paid by all winning bidders, is determined by the mth

price rule, according to which the top m bidders win one item each
at a price equal to the mth highest (last winning) bid respectively.

We assume that N bidders (where N ≥ m) participate in the
auction and each has a private valuation (utility) vi for acquiring
any one5 of the traded items, which is known only to itself; these
valuations are assumed to be independent and drawn from a dis-
tribution with cumulative distribution function (cdf) Fαi(v), which
depends on the bidder’s model αi. Furthermore, we assume that
Fαi(v) has support in [vLi , v

H
i ], which means that ∀v /∈ [vLi , v

H
i ]

it is F
′
αi
(v) = 0.The agents have varying risk attitudes. The possible

risk attitudes belong to a family of utility functions uαi(), which are
characterized by the type (model) αi of each agent. Thus, we assume
that the utility Ui that each agent tries to maximize is equal to:

Ui =

{
uαi(vi − pclosing) if agent i wins,
uαi(0) if agent i loses.

where pclosing is the closing price of the auction.
The family of utility functions uα(x) used most commonly in eco-
nomics is the Constant Relative Risk Aversion (CRRA) family,
uα(x) = xα, α ∈ (0, 1), which characterizes risk-averse bidders
and is defined for non-negative profit x ≥ 0. We are thus able to
use it in this paper, as there is never a need to bid higher than one’s
valuation, hence the profit will always be non-negative. To handle
risk-seeking bidders as well, we extend the model and use values of

5 We make the assumption that each bidder is interested in exactly one item,
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lem. Thus, in cloud applications, our work is most relevant to high-value
computational services, such as, e.g., the exclusive use of a supercomputer
over a 24-hour period, or a specialised high-performance cluster for graph-
ics rendering.

α > 1; in this case the utility function will be convex and therefore
will characterize such bidders.

For this model, we examine the following cases:

1. The models of all participants are known, i.e., each agent knows
the parameters αj of its opponents. A prominent example of this
type of setting is a spectrum auction, where bidders will gener-
ally be aware of each other and will have information about each
other’s risk attitudes and valuation distributions.

2. Each agent knows its own model, but is uncertain about its oppo-
nents’ parameters αj . Specifically, the agents know the prior dis-
tribution h(α) from which each opponent’s parameter α is drawn,
which is the probability that each participant is of a particular type
α (we assume this distribution to be discrete, although the results
can be extended to continuous distributions). This setting covers
realistic auctions, such as real estate auctions in which bidders
have little prior knowledge about their competitors, or auctions for
specialised cloud services, where the bidders are known to each
other, but their risk attitudes and valuations might vary depending
on their current projects.

3. Both the opponents’ models and the number of bidders N are
uncertain. As above, the distribution h(α) is known as well as
a distribution p(N), which details the probability that exactly N
bidders will participate in the auction. This case captures most
computational service auctions, which typically have considerable
uncertainty both in the number of bidders and their types.

Before considering each of these cases in turn, we introduce some
additional notation that we will use in the proofs:

Φk(x) =

k−1∑
i=0

C(N − 1, i)xN−1−i(1− x)i (1)

∆Φm(x) = Φm(x)−Φm−1(x) = C(N −1,m−1)xN−m(1−x)m−1

(2)

where C(n, k) is the total number of possible combinations of k
items chosen from n. Now, if Z(x) is the probability distribution of
any opponent’s bid bj , i.e., Z(x) = Prob[bj ≤ x], and B(k) is the
kth order statistic of these bids, then the distribution of B(k) is: [13]

Prob[B(k) ≤ x] = Φk(Z(x)) (3)

∀N,m, such that N ≥ m, the following equation holds: [15]

Φ′
m(x) = (N −m)

(
Φm(x)− Φm−1(x)

) 1
x

(4)

Before proceeding to detail the theoretical analysis of mth price
auctions in the next sections, we present here the dominant strategy
for the (m + 1)th price variant. It is known from auction theory
that it is a dominant strategy to bid truthfully [6], and this fact does
not depend on the number of participating bidders, nor on the risk
attitudes and valuation distributions of the participants:

Fact 1. In the case of an (m + 1)th price sealed-bid auction with
N participating bidders, in which each bidder i is interested in pur-
chasing one unit of the good for sale with inherent utility (valuation)
for that item equal to vi, and has a risk attitude described by utility
function uαi(), it is a (weakly) dominant strategy to bid truthfully:
bi = vi.

