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Abstract

In this paper we offer a gentle introduction to Gaussian @sses for timeseries data analysis. The
conceptual framework of Bayesian modelling for timeseuesa is discussed and the foundations of
Bayesian non-parametric modelling presented3aussian processegVe discuss how domain knowledge
influences design of the Gaussian process models and pragéesxamples to highlight the approaches.
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1 Introduction

If we are to take full advantage of the richness of scientifitachvailable to us we must consider a principled
framework under which we may reason and infer. To fail to de ito ignore uncertainty and risk false analy-
sis, decision making and forecasting. What we regard asraquisite for intelligent data analysis is ultimately
concerned with the problem of computing in the presence océdainty. Considering data analysis under the
mathematics of modern probability theory allows us to eixgi@rofound framework under which information,
uncertainty and risk for actions, events and outcomes mag&dily defined. Much recent research hence
focuses on the principled handling of uncertainty for miglin environments which are dynamic, noisy,
observation costly and time-sensitive. The machinery obabilistic inference brings to the field of timeseries
analysis and monitoring robust, stable, computationathctical and principled approaches which naturally
accommodate these real-world challenges. As a framewonle&soning in the presence of uncertain, incom-
plete and delayed information we appeal to Bayesian inéereihis allows us to perform robust modelling
even in highly uncertain situations, and has a long pedigréeference. Being able to include measures of
uncertainty allows, for example, us to actively select vehand when we would like to observe samples and
offers approaches by which we may readily combine inforomefiom multiple noisy sources.

This paper favours the conceptual over the mathematicaldiafse the mathematical details are important
and elegant but would obscure the aims of this paper. Theesterl reader is encouraged to read the cited
material and a canonical text such as [1]). We start in thé seotion with a short overview of whgayesian
modelling is important in timeseries analysis, culmingiimarguments which provoke us to use non-parametric
models. Section 3 presents a conceptual overview of a pkatiftavour of non-parametric model, the Gaussian
process, which is well-suited to timeseries modelling [#Je discuss in more detail the role oévariance
functions the influence they have on our models and explore, by exarhpig the (apparently subjective)



function choices we make are in fact motivated by domain kadge. Section 5 presents real-world timeseries
examples, from sensor networks, changepoint data andhastgg to highlight the practical application of
Gaussian process models. The more mathematical frameworleence is detailed in section 4.

2 Bayesian time series analysis

We start by casting timeseries analysis into the formatrefeessionproblem, of the formy(z) = f(x) + 7,

in which f() is a (typically) unknown function ang is a (typically white) additive noise process. The goal
of inference in such problems is two-fold; firstly to evaki#tte putative form of () and secondly to evaluate
the probability distribution ofj. for somex,, i.e. p(y.|z.). To enable us to perform this inference we assume
the existence of a dataset @servationstypically obtained as input-output paif®, = (z;,y;) for example.
For the purposes of this paper we make the tacit assumptnh inputse; (representing, for example, time
locations of samples) are known precisely, i.e. there igpat noise but that observation noise is present on
they;. When we come to analyse timeseries data there are two ay@®ave might consider. The fifsinction
mappingand the secondurve fitting

The mapping approach considers inference of a funcfievhich maps some observedto an outcome
variabley without explicit reference to the (time) ordering of the data. Faaraple, if we choose to be a
datum in a timeseries, angto be the next datum, then inferrinffx) models relationship between one datum
and its successor. Problematically, the mapping is (tYlgicstatic, so poorly models non-stationary timeseries
and there is difficulty in incorporating timeseries domaiowledge, such as beliefs about smoothness and
continuity. Furthermore, if the periods between samplesusreven this approach fails to accomodate this
knowledge with ease.

Curve fitting on the other hand makes the tacit assumptidnytisaordered by, the latter normally taken
to be the time variable, with inference proceeding by fitingurve to the set af, y points. Prediction, for
example, is thence achieved by extrapolating the curventtwatels the observed past data. The relationship
between: andy is hence not fixed, but conditioned on observed data whighic@jly) lies close, in time, to the
point we are investigating. In this paper we make the detigiaconcentrate on this approach, as we believe it
offers a more profound model for much of the timeseries dat@m concerned with.

