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Abstract. Recent theoretical and experimental work in imaging neu-
roscience reveals that activations inferred from functional MRI data
have sparse structure. We view sparse representation as a problem in
Bayesian inference following a machine learning approach and construct a
structured generative latent-variable model employing adaptive sparsity-
inducing priors. The construction allows for automatic complexity con-
trol and regularization as well as denoising. The performance of the pro-
posed algorithm is demonstrated on some representative experiments.
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1 Sparse Representations and Sparse Matrix

Factorization

A fundamental operation in data analysis often involves the representation of
observations in a ‘latent’ signal space that best reveals the internal structure of
the data. In the linear model for brain activation [1], the spatio-temporal data,
X = {X(t, v)}, where v is a voxel in a brain volume, V , and t = 1, ..., T are
timepoints, is modelled as a linear superposition of different activity patterns:
X(t, v) ≈

∑L
l=1 Sl(v)Al(t), where Al(t) and Sl(v) represent the dynamics and

spatial variation, respectively. Our goal is the decomposition of the data set into
spatio-temporal components, i.e. pairs {(al, sl)}L

l=1 such that the “regressors”
{al}L

l=1 capture the ‘time courses’ and the coefficients {sl}L
l=1 capture the ‘spa-

tial maps’ of the patterns of activation. Unlike model-based approaches, such
as the general linear model (GLM), in the ‘model-free’ case [2], addressed here,
both factors must be learned from data, without a-priori knowledge of their ex-
act spatial or temporal structure. The above is an ill-posed problem, however,
without additional constraints. The main tool for exploratory decompositions of
neuroimaging data into components currently in use is independent component
analysis (ICA). As its name suggests, ICA forces statistical independence in or-
der to derive maximally independent components. However, despite its success,
there are both conceptual and empirical issues with respect to using the inde-
pendence assumption as a prior for brain data analyses [3], [4]. In particular,



there is no physical or physiological reason for the components to correspond to
different activity patterns with independent distributions. Recent experimental
and theoretical work in imaging neuroscience [4], [5] reveals that activations in-
ferred from functional MRI data are sparse. In fact, in Daubechies et al. [4] the
key factor for the success of ICA-type decompositions, as applied to fMRI, was
identified as the sparsity of the components, rather their mutual independence.
Here, we shall exploit this sparseness structure for bilinear decomposition.

In matrix form, the problem of sparsely representing the data set X becomes
a problem of sparse matrix factorization of its corresponding T ×N data matrix,
X (“unfolding” each scan at times t = 1, . . . , T into a row), where N = |V|, the
total number of voxels. A classical mathematical formulation of this problem [6]
is to setup an optimization functional such as

I = ‖X− AS‖2 + λS

L
∑

l=1

N
∑

n=1

|sl,n| + λA‖A‖2 ,

containing an ℓ1 penalty/prior, enforcing sparse representations, where λS, λA

are regularization parameters. In Li et al. [6], learning of the basis, {al}, was
performed as an external step via the k–means algorithm. More realistic models
should include a way for handling noise and uncertainty, however, and seamlessly
fuse information from other parts of the model. In this paper we approach the
problem from a Bayesian perspective and propose a fully Bayesian hierarchical
model for bilinear decompositions.

2 Bayesian Sparse Decomposition Model

Bayesian inference provides a powerful methodology for machine learning, by
providing a principled method for using our domain knowledge and allowing the
incorporation of uncertainty in the data and the model into the estimation pro-
cess, thus preventing ‘overfitting’. The outputs of fully Bayesian inference are
posterior probability distributions over all variables in the model. We derive a
sparse decomposition algorithm viewing bilinear decomposition as a Bayesian
generative model. We employ hierarchical source and mixing models, which re-
sult in automatic regularization. The model also contains an explicit noise model;
the benefit of this is that observation noise is prevented from “leaking” into the
estimated components, by effectively utilizing an implicit filter automatically
learned by the algorithm.