3 Known Opponent Models
In this section, we compute the equilibrium strategies for auctions
where the participating bidders have asymmetric valuations and risk
attitudes, and the models of all opponents (i.e., their valuation distri-
butions and risk attitudes) are common knowledge to all participants.
We first give a definition of a term used in the theorem.



Definition 1. Given a set S (with all its elements being unique), let
us define the k-subset S(k) of S to be the subset of its powerset 2S
whose elements have cardinality k (with k ≤ |S|). More formally:

S(k) = {s ∈ 2S : |s| = k}

For the specific case of the set S = {1, . . . ,m}, let us define:
Pk,m = {1, . . . ,m}(k)

which is the set containing all the possible ways of selecting k dif-
ferent numbers out of the set of numbers 1 through m. Finally, we
define the extensions of this definition:

P
−{i}
k,m = ({1, . . . ,m} − {i})(k)

P
−{i,j}
k,m = ({1, . . . ,m} − {i, j})(k)

which are the k-subset of all the numbers 1 through m without count-
ing any subsets containing i (and i, j respectively).

Note that Pk,m = {∅} for k = 0, which is a set containing with
one element, the empty set, whereas Pk,m = ∅ for k < 0, which is
the empty set.

Theorem 1. In the case of an mth price sealed-bid auction with
N participating bidders, in which each bidder i is interested in
purchasing one unit of the good for sale with inherent utility (val-
uation) for that item equal to vi, which is drawn from Fαi(v),
with support [vLi , v

H
i ] (where vLi = vi,∀i), and has a risk atti-

tude described by utility function uαi(), both of which describe its
model αi and the models αi of all bidders are common knowledge,
then strategy gαi(vi) constitutes a Bayes-Nash equilibrium, where
ζα(x) = g−1

α (x) is the solution of the system of differential equa-
tions:

N∑
j=1
j ̸=i

ζ
′
αj

(x)F
′
αj

(ζαj
(x)))

∑
s∈P

−{i,j}
m−1,N

( ∏
µ/∈s
µ̸=i,j

Fαµ (ζαµ (x))
∏

µ∈s

(
1 − Fαµ (ζαµ (x))

))
=

u′
αi

(ζαi
(x) − x)

(uαi
(ζαi

(x) − x) − uαi
(0))

∑
s∈P

−{i}
m−1,N

( ∏
j /∈s
j ̸=i

Fαj
(ζαj

(x))
∏
j∈s

(1−Fαj
(ζαj

(x)))
)

(5)

with boundary conditions: ζαi(v
L) = vL for all i.

Proof. Due to space limitations, we omit the proof. It can be found
in our workshop paper [17], where initial work was presented.

4 Unknown Opponent Models
In this section, we assume that each agent has uncertainty not only
for the opponents’ valuations, but also for their models (i.e., risk atti-
tudes and distributions of valuations). The possible risk attitudes and
distributions of valuations belong to a family of functions, which are
characterized by an one dimensional parameter α, which is drawn
from a known probability distribution (h). We therefore assume
that each agent i knows its own valuation vi, risk attitude function
uαi() and the distributions Fαi(v), as well as the distribution h(α)
from which the models of the opponents, meaning the risk attitude
functions uα() and distributions Fα(v), are drawn. We assume that
there are λ possible models, which are characterized by parameters
α = α1, . . . , αλ. We initially present the system of equations that
characterize the equilibrium and then show how to solve them.

Theorem 2. In the case of an mth price sealed-bid auction with N
participating bidders, in which each bidder i is interested in purchas-
ing one unit of the good for sale with inherent utility (valuation) for
that item equal to vi, which is drawn from Fαi(v), and has a risk at-
titude described by utility function uαi(), both of which describe its
model αi (where αi are i.i.d. random variables drawn from distribu-
tion h(α)), strategy gαi(vi) constitutes a Bayes-Nash equilibrium,

where ζα(x) = g−1
α (x) is the solution of the system of differential

equations:

∀x, αi : (N −m)
∑

α=α1,...,αλ

F ′
α(ζα(x))ζ

′
α(x)h(α) = (6)

u′
αi

(ζαi (x)− x)

uαi (ζαi (x)− x)− uαi (0)

∑
α=α1,...,αλ

Fα(ζα(x))h(α)

with boundary conditions: gαi(v
L
i ) = vLi for all i such that vLi =

minj{vLj }. There are λ possible bidder models characterized by pa-
rameter α = α1, . . . , αλ.