As a simple example to introduce the canonical concepts pé&lan modelling we consider a small set of
data samples, located= 0, 1, 2 and associated observed target values. Least-squaressiegr on this data
using a simple model (based on polynomial splines) givestdgshe curve shown as the line in the left panel
of Figure 1. We see that, naturally, this curve fits our obsgidata very well. What about the credibility of the
model in regions where we see no data, importantly 2? If we look at a larger set of example curves from the
same model we obtain a family of curves which explain the nleskdatdadenticallyyet differ very significantly
in regions where we have no observations, both interpgldteétween sample points, and in extrapolation. This
simple example leads naturally to us considerindisdribution of curves Working with some distribution
over the curves, each of which offers an explanation for tteeoved data, is central to Bayesian modelling.
We note that curves that lie towards the edges of this digtdb have higher average curvature than those
which lie close to the middle. In the simple example undersateration, there is an intimate relationship
between curvature, complexity and Bayesian inferencéjdganaturally to posterior beliefs over models being
a combination of how well observed data is explained and hanvpdex the explanatory functions are. This
elegant formalism encodes in a single mathematical frameguch ideas a®ccam’s razoy such that simple
explanations of observed data are favoured.
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Figure 1: A simple example of curve fitting. The left panelnegents the least-squares fit of a simple spline
to the observed data (red dots). The right panel shows examylies with identical fit to the data as the
least-squares spline. These curves have high similadtsecio the data yet high variability in regions of no
observations, both interpolating and, importantly forgiseries, as we extrapolate beyane: 2.

2.1 Parametric and non-parametric models

The simple example from the previous section showed that e many functions that can equally well ex-
plain data that we have observed. How should we choose frerbaWwildering array of mathematical functions
that give rise to such explanatory curves? If we have straigy ghowledge regarding a system, then this
(infinite-dimensional) function space may be reduced taglsifamily; perhaps the family of quartic polyno-
mials may be the right choice. Such models are considered patametric in the sense that a finite number
of unknown parameters (in our polynomial example, thesé¢rareoefficients of the model) need to be inferred
as part of the data modelling process. Although there is alaege literature (rightly so) on such parametric
modelling methods, there are many scenarios in which we litdee or no, prior knowledge regarding appro-
priate models to use. We may, however, have seemingly lesifigpdomain knowledge; for example, we may
know that our observations are visible examples from anwyidg process which is smooth, continuous and
variations in the function take place over characteristietscales (not too slowly yet not so fast) and have
typical amplitude. Surprisingly we may work mathematigatlith the infinite space of all functions that have
these characteristics. Furthermore, we may even contggrgiabability distributions over this function space,
such that the work of modelling, explaining and forecastilaga is performed by refining these distributions,
so focusing on regions of the function space that are extaltntenders to model our data. As these functions
are not characterised with explicit sets of parameters tofeered (unlike our simple polynomial example, in
which sets of coefficients need to be evaluated), this apprisaeferred to as a branchmdn-parametrianod-
elling®. As the dominant machinery for working with these model$hat of probability theory, they are often
referred to aBayesian non-parametric modelg/e now focus on a particular member, namely @eussian
procesgGP).

1This always feels rather disingenuous though, as theselsddéavenyperparametersshich we discuss later in this paper. These
still need to be inferred! They are referred tohggpeparameters as they govern such things as the scale of ddigin rather than
acting explicitly on the functional form of the curves.



3 Gaussian Processes

We start this introduction to Gaussian processes by camsgda simple two-variable Gaussian distribution,
which is defined for variables;, x5 say, by a mean andZx 2 covariance matrix, which we may visualise
as a covariance ellipse corresponding to equal probaloitintours of the joint distributiop(z1, z2). Figure 2
shows an example 2d distribution as a series of (blue) ielfiptontours. The correspondimgarginal distri-
butions,p(z1) andp(x2) are shown as “projections” of this along the andx, axes (solid black lines). We
now consider the effect of observing one of the variables soat, for example, we obserwg at the location
of the dashed vertical line in the figure. The resulteonditional distribution p(z2|z1 = known) indicated
by the (black) dash-dot curve, now deviates significantiyrfthe marginap(z2). Because of the relationship
between the variables implied by the covariance, knowladgme shrinks our uncertainty in the other. To

Figure 2: The conceptual basis of Gaussian processes wsittitan appeal to simple multivariate Gaussian
distributions. A joint distribution (covariance ellips&@rms marginal distributiong(z;), p(x2) which are
vague (black solid). Observing; at a value indicated by the vertical dashed line changeseligfé aboutzs,
giving rise to a conditional distribution (black dash-dd{howledge of the covariance lets us shrink uncertainty
in one variable based on observation of the other.