We start by forming a representation to an “intermediate” space spanned
by a wavelet family of localized time-frequency atoms. The use of wavelets in
neuroimaging analysis has become quite widespread in recent years, due to the
well-known property of wavelet transforms to form compressed, multiresolution
representations of a very broad class of signals. Sparsity with respect to a wavelet
dictionary means that most coefficients will be “small” and only a few of them
will be significantly different than zero. Furthermore, due to the excellent ap-
proximation properties of wavelets, in the standard ‘signal plus noise’ model,
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Fig. 1. Left: Variational Bayesian Sparse Representation graphical model. Each module
is shown as a dotted box. Repetition over individual indices is denoted by plates, shown
as brown boxes surrounding the corresponding variables. Instantiated nodes appear
shaded. Right: Sparse mixture of Gaussians prior for the coefficients {cl,λ}. Blue/green
curves: Gaussian components; thick black curve, mixture density, p(cl,λ).

decomposing data in an appropriate dictionary will typically result in large co-
efficients modelling the signal and small ones corresponding to noise. In addition,
the wavelet transform largely decorrelates the data. The above properties should
be captured by the model.

Following Turkheimer et al. [7], we perform our wavelet analysis in the spatial
domain; for examples of the use of wavelets in the temporal dimension see, for
example, Bullmore et al. [8]. Using this representation for all signals in the model,
we get the noisy observation equation

X̃ = AC + Ẽ , (1)

where the matrix
[

x̃T

t

]T

t=1
denotes the transformed observations,

[

cT

l

]L

l=1
the

(unknown) coefficients of the wavelet expansion of the latent signals {sl}L
l=1,

and Ẽ ∼ N
(

0T×N , R−1IT

)

is a Gaussian noise process.
The probabilistic dependence relationships in our model can be represenented

in a directed acyclic graph (DAG) known as a Bayesian network structure, shown
in Fig. 1 (left). In this graph, random variables are represented as nodes and
structural relationships between variables as directed edges connecting the corre-
sponding nodes. Instantiated nodes appear shaded. The graphical representation
offers modularity in modelling and efficient learning, as we can exploit the local
(Markovian) structure of the model, captured in the network, as will be shown
next. To fully specify the model, the probabilistic specification (priors) for all
random variables in the model needs to be given. The learning algorithm then



infers the wavelet coefficients, {cl,λ}, ∀l, λ, and learns the time-courses, {At,l},
∀t, l, the parameters of the sparse prior on the coefficients, and the noise level.
These four components of the model are shown as dotted boxes in Fig. 1.

Adaptive sparse prior model for the coefficients. The characteristic shape of the
typical empirical histogram of the wavelet coefficients,

{

cl,λ

}

, of the spatial maps
is highly peaked at zero and heavy tailed. We want to capture this sparsity
pattern of the coefficients in probabilistic terms. Our aim is to model a wide
variety of sparseness constraints in a tractable (analytic) way and at the same
time derive an efficient implementation of our method. In order to achieve this,
we use distributions from the conjugate-exponential family of distributions. We
enforce sparsity by restricting the general mixture of Gaussians model to be
a two-component, zero co-mean mixture over each {cl,λ}

Λ

λ=1, for each l. These
have respective state variables {ξl,λ} and mixing, mean, and precision parameters
{πl,m, µl,m, βl,m}, respectively, forming a parameter vector θcl

, indexed by m =
1, . . . , M

.
= 2. The mixture density is then given by

p(cl,λ|θcl
) =

M
∑

m=1

p(ξl,λ = m|πl)p(cl,λ|ξl,λ, µl, βl), (2)

where µl,m
.
= 0, ∀l, m, a-priori, and p(ξl,λ = m|πl) = πl,m. The prior hyperpa-

rameters of the two components, have zero mean and hyperpriors over the pre-
cisions such that one component has a low precision, the other a high precision.
These correspond to the two states of the wavelet coefficients, ‘large’ (carrying
signal information) and ‘small’ (corresponding to “noise”). Figure 1 (right) de-
picts this scheme. We assign a Gaussian hyperprior on the position parameters
µl, p(µl) =

∏M
m=1 N (µl,m; mµl,0

, vµl,0
), a Gamma on the scale parameters βl,

p(βl) =
∏M

m=1 Ga(βl,m; bβl,0
, cβl,0

), and a Dirichlet on the mixing proportions

πl, p(πl) =
∏M

m=1 Di(πl,m; απl,0
). Note that the sparse MoG (SMoG) model pa-

rameters are not fixed in advance, but rather they are automatically learned
from the data, adapting to the statistics of the particular spatial maps.