Proof. The distribution from which the bid bj of an opponent with
model αj is drawn has cdf: Prob[bj ≤ x|αj ] = Fαj (g

−1
αj

(x)).
Therefore, using Bayes’ rule we compute this probability for any
possible value of αj :

Prob[bj ≤ x] =
∑

α=α1,...,αλ

Fα(g
−1
α (x))h(α) (7)

The distribution of the kth highest opponent bid B(k), as there are
(N − 1) opponents, is:

Prob[B(k) ≤ x] = Φk

( ∑
α=α1,...,αλ

Fα(g
−1
α (x))h(α)

)
(8)

where Φk(x) is given by Equation 1.
We can now analyze the expected profit of bidder i. Let bi be the

bid that it places in the auction. We distinguish the following cases:
(i) If bi < B(m), then bidder i is outbid and does not win any items,
therefore its utility is ui = uαi(0).
(ii) If B(m) ≤ bi ≤ B(m−1), then bidder i has placed
the last winning bid. Thus, the payment equals its bid and
its utility is ui = uαi(vi − bi). The probability of this
case happening is: Prob[B(m) ≤ bi ≤ B(m−1)] =
∆Φm

(∑
α=α1,...,αλ

Fα(g
−1
α (bi))h(α)

)
.

(iii) If B(m−1) < bi, then bidder i is a winner, the payment is equal
to bid B(m−1) and its utility is ui = uαi(vi − B(m−1)). Note that:

Prob[B(m−1) ≤ ω] = Φm−1

(∑
α=α1,...,αλ

Fα(g
−1
α (ω))h(α)

)
.

The expected utility of bidder i, who places bid bi, is:

EUi(bi) =uαi (0)
(
1− Φm

( ∑
α=α1,...,αλ

F (g−1
α (bi))h(α)

))
(9)

+uαi (vi − bi)∆Φm
( ∑
α=α1,...,αλ

F (g−1
α (bi))h(α)

)
+

∫ bi

0
uαi (vi − ω)

d

dω

(
Φm−1

( ∑
α=α1,...,αλ

F (g−1
α (ω))h(α)

))
dω

The bid which maximizes this expected utility is found by setting:
dEUi
dbi

= 0. This becomes:

(uαi (vi − bi)− uαi (0))
d

dbi
Φm

( ∑
α=α1,...,αλ

F (g−1
α (bi))h(α)

)
= u′

αi
(vi − bi)∆Φm

( ∑
α=α1,...,αλ

F (g−1
α (bi))h(α)

)
(10)

Thus, using Equation 4 to simplify Equation 10, we derive:

(N−m)

d
dbi

(∑
α=α1,...,αλ

F (g−1
α (bi))h(α)

)∑
α=α1,...,αλ

F (g−1
α (bi))h(α)

=
u′
αi

(vi − bi)

uαi (vi − bi)− uαi (0)

This value bi is equal to bi = gαi(vi), since it maximizes the ex-
pected utility EUi(bi). Using this substitution, we derive the system
of differential equations:

∀vi, αi : (N −m)
∑

α=α1,...,αλ

F ′
α(g

−1
α (gαi (vi)))

g′α(g
−1
α (gαi (vi)))

h(α) = (11)

u′
αi

(vi − gαi (vi))

uαi (vi − gαi (vi))− uαi (0)

∑
α=α1,...,αλ

Fα(g
−1
α (gαi (vi)))h(α)



for all possible values of vi, αi. The boundary conditions come from
the fact that a bidder with the lowest possible valuation that any bid-
der can have vi = vLi will always bid bi = vLi .