see the intimate link between this simple example and tienes analysis, we represent the same effect in a
different format. Figure 3 shows the mean (black line) ard(grey shaded region) for(x;) andp(x2). The

left panel depicts our initial state of ignorance and thétrjganel after we observe . Note how the observa-
tion changes the location and uncertainty of the distrdmutverxz,. Why stop at only two variables? We can
extend this example to arbitrarily large numbers of vagapthe relationships between which are defined by
an ever larger covariance. Figure 4 shows the posteriailmigon for a 10-d example in which observations
are made at locations 2, 6 and 8. The left-hand panel showgas$terior mean ane-o as in our previous
examples. The right-hand panel extends the posterioitdittin evaluation densely in the same interval (here
we evaluate the distribution over several hundred poilt® note that the “discrete” distribution is now rather
continuous. In principle we can extend this procedure tdithi¢ in which the locations of the; are infinitely
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Figure 3: The change in distributions en andx, is here presented in a form more familiar to time-series
analysis. The left panel shows the initial, vague, distidns (the black line showing the mean and the grey
shading+o) and the right panel subsequent to obseringThe distribution overs has become less uncertain
and the most-likely “forecast” ofy has also shifted.
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Figure 4: The left panel shows the posterior distributidme (plack line showing the mean and the grey shading
+o0) for a 10-d example, with observations made at locationsa?d8. The right panel evaluates the posterior
densely in the interval [1,10] showing how arbitrarily derevaluation gives rise to a “continuous” posterior

distribution with time.

dense (here on the real line) and so the infinite joint digtidim over them all is equivalent to a distribution over
a function space. In practice we won't need to work with sudimite spaces, it is sufficient that we can choose
to evaluate the probability distribution over the functirany location on the real linand that we incorporate
any observations we may have at any other points. We noteiatlyil that the locations of observations and
points we wish to investigate the function aret constrainedo lie on any pre-defined sample points; hence
we are working in continuous time with a Gaussian process.

3.1 Covariance functions

As we have seen, the covariance forms the beating heart efsizauprocess inference. How do we formulate
a covariance over arbitrarily large sets? The answer ligkefining acovariance kernel functiork(z;, z;),
which provides the covariance element between any twot(ary) sample locations;; andz; say. For a set



of locationsx = {z1, 2, ..., z,, } We hence may define tle@variance matri>as

k(z1,21) k(z1,22) -+ k(x1,25)
K (x,x) = k:(mgz,xl) k(xgz, x9) k:(acg:, Tn) )
k(xpn,z1) k(zp,x2) -+ k(zp,xn)

This means that the entire function evaluation, associattddthe points inx, is a draw from a multi-variate
Gaussian distribution,

p(y(x)) = N(u(x), K(x,x)) 2

wherey = {1, y2, ..., yn } are the dependent function values, evaluated at locatipns, x,, andu is amean
function again evaluated at the locations of theariables (that we will briefly revisit later). If we belietisere

is noise associated with the observed function valygshen we may fold this noise term into the covariance.
As we expect noise to be uncorrelated from sample to samplariata, so the noise term only adds to the
diagonal ofK, giving a modified covariance for noisy observations of terf

V(x,x) = K(x,x) + 01 (3)

wherel is the identity matrix and? is ahyperparameterepresenting the noise variance.
How do we evaluate the Gaussian process posterior distnibat some test datum,, say? We start with
considering the joint distribution of the observed datéconsisting ofx and associated valug9 augmented

by z, andy,,
y IJ/(X) :| |: K(X7 X) K(Xvw*) :|>
= N R 4
p([ y. D <[ uw) || Keox) k.. “
whereK(x, z,) is the column vector formed froa(x1, x.), ..., k(z,, z.) andK(z,, x) is its transpose. We
find, after some manipulation, that the posterior distidubvery, is Gaussian with mean and variance given
by
my = M(ZC*) + K(x*>X)K(X> X)il(y - H(X))> (5)

02 = K(zy, ) — K(z,, x) K(x,x) 'K(x, 2,). (6)

We may readily extend this to infer the GP at a set of locatmutside our observations, &af say, to evaluate
the posterior distribution of (x..). The latter is readily obtained once more by extending ttevalequations
and using standard results for multivariate Gaussians. Mroa posterior mean and variance given by

ply+) = N(m,,C.) (7

where,
m, = p(x,) + K(x, x)K(x,%) 7 (y(x) - p(x)) 8)
C, = K(x,,x,) — K(x,,x)K(x,x) 'K(x,,x)" . 9)

in which we use the shorthand notation for the covariabt@, b), defined as

k:(al,bl) k(al,bg) k(al,bn)
K(a,b) = k(ai’bl) k(a?:’bQ) k(@:’bn) (10)
F(anm b)) k(amby) - k(anbn)
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If we believe (and in most situations we do) that the obsedadd are corrupted by a noise process, we would
replace thdK(x, x) term above with, for exampl&/ (x, x) from Equation 3 above.