Hierarchical mixing model and Automatic Relevance Determination. The prior
over the timecourses, {At,l}, is a zero-mean Gaussian with precision hyperparam-
eter al over the lth column vector, al: p(al|al) = N

(

al;0T , a−1
l IT

)

, l = 1, . . . , L.
The prior over each al is in turn a Gamma distribution, p(al) = Ga(al; bal

, cal
).

This hierarchical prior leads to a sparse marginal distribution for {al}
L
l=1 (a

Student-t, which can be shown if one integrates out the precision hyperparame-
ter, al). By monitoring the evolution of the al, the relevance of each time-course
may be determined; this is referred to as Automatic Relevance Determination,
ARD [9]. This allows us to infer the complexity of the decomposition and obtain
a sparse matrix factorization in terms of the time-courses as well, by suppressing
irrelevant sources.



2.1 Variational Bayesian Inference

In the section above, we stated a generative model for sparse bilinear decom-
position: the observed data are explained by propagating probabilities, initially
drawn from the roots of the DAG, via the edges, and using the observation model
of Eq. (1), performed in wavelet space. Let us collect all unknowns in the set
U =

{

π, µ, β, ξ,C, a,A, R
}

. Exact Bayesian inference in these types of models
is generally intractable because we need, in principle, to obtain the joint poste-
rior of U given the data X, p(U|X). Instead, we will use the variational Bayesian
(VB) framework [10], for efficient approximate inference in high-dimensional set-
tings, such as fMRI. The idea in VB is to approximate the complicated exact
posterior with a simpler approximate one, Q(U), that is closest to p(U|X) in
an appropriate sense, in particular in terms of the Kullback-Leibler (KL) diver-
gence. The optimization functional in this case is the (negative) variational free

energy of the system:

F(Q,X ) =
〈

log p(X ,U)
〉

+ H
[

Q(U)
]

, (3)

where the average, 〈·〉, in the first term (negative ‘variational energy’) is over the
variational posterior, Q(U), and the second term is the entropy of Q(U). The
negative free energy forms a lower bound to the Bayesian log evidence, i.e. the
marginal likelihood of the observations. Maximizing the bound minimizes the
“distance” between the variational and the true posterior.

We choose to restrict the variational posterior Q(U) to belong to a class of
distributions that are factorized over subsets of the ensemble of variables:

Q(U) =
(

Q(C)Q(ξ)
)(

Q(π)Q(µ)Q(β)
)(

Q(A)Q(a)
)

Q(R) . (4)

However here, unlike e.g. [14], we will employ variational posteriors that are cou-

pled across latent dimensions for the wavelet coefficients of the spatial maps and
the time-courses. Performing functional optimization with respect to the distri-
butions of the unknown variables, we obtain the optimal form for the posterior:
for u ∈ U ,

Q(u) ∝ exp

(

〈

log p(X,U)
〉

Q(U\{u})

)

. (5)

This results in an system of coupled equations, which are solved in an iterative
manner. Theoretical results show that the algorithm converges to a (local) op-
timum [10]. Since we have chosen to work in the conjugate-exponential family,
the posterior distributions have the same functional form as the priors and the
update equations are essentially “moves”, in parameter space, of the parameters
of the priors due to observing the data.

We next show the update equations for the wavelet coefficients of the spatial
maps and the time-courses.

Inferring the wavelet coefficients of the sources, C, and their states, ξ. The

variational posterior has a Gaussian functional form, N
(

C; µ̂L×Λ, β̂Λ×L×L

)

,



with mean and precision posterior parameters for the λth wavelet coefficient
vector, cλ = (c1,λ, . . . , cL,λ), stored in the λth column of matrix CL×Λ =

[

cl,λ

]

,
given by:

µ̂λ =
(

β̂λ

)−1 [

µ̄λ +
〈

AT
〉

〈R〉 x̃λ

]

, and (6)

β̂λ = β̄λ +
〈

ATRA
〉

, (7)

where µ̄λ and β̄λ are ‘messages’ sent by the parents of the node cλ to it and are
computed by

µ̄l,λ =

M
∑

m=1

γ̂lλm 〈βl,m〉 〈µl,m〉 , and (8)

β̄l,λ =

M
∑

m=1

γ̂lλm 〈βl,m〉 . (9)

The weighting coefficient γ̂lλm, called ‘responsibility’, encodes the a-posteriori
probability of the mth Gaussian kernel generating the λth wavelet coefficient
of the lth spatial map. It is defined as the posterior probability of the state
variable ξl,λ (corresponding to the wavelet coefficient cl,λ) being in the mth

state: γ̂lλm
def
= Q (ξlλ = m). The rest of the update equations for the mixture of

Gaussians model take a standard form and can be found e.g. in [11].