Now, to simplify these equations, we make the following substitu-
tions:
(i) As the equations hold for all ∀vi, αi, therefore, if we set
a new variable x = gαi(vi), which takes values in x ∈
[gαi(v

L
i ), gαi(v

H
i )], we transform the equations to the following:

∀x, αi : (N −m)
∑

α=α1,...,αλ

F ′
α(g

−1
α (x))

g′α(g
−1
α (x))

h(α) = (12)

u′
αi

(g−1
αi

(x)− x)

uαi (g
−1
αi

(x)− x)− uαi (0)

∑
α=α1,...,αλ

Fα(g
−1
α (x))h(α)

(ii) By setting ζαi() to be the inverse function of gαi(), the equation
becomes the system of equations 6.

Computing the Equilibrium Strategies The equations 6 seem
quite complex. Thus, we show in this section how to solve them. We
assume that αi are ordered based on the value of vLi , meaning that
we order them so that vL1 ≤ . . . ≤ vLλ . This assumption is crucial for
the following steps to work:
(i) In order for this system to have a solution, it must be:

u′
α1

(ζα1 (x)− x)

uα1 (ζα1 (x)− x)− uαi (0)
= . . . =

u′
αλ

(ζαλ (x)− x)

uαλ (ζαλ (x)− x)− uαλ (0)
(13)

This gives (λ−1) independent equations; differentiating each one of
these gives us the following:
ζ′αi

(x) = 1 + (ζ′α1
(x)− 1)· (14)

u′
αi
(ζαi

(x)−x)u′
α1

(ζα1 (x)−x) − u′′
α1

(ζα1 (x)−x)(uαi
(ζαi

(x)−x) − uαi
(0))

u′
α1

(ζα1 (x)−x)u′
αi
(ζαi

(x)−x) − u′′
αi
(ζαi

(x)−x)(uα1(ζα1 (z)−z) − uα1(0))

which is used to substitute all ζ
′
αi
() with terms containing only ζ

′
α1

()

in Equation 13. Thus, we derive the differential equation: ζ
′
α1

() is
equal to a function of ζαi(),∀i, where ζαi() can be computed from
ζα1() using Equation 13. This is solved by using the standard Runge-
Kutta method, whose algorithm is presented in chapter 17 of [12],
with one modification: the values of ζαi(), i = 2, . . . , λ are com-
puted at each step from the values of ζα1() solving Equation 13 us-
ing the Bisection Method; see chapter 9 of [12] for this algorithm.
(ii) Because in step 1, x is defined for x ∈ [gαi(v

L
i ), gαi(v

H
i )], we

need to be careful when ζαi(x) < vLi or ζαi(x) > vHi for any i.
For such values, it is F (ζαi(x)) = 0 and F (ζαi(x)) = 1 respec-
tively and also F ′(ζαi(x)) = 0. When performing the simplification
of the previous step, we need to keep in mind this fact and that the
equations 13 only hold for values of x such that ζαi(x) ∈ [vLi , v

H
i ].

Example 1. N = 3 bidders and m = 2 items for sale
There are two possible models of bidders using the CRRA utility func-
tion uα(x) = xα, one where α = 1 (risk-neutral bidder) and an-
other where α = 0.5 (risk-averse), both with probability 50%. Both
types have valuations drawn from the uniform distribution U [0, 1].
In this example we have the following system of equations (obtained
from equations 13 and 6 by setting uα(x) = xα for αi = 0.5, 1 and
probabilities h(0.5) = h(1) = 0.5):

1

ζ1(x)− x
=

0.5

ζ0.5(x)− x
(16)

ζ′1(x) + ζ′0.5(x) =
0.5

ζ0.5(x)− x
(ζ0.5(x) + ζ1(x)) (17)

We present the equilibrium strategies in figure 1 (left). It is interest-
ing to note that the strategy for each asymmetric risk-averse bidder
is, in this example, identical to the case when all its opponents are
equally risk-averse (the symmetric bidder case). However, when the
valuation is high enough that the risk-neutral opponents would never
outbid the risk-averse bidders, the latter increase their bids at a much
lower rate as the valuation increases. A similar effect is true for the
risk-seeking bidders as well. In fact, we can prove this observation,
for cases of bidders with identical valuation distribution functions.

Example 2. N = 3 bidders and m = 2 items for sale
Two possible bidder types, all using the CRRA utility function
uα(x) = xα (each type with probability 50%):
Bidder type 1: Risk-neutral (α1 = 1) with valuations drawn from
Fα1(x) = x2, where x ∈ [0, 1].
Bidder type 2: Risk-averse (α2 = 1

2
) with valuations from U [0, 1].