What should the functional form of the kernel functié(;, ;) be? To answer this we will start by
considering what the covariance elements indicate. Inioysle 2d example, the off-diagonal elements define
the correlation between the two variables. By considerimg-series in which we believe the informativeness
of past observations, in explaining current data, is a fonaif how long ago we observed them, we then obtain
stationarycovariance functions which are dependentgn-z;|. Such covariance functions can be represented
as the Fourier transform of a normalised probability derfsibction (via Bochner’'s Theorem [1]); this density
can be interpreted as the spectral density of the processmoit widely used covariance function of this class
is arguably thesquared exponentidlinction, given by

2
k(xi,x]—) = h2 exp [— (L}\%) ] (11)

In the above equation we see two mdrgerparametersnamelyh, A, which respectively govern the output
scale of our function and the input, or time, scale. The rbiaeference in Gaussian process models is to refine
vague distributions over many, very different curves, taemuecise distributions which are focused on curves
that explain our observed data. As the form of these curvasituely controlled by the hyperparameters so,
in practice, inference proceeds by refining distributiomsrahem. Ash controls the gain, or magnitude, of the
curves, we set this th = 1 to generate Figure 5 which shows curves drawn from a Gaupsisess (with
squared exponential covariance function) with varylng 0.1, 1, 10 (panels from left to right). The important
guestion ofhowwe infer the hyperparameters is left until later in this papesection 4. We note that to be a
valid covariance functiork(), implies only that the resultant covariance matrix, geteefasing the function, is
guaranteed to be positive (semi-) definite. As a simple eXxatie left panel of Figure 6 shows a small sample

A=0.1 A=1 A=10

Figure 5: From left to right, functions drawn from a Gausgmocess with a squared exponential covariance
function with output-scalé = 1 and length scales = 0.1, 1, 10.

of six observed data points, shown as dots, along with (ned) bars associated with each. The seventh datum,
with green error bars and '?’ beneath it, is unobserved. We@aussian process with the squared exponential
covariance kernel (Equation 11 above). The right panel shbe GP posterior mean (black curve) along with
+20 (the posterior standard deviation). Although only a few s are observed, corresponding to the set of
x,y of equations 8 and 9, we here evaluate the function on a finef s®tints, evaluating the corresponding
ys posterior mean and variance using these equations and peodéing interpolation between the noisy
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Figure 6: (left panel) Given six noisy data points (errorshare indicated with vertical lines), we are interested
in estimating a seventh at. = 0.2. (right panel) The solid line indicates an estimatioryofor x, across the
range of the plot. Along with the posterior mean, the postarncertainty+2¢ is shaded.

observations (this explains the past) and extrapolationzfo> 0 which predicts the future. In this simple
example we have used a “simple” covariance function. As thm ef valid covariance functions is itself a
valid covariance function (more on this in section 3.3.£fas0 we may entertain more complex covariance
structures, corresponding to our prior belief regardirgdhta. Figure 7 shows Gaussian process modelling of
observed (noisy) data for which we use slightly more comptesariances. The left panel shows data modelled
using a sum of squared exponential covariances, one withsattivards shorter characteristic timescales than
the other. We see how this combination elegantly allows uaddel a system with both long and short term
dynamics. The right panel uses a squared exponential kewitll bias towards longer timescale dynamics
along with a periodic component kernel (which we will dissirs more detail in section 3.3.1). Note here how
extrapolation outside the data indicates a strong posteelief regarding the continuance of periodicity.