Learning the mixing model parameters,
{

A, a
}

. The variational posterior over
the matrix of the time-courses, AT×L, is a product of Gaussians with mean and
precision parameters for the tth row of A given by

ât =

[

01×L + 〈R〉

(

Λ
∑

λ=1

〈

x̃tλc
T

λ

〉

)]

(

Γ̂at

)−1

, (10)

Γ̂at
= diag

(

〈a〉
)

+ 〈R〉

(

Λ
∑

λ=1

〈

cλc
T

λ

〉

)

. (11)

The precision a = (al) is given by a Gamma distribution, al ∼ Ga (al|bal
, cal

),
with variational parameters

b̂al
=

(

1

ba0

+
1

2

T
∑

t=1

〈

Atl
2
〉

)−1

, ĉal
= ca0

+
1

2
T , (12)

for the lth column of A. We set the prior hyperparameters ba0
= 1 and ca0

= 1.

Learning the noise model parameter, R. Finally, the noise precision has a Gamma
distribution with hyperparameters

b̂R =

(

1

bR0

+
1

2

〈

tr
[

(

X̃ − AC
)T(

X̃ − AC
)

]〉

)−1

, ĉR = cR0
+

1

2
TΛ , (13)

where we set bR0
= 1 and cR0

= 1 a-priori.



-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

5 10 15 20 25 30 35 40 45
TRs

Auditory stimulus timecourses

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

5 10 15 20 25 30 35 40 45
TRs

Visual stimulus timecourses
 VB-SR

 PICA
 Canonical EV (GLM)

Auditory spatial map: PICA

Visual spatial map: PICA

Auditory spatial map: VB-SR

Visual spatial map: VB-SR

Fig. 2. Time courses and corresponding spatial maps resulting from applying the vari-
ational Bayesian sparse decomposition model to a visual-auditory fMRI data set. Red
curve: our model; green curve: PICA; blue curve: canonical EVs. Note that the maps
are the raw results from the model; no thresholding post-processing was performed.

3 Results

We tested the sparse decomposition model on the well-known audio-visual fMRI
data set provided with the FSL FEEDS package [12], used as benchmark. The
data set contains 45 time-points and 5 slices of size 64 × 64 voxels each. It was
specifically designed as such in order to make it more difficult to detect the
responses. We run our model on the dataset in order to detect ‘consistently
task related’ (CTR) components. We applied the standard preprocessing steps
(motion correction, registration, etc.), but no variance normalization or dimen-
sionality reduction. For each of the separated components, we computed the cor-
relation coefficient, r, between the associated timecourse, al, and the ‘expected
timecourses’, which were the canonical explanatory variables (EVs) from FEAT.
After convergence, the model inferred only L = 3 components with r > 0.3. The
component with the highest value of r was identified as the CTR map. A strong
visual and a strong auditory component were extracted by the model; these are
shown in Fig. 2. The correlation coefficients were rvis = 0.858 and raud = 0.764.
The corresponding PICA coefficients from Melodic were 0.838 and 0.756, respec-
tively. The result of VB-ICA [13], [14] on the same dataset was 0.780 and 0.676,
respectively [15]. It is worth noting that the spatial maps extracted from our
model were also much cleaner than both PICA and VB-ICA (not shown), as
displayed in Fig. 2. This is due to applying the sparse prior on the maps.

4 Discussion

We have presented a sparse representation model incorporating wavelets and
sparsity-inducing adaptive priors under a full Bayesian paradigm. This enables



the estimation of both latent variables and basis functions, in a probabilistic
graphical modelling formalism. We employed a variational framework for effi-
cient inference. The preliminary results presented here suggest improved per-
formance compared to other state-of-the-art model-free tools, such as PICA,
while potentially allowing for more interpretable activation patterns due to the
implicit denoising.
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