We present the equilibrium strategies in figure 1 (middle). We also
present in the same figure, the default strategy of the case when the
bidders are symmetric, i.e., the strategy when all bidders are either
of type 1 or all of type 2: both of these default cases have the same
bidding strategy g(v) = 2v

3
. Essentially, in both cases the bids are

higher than those when all bidders are risk-neutral with uniform
U [0, 1] valuations, because, (a) the risk-averse bidders bid higher
than in the case of only risk-neutral ones (all with uniform valua-
tions) due to the desire to increase the probability of winning, (b) the
risk-neutral bidder with valuations drawn from Fα1(x), bids higher
than in the case of uniform priors due to the higher valuations of the
opponents. Now, in the case that there is uncertainty about the types
of bidders participating in the auction, we observe that the strategy
of the risk-averse bidders is to bid higher than the default strategy,
whereas the risk-neutral ones bid lower. This is a result of the fact
that the mixture of agents has changed and now the risk-averse bid-
ders face opponents with higher valuations, which forces higher bids,
whereas the opposite is the case for the risk-neutral ones and thus
they lower their bids.

Theorem 2 states the boundary conditions: gαi(v
L
i ) = vLi for all i

such that vLi = minj{vLj }. However, what is the boundary condition
for the remaining bidder types? Meaning what is the value of g(vLi )
for all i : vLi > minj{vLj }? The equilibrium strategies in this case
are computed using the following algorithm:

1: Set S = argminj{vL
j }.6

2: Set as boundary condition gαj
(vL

j ) = vL
j , ∀j ∈ S.

3: while |S| < λ do
4: Solve the system of equations 6 setting Fαj

(x) = 0, ∀j /∈ S.

5: ∀j /∈ S: compute the best bid bj for bidder type j with valuation vL
j , based

on the strategies computed in the previous step.
6: S′ = argminj{bj}.
7: Set as boundary condition: gαj

(vL
j ) = bj , ∀j ∈ S′.

8: S = S
∪

S′.
9: end while

10: Solve the system of equations 6 using the boundary conditions found by the loop
of this algorithm.

How this algorithm works is exemplified in the following:

Example 3. N = 3 bidders and m = 2 items for sale
Three possible bidder types, all using the CRRA utility function
uα(x) = xα (each type with probability 1

3
):

Bidder type 1: Risk-neutral (α1 = 1) with valuations from U [0, 1].
Bidder type 2: Very risk-averse (α2 → 0) with valuations from
U [ 2

3
, 4
3
].

Bidder type 3: Risk-seeking (α3 = 2) with valuations from U [1, 2].
We present the equilibrium strategies in figure 1 (right). Initially,
only the boundary condition for the first bidder type is set, i.e.,
gα1(0) = 0. It is S = {1}. The bidders belonging to the remaining
types, will not bid for the lowest valuations Fα2(x) = Fα3(x) = 0.
So we compute the bidding strategy under these conditions, and find
that gα1(v) =

v
2

. Now, the optimal bid when bidder type 2 has val-
uation vL3 = 2

3
is b2 = 2

3
and the optimal bid when bidder type 3

has valuation vL3 = 1 is b3 = 1
3

. Thus, S′ = {3} and S = {1, 3}.
Now, we compute the bidding strategies under these conditions. We

6 argmin returns a set of arguments instead of just one in the case that mul-
tiple valuations are equal and the minimum ones.
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Figure 1. Equilibrium strategies g(v) for Examples 1, 2 and 3. Default strategies (i.e., strategies for symmetric cases) are also presented for Examples 1 and 2.

∀x, αi :
∑

α=α1,...,αλ

F ′(ζα(x))ζ
′
α(x)h(α)

∞∑
n=1

(n−m)p(n)∆Φm,n

( ∑
α=α1,...,αλ

Fα(ζα(x))h(α)
)
=

u′
αi
(ζαi(x)− x)

uαi(ζαi(x)− x)− uαi(0)

∞∑
n=1

p(n)∆Φm,n

( ∑
α=α1,...,αλ

Fα(ζα(x))h(α)
) ∑
α=α1,...,αλ

Fα(ζα(x))h(α) (15)

Figure 2. System of differential equations characterizing the equilibria of Theorem 3.

find that gα1(1) = .5977, so up to that point the computed strate-
gies are valid. After that point, we compute the equilibrium bidding
strategies for Fα1(x) = 1 and Fα3(x) = 0. Under these condition,
the optimal bid when bidder type 2 has valuation vL3 = 2

3
is b2 = 2

3
,

so S′ = {2} and S = {1, 2, 3}. Now all the bidding strategies are
computed and this produces the bidding strategies of figure 1 (right).