3.2 Seguential modelling and active data selection

We start by considering a simple example, shown in Figureh®.1&ft hand panel shows a set of data points and
the GP posterior distributioexcludingobservation of the right-most datum (darker shaded poifite right
panel depicts the same inferenioeluding this last datum. We see how the posterior variance shrinkgeas
make the observation. The previous example showed how gpakirobservation, even of a noisy timeseries,
shrinks our uncertainty associated with beliefs about tiietion local to the observation. We can see this
even more clearly if we successively extrapolate until we &eother datum, as shown in Figure 9. Rather
than observations coming on a fixed time-interval grid we icaagine a scenario in which observations are
costly to acquire, and we wish to find a natural balance beivgaenpling and reducing uncertainty in the
functions of interest. This concept leads us naturally in thirections. Firstly for the activeequestingof
observations when our uncertainty has grown beyond addegtanits (of course these limits are related to the
cost of sampling and observation and the manner in whichrtaingy in the timeseries can be balanced against
this cost) and secondly to dropping previously observedpsesrfrom our model. The computational cost of
Gaussian processes is dominated by the inversion of a enearimatrix (as in Equation 9) and hence scales
with the cube of the number of retained samples. This leads tadaptivesample retention Once more the
balance is problem specific, in that it relies on the tradesefween computational speed and (for example)
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Figure 7: (a) Estimation aof, (solid line) andd-20 posterior deviance for a function with short-term and long-
term dynamics, and (b) long-term dynamics and a periodigomorant. Observations are shown as blue crosses.
As in the previous example, we evaluate the posterior GP awvearxtended range to show both interpolation
and extrapolation.

0 1 2 3 4 0 1 2 3 4

Figure 8: A simple example of a Gaussian process appliedesdiglly. The left panel shows the posterior
mean andt2c0 prior to observing the rightmost datum (darker shaded) and the panelafter observation.

forecasting uncertainty. The interested reader is poitttg¢d] for more detailed discussions. We provide some
examples of active data selection in operation in real probdomains later in this paper.

3.3 Choosing covariance and mean functions

The prior mean of a GP represents whatever we expect for aatifun before seeing any data. The covariance
function of a GP specifies the correlation between any pawutputs. This can then be used to generate
a covariance matrix over our set of observations and pettiet Fortunately, there exist a wide variety of
functions that can serve in this purpose [3, 4], which can theecombined and modified in a further multitude
of ways. This gives us a great deal of flexibility in our moutejl of functions, with covariance functions
available to model periodicity, delay, noise and long-teinifts and other phenomena.
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Figure 9: The GP is run sequentially making forecasts untiea datum is observed. Once we make an
observation, the posterior uncertainty drops to zero aBsynoiseless observations).

3.3.1 Covariance functions

In the following section we briefly describe commonly usednkés. We start with simple white noise, then
consider commostationarycovariances, both uni- and multi-dimensional. We finisk ggction with periodic
and quasi-periodic kernel functions. The interested neadeferred to [1] for more details. Although the list
below is not exclusive by any means, it provides details fosiof the covariance functions suitable for analysis
of timeseries. We note once more that sums (and productsiliof sovariance kernels give valid covariance
functions (i.e. the resultant covariance matrices aretigesjsemi-) definite) and so we may entertain with
ease multiple explanatory hypotheses. The price we paynligge extra complexity of handling the increased
number of hyperparameters.

White noise with variances? is represented by:
kwn (i, 75) = 06(i, j) (12)
This kernel allows us to entertain uncertainty in our obedrdata and is so typically found added to other

kernels (as we saw in Equation 3).

The squared exponential (SE) kernel is given by:

ksg = h? exp [— <TJ> ] (13)

whereh is an output-scale amplitude ands an input (length, or time) scale. This gives rather smaatia-
tions with a typical time-scale of and admits functions drawn from the GP that are infinitelfedéntiable.

The rational quadratic (RQ) kernel is given by:

Y — 2 (wi —2)*\ ™"
kRQ(xwx]) =h 1+ a2 (14)

wherea is known as the index. Rasmussen & Williams [1] show that iisquivalent to a scale mixture of
squared exponential kernels with different length scdtesatter distributed according to a Beta distribution
with parametersy and\~2. This gives variations with a range of time-scales, theitistion peaking around
A but extending to significantly longer period (but remainimagher smooth). When — oo, the RQ kernel
reduces to the SE kernel with length scale
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Matérn The Matérn class of covariance functions are defined by

k(i 25) = hQW <2ﬁw> B, <2ﬁw> (15)
whereh is the output-scale) the input-scalel'() is the standard Gamma function aBd) is the modified
Bessel function of second order. The additional hyperpatam controls the degree of differentiability of the
resultant functions modelled by a GP with a Matérn covaedinction, such that they are orfly-+1/2) times
differentiable. As — co so the functions become infinitely differentiable and thetévia kernel becomes the
squared exponential one. Taking= 1/2 gives the exponential kernel,

k(wi, ;) = h? exp (—@) (16)

which results in functions which are only once differentgakand correspond to the Ornstein-Ulenbeck pro-
cess, the continuous time equivalent of a first order autessiye model, AR(1). Indeed, as discussed in [1],
timeseries models corresponding to AR(p) processes areethstime equivalents of Gaussian process models
with Matérn covariance functions with=p — 1/2.

Multiple inputs and outputs The simple distance metri¢r; — x|, used thus far clearly only allows for
the simplest case of a one dimensional inputvhich we have hitherto tacitly assumed to represent a time
measure. In general, however, we assume our input spacenhiasifiension and write(©) for the value of
theeth element inx and denotecge) as the value of theth element at théth index point. In such scenarios we
entertain multiple exogenous variables. Fortunatelys itat difficult to extend covariance functions to allow
for these multiple input dimensions. Perhaps the simplgstaach is to take a covariance function that is the
product of one-dimensional covariances over each inpatpftbduct correlationrule [5]),

k(xi,xj) = H k©) (xge), mge)) a7)

wherek(® is a valid covariance function over th#h input. As the product of covariances is a covariance,
so Equation (17) defines a valid covariance over the muttiegisional input space. We can also introduce
distance functions appropriate for multiple inputs, sustthe Mahalanobis distance:

4™ (1,31 2) = /(6 = ) TE (s - ), (18)

whereX is a covariance matrix over the input variable vectoNote that this is a matrix represefigperpa-
rametersof the model, and should not be confused with covariancesddrfrom covariance functions (which
are always denoted k¥ in this paper). IfX is a diagonal matrix, its role in Equation 18 is simply to pdzvan
individual input scale\® = /X (e, e) for the eth dimension. However, by introducing off-diagonal eletsen
we can allow for correlations amongst the input dimensidiesform the multi-dimensional kernel, we simply
replace the scaled distance measure-z;|/) of, e.g. Equation 13 witd™) (x;, x,) from Equation 18 above.

For multi-dimensional outputs, we consider a multi-dimenal space consisting of a set of timeseries
along with a label, which indexes the timeseries, andlenoting time. Together these thence form the 2d set
of [, z]. We will then exploit the fact that a product of covariancadtions is a covariance function in its own
right, and write

k([lmwri]v [lnij]) = kﬂ&(xi?xj) kl(lnwln) s

11



taking covariance function terms over both time and timesdabel. If the number of timeseries is not too
large, we can arbitrarily represent the covariance matrét the labels using the spherical decomposition [6].
This allows us to represent any covariance structure owetabels. More details of this approach, which
enables the dependencies between timeseries to be modkefieand in [7] and we use this as the focus of one
of our examples in Section 5 later in this paper.

Periodic and quasi-periodic kernels Note that a valid covariance function under any arbitramgsth)
map remains a valid covariance function [8, 1]. For any fiamct, : + — wu(x), a covariance functiot()
defined over the range afgives rise to a valid covariandé() over the domain ofi. Hence we can use simple,
stationary covariances in order to construct more compleggibly non-stationary) covariances. A particularly
relevant example of this,

u(z) = (W (), u® (2)) = (COS(QW%),SHI(QW%)) , (19)
allows us to modify our simple covariance functions abovetalel periodic functions. We can now take this
covariance over: as a valid covariance over. As a result, we have the covariance function, for the exampl
of the squared exponential (13),

1 . Ti— T
kper-se(xj, zj; h,w,T) = h? exp <_ﬁ sin? <7T‘ J T J D) ) (20)

In this case the output scakeserves as the amplitude afids the period. The hyperparameteris a “rough-
ness” parameter that serves a similar role to the input scalestationary covariances. With this formulation,
we can perform inference about functions of arbitrary rowggs and with arbitrary period. Indeed a periodic
covariance function can be constructed from any kernelvivg the squared distande; — z;)? by replacing
the latter withsin?[r(z; — z;)/T], whereT is the period. The length scale is now relative to the period,
and lettingw — oo gives sinusoidal variations, whilst increasingly smalles ofw give periodic variations
with increasingly complex harmonic content. Similar pdi@functions could be constructed from any ker-
nel. Other periodic functions could also be used, so londghag give rise to a symmetric, positive definite
covariance matrix sin? is merely the simplest.