5 Stochastic Number of Bidders
In this section we examine the same setting as in the previous sec-
tion, with the difference that not only the types of the opponents par-
ticipating in the auction are not known but their total number is not
known a priori either. The participating bidders know instead that
the total number N of bidders is given by distribution p(N), where
p(N) = 0, N < 2.

Theorem 3. Consider the same setting as that of theorem 2, with the
difference that the number N of bidders participating is not known:
the distribution p(N) gives the probabilities of N bidders partic-
ipating in the auction. Then, strategy gαi(vi) constitutes a Bayes-
Nash equilibrium, where ζα(x) = g−1

α (x) is the solution of the
system of differential equations presented in figure 2, with bound-
ary conditions: gαi(v

L
i ) = vLi for all i such that vLi = minj{vLj }.

There are λ possible bidder models characterized by parameter
α = α1, . . . , αλ.

Proof. The expected utility of bidder i, who places bid bi, is:

EUi(bi) =

∞∑
n=1

p(n)EUi(bi|n)

where EUi(bi|n) the expected utility of bidder i when the number of
opponents is n is given by Equation 9. This equation then becomes:

EUi(bi) =uαi
(0)

(
1 −

∞∑
n=1

p(n)Φm,n

( ∑
α=α1,...,αλ

Fα(g
−1
α (bi))h(α)

))

+uαi
(vi − bi)

∞∑
n=1

p(n)∆Φm,n

( ∑
α=α1,...,αλ

Fα(g
−1
α (bi))h(α)

)
+

∫ bi

0

uαi
(vi − ω)

∞∑
n=1

p(n)
d

dω

(
Φm−1,n

( ∑
α=α1,...,αλ

Fα(g
−1
α (ω))h(α)

))
dω

(18)The bid which maximizes this expected utility, is found by setting:
dEUi
dbi

= 0. This becomes:

(uαi
(vi−bi)−uαi

(0))

∞∑
n=1

p(n)
d

dbi
Φm,n

( ∑
α=α1,...,αλ

Fα(g
−1
α (bi))h(α)

)

= u
′
αi

(vi − bi)

∞∑
n=1

p(n)∆Φm,n

( ∑
α=α1,...,αλ

Fα(g
−1
α (bi))h(α)

)
(19)

Using Equation 4 to simplify Equation 19, we derive:

d
∑

α=α1,...,αλ
Fα(g−1

α (bi))h(α)

dbi∑
α=α1,...,αλ

Fα(g−1
α (bi))h(α)

∞∑
n=1

(n−m)p(n)∆Φm,n

(∑
α=α1,...,αλ

Fα(g
−1
α (bi))h(α)

)

=
u′
αi

(vi − bi)

uαi
(vi − bi) − uαi

(0)

∞∑
n=1

p(n)∆Φm,n

( ∑
α=α1,...,αλ

Fα(g
−1
α (bi))h(α)

)
(20)

This value of bi that maximizes the expected utility EUi(bi)
is equal to bi = gαi(vi). We make this substitution and also
set a new variable x = gαi(vi), which takes values in x ∈
[gαi(v

L
i ), gαi(v

H
i )]. Now, by setting ζαi() to be the inverse function

of gαi(), the equations becomes the system of equations 15.

6 Experiments
In this section, we experimentally validate our analysis even for cases
where many bidders do not use the equilibrium strategies and there-
fore there are no theoretical guarantees. We consider the following
case, which is inspired from our motivating example of using compu-
tational service auctions that are emerging in cloud and grid settings.
The bidders are bidding for m = 3 identical time slots of high-value
computational services. Some of the bidders are established, risk-
averse companies with high value jobs to execute and some others
are risk-seeking companies trying to make a larger profit and which
can have a more varying spectrum of valuations. So, the two possible
bidder types (each type with probability 50%), which both use the
CRRA utility function uα(x) = xα, are:
Bidder type 1: Risk-averse (α1 = 1

2
) with valuations from U [ 1

2
, 1].