As described in [1], valid covariance functions can be aoeséd by adding or multiplying simpler covari-
ance functions. Thus, we can obtaig@asi-periodickernel simply by multiplying a periodic kernel with one
of the basic stationary kernels described above. The Idit&r specifies the rate of evolution of the periodic
signal. For example, we can multiply equation 20 with a sedaxponential kernel:

kqp,se (@i, 25) = h* exp (‘sz [”(ZZU; 2)/T] (i ;2%-)2) 21)

to model a quasi-periodic signal with a single evolutioniamye-scaleX.

Examples of functions drawn from these kernels are showrigaré 10. There are many more types of
covariance functions in use, including some (such as thé@fdamily above) which are better suited to model
rougher, less smooth variations. However, the SE and RQeleaiready offer a great degree of freedom with
relatively few hyper-parameters, and covariance funstiossed on these are widely used to model timeseries
data.

Changepoints We now describe how to construct appropriate covariancetifums for functions that experi-
ence sudden changes in their characteristics. This sdstimeant to be expository; the covariance functions
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Figure 10: Random draws from Gaussian processes withelifféernels. From left to right, the top row shows
the squared exponential kernel, (Equation 13, with- 1, A = 1), the rational quadratic (Equation 14, with
h =1, =1anda = 0.5), and a periodic kernel based on the squared exponentiab{lbg 20, withh, = 1,

T = 2 andw = 0.5). The bottom row left panel shows a quasi-periodic kernakstmicted by multiplying the
periodic kernel of Equation 13 (with = 1, T' = 2, w = 1) with the rational quadratic kernel of Equation 14
(with A = 4 anda = 0.5). The middle and right panel in the bottom row show noisy e&is of this kernel
obtained by adding, respectively, a white noise term (Eqnal3, withoc = 0.2) and a squared exponential
term (Equation 13, witth = 0.1, A = 0.1). Each line consists of equally spaced samples over thevatte
[—5, 5], and is offset from the previous one by 3 for clarity. The @mdhumber generated was initiated with
the same seed before generating the samples shown in eagh pan

13



we describe are intended as examples rather than an extealisttiof possibilities. To ease exposition, we
assume the (single) input variable of interastrepresents time. If additional features are availabley thay
be readily incorporated into the derived covariances [1].

A drastic change in covariance: We start by considering atfon of interest as well-behaved except
for a drastic change at the point, which separates the function into two regions with assediaovariance
functionsk (-, -; 6,) beforex. andks(-, -; 02) after, wheref; andé, represent the values of any hyperparam-
eters associated with; and k5, respectively. The change is so drastic that the obsenstieforex,. are
completely uninformative about the observations afteccti@ngepoint. The full set of hyperparameters for this
covariance function are hence the hyperparameters of thedwariance functions as well as the location of
the changepointz.. This covariance function is easily seen to be semi-p@sigfinite and hence admissible
[9, 10]. The covariance function, and an example draw fromm@P associated with it, are presented in the
left-most plots of Figure 11.

A drastic change in covariance with constraints: Suppos®rdinuous functiorof interest is best mod-
elled by different covariance functions, before and aftehangepointz.. The function values after the
changepoint are conditionally independent of the functialues before, given the value at the changepoint
itself. This represents an extension to the drastic caveei@escribed above; our two regions can be drastically
different, but we can still enforce continuity and smootfgeonstraints across the boundary between them. We
call this covariance function theontinuous conditionally independeabvariance function. This covariance
function can be extended to multiple changepoints, boueslam multi-dimensional spaces, and also to cases
where function derivatives are continuous at the changépbBor proofs and details of this covariance function
the reader is invited to see [10, 11].

A sudden change in input scale: Suppose a function of intdgesvell-behaved except for a drastic
change in the input scalk at time x., which separates the function into two regions with différdegrees
of long-term dependence. We lat and \; represent the input scale of the function before and after th
changepoint at:., respectively. The hyperparameters of this covariancesisbiof the two input scales,
A1, A2 along with a common output scalé, and the changepoint locatiom.. The second panel in Fig-
ure 11 shows an example covariance function of this forméuppnel) and an example function (lower panel).

A sudden change in output scale: We now consider a functioimtefest as well-behaved except for a
drastic change in the output scalat timez,., which separates the function into two regions. As befordetve
h1 andhs represent the output scales before and after the changeqtain The full set of hyperparameters
of this model consists of the two output scalés, ho, a common input scale) and the location of the
changepointz.. The third panel of Figure 11 shows an example covarianceaasadciated example function.
We note that we may readily combine changes in input and ostgale into a single changepoint covariance
(an example of which is shown in the right-most plots of Feglil).