Bidder type 2: Risk-seeking (α2 = 3
2

) with valuations from U [0, 1].
The total number of participating bidders is not known a-priori, but
rather it is known that N = 4 . . . 8 bidders will participate (each case
occuring with 20% probability).

Using theorem 3 and the algorithm used in Example 3, we com-
pute the equilibrium strategy for this case, which is presented in fig-
ure 3 (left). In this figure, we also present the strategies that we com-
pare against, which are derived from the pre-existing state-of-the-art
equilibrium analysis [5, 7]; we extended these somewhat in order to
account for multiple units sold and [7] was extended to cover asym-
metry in risk attitudes. In either case, we wanted the best possible
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Figure 3. Bidding strategies used (left) and the resulting expected utilities obtained (right) in the experimental comparison of the various agents. Bidder type
1’s strategies are those for valuations v ≥ 0.5 (left) and the corresponding expected utilities for this type (1) are the top lines, where EU > 0.12 (right).

strategies to compare against, that is the reason for extending these
state-of-the-art strategies. Therefore, we conducted two experiments,
where our equilibrium analysis is compared respectively against:
(a) analysis that only considers asymmetric bidders, but assumes that
there are N = 6 bidders participating (i.e., the mean number), and
(b) analysis that only considers that there is a stochastic number of
bidders N = 4 . . . 8, but ignores that they are asymmetric.

In each experiment, we vary the percentage p of agents using our
equilibrium strategy from 0% to 100% (increasing by 5%). We com-
puted the expected utility of an agent using each strategy by taking
10 million samples for each data point (equally divided for all cases:
N = 4 . . . 8 bidders). To keep the percentage p correct, we compute
the product pN . If this is an integer, then this is the number of bid-
ders (out of N total) who use the equilibrium strategy. If it is not, then
⌊pN⌋ or ⌈pN⌉ bidders are used in the appropriate number of sam-
ples, so that the average number of equilibrium strategy bidders is
pN . The results of our experiments are presented in figure 3 (right).
Note that because of taking 10 million samples, the error of the com-
putation is tiny, therefore no errorbars are shown. In addition, we
multiply by 4 the expected utility of the all agents representing bid-
der type 2 to make the differences easier to see. What we observe is
that in general, it is always beneficial to use the equilibrium strategy
derived from the analysis presented in this paper. In fact, in all cases
this gives between 17% and 47.3% improvement (typically around
20−25%), with the exception of the performance for bidder type 2 in
the second experiment: for p ≤ 50%, the improvement is 19− 21%,
but for larger p it drops sharply to only 2.6% (for p = 95%).

7 Conclusions
In this paper, we examined how an intelligent agent should bid in
multi-unit auctions with a stochastic number of asymmetric bidders,
where such bidders can have varying valuations and risk-attitudes.
In so doing, we significantly extended the state-of-the-art, which had
only examined single-unit (rather than multi-unit) auctions with ei-
ther (a) a stochastic number of bidders of the same type, or (b) a
known number of bidders of different types whose valuations were
drawn from different priors (all with the same minimum value). In
our analysis, we examined all these issues together with asymmetric
risk-attitudes in a multi-unit auction case. We described the equi-
librium bidding strategies in three different settings that are dis-
tinguished by the progressively greater levels of uncertainty about
the types of other agents participating in the auction. Our exper-
iments showed that using the equilibrium strategies derived from

our full analysis led to significantly increased utility (usually about
20−25%) for the agents compared to using other strategies which are
derived from (or are even better than) the previous state-of-the-art.

The main direction of future work we aim to pursue stems from
our desire to apply our analysis to a wide range of real-world applica-
tions. Our motivating examples such as using computational service
auctions require us to examine a stochastic number of asymmetric
bidders, however it is sometimes the case that such bidders are inter-
ested in multiple services rather than a single one. We plan to take the
analysis we conducted so far about how to bid for a single item, and
use it to design trading agents that can participate in multiple such
auctions. Optimality will probably have to be sacrificed. However, as
shown in [16], optimal strategies of the same essence as those com-
puted in this paper can be invaluable for designing trading agents for
the more complex setting of purchasing multiple services (or goods).
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