A change in observation likelihood: Hitherto, we have takée observation likelihood as being de-
fined by a single GP. We now consider other possible observatiodels, motivated by fault detection and
removal [11, 12]. For example, a sensor fault implies thatriglationship between the underlying process
model and the observed values is temporarily corruptedituat®ns where a model of the fault is known, the
faulty observations need not be discarded; they may stillaio valuable information about the plant process.
The interested reader is directed to [11, 12] in which cavares for biased readings, stuck sensors and sensor
drifts are discussed.
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Figure 11: Example covariance functions (upper row) forrttalelling of data with changepoints and associ-
ated draws (lower row) from the resultant GPs, indicatingtiind of data that they might be appropriate for.

Each changepoint covariance function is drawn as a boldmegwith the standard squared exponential kernel
shown asks g for comparison. For ease of comparison we fix the locatiomefdhangepoint hyperparameter

to z. = 500 and plot the functions over the interval froti0 < x < 560.

3.3.2 Mean functions

As the mean function will dominate our forecasts in regicmsffom the data, the choice of the prior mean
function can have a profound impact on our predictions ansti& chosen with this in mind. In the majority
of cases in the literature we find vague (i.e. high uncergaifitdt mean functions used. This choice is reinforced
by considering the prior mean function as the expectatioctfan, prior to any observed data, of our domain
beliefs. In the vast majority of situations the symmetry af ignorance (i.e. we are equally unsure that
a trend is up or down) leads to flat, often zero-offset, meawctfans. As a simple example, we may have
domain knowledge that our functions have a linear drift tdoat we do not know the magnitude or direction.
Whatever prior we place over the gradient of the drift willrexessarily symmetric and leads to a zero-mean
with variance defined by the vagueness of our priors. If weal@such domain knowledge then we are free to
incorporate this into our Gaussian process models. For giearmonsider the case in which we know that the
observed timeseries consists of a deterministic compaarashtan unknown additive component. Draws from
our Gaussian process are hence:

y(x) ~ N (m(x;0), K(x,%;0¢)) (22)

in which the mean functionmn, has hyperparameteés,, that encode domain knowledge regarding the deter-
ministic component and the covariance makbhas hyperparameteég.. For example, we may know that our
observations are obtained from an underlying exponengiehy with an unknown additive function along with
coloured noise. Our mean function will hence be of the fautx,) = Aexp(—az,) whereA, a are unknown
hyperparameters. Figure 12 (left panel) shows a standaiared exponential covariance GP used to model a
small set of noisy data samples (red dots) drawn from a fanatith an underlying exponential decay. The GP
models the observed data well but long-term predictionsaterally dominated by a flat prior mean function.
In the right panel a GP with identical covariance is employ®md the mean function is that of an exponential
decay with unknown hyperparameters. Even a few data poiatsudficient for the the exponential function
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hyperparameters to be inferred leading to long-term fatscdat are dominated by a (albeit uncertain) decay
function.
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Figure 12: The effect of including a simple mean functioneTéft panel shows a GP model with a flat prior
mean and SE covariance function. The noisy observationindieated by (red) dots. The posterior from
the GP is shown along with20. In the right panel the same covariance function is usednbwtthe mean
function has extra hyperparameters corresponding to aonexypial decay with unknown time-constant and
scale. We see that the long-term forecasts in this examplederour prior belief in the decay function.

4 Marginalising Hyperparameters

Gaussian process models have a number of hyperparamaterto(doth the covariance and mean functions)
that we mustmarginalisé in order to perform inference. That is, we must first assigniar p(#) to these
hyperparameters, informed by our domain knowledge. Famel&, in assigning a prior to the period of a tidal
signal (as in Section 5.1), we'd use a prior that expressatitite most important period was on the order of
days, rather than nanoseconds or millenia. In the absentardfdomain knowledge, these priors are chosen
to be diffuse: for example, a Gaussian with high varianceenTlthe quantity we are interested in is

[ p(y«ly, 0) p(ylo) p(6)do
Pl) = T 10) p(6)d0

(23)

which requires two integrals to be evaluated. These aretppibally non-analytic, due to the complex form of
the likelihoodp(y|6) when considered as a function of hyperparameteiss such, we are forced to resort to
approximate techniques.

Approximating an integral requires two problems to be slveirst, we need to make observations of the
integrand, to explore it, and then those observations neée used to construct an estimate for the integral.
There are a number of approaches to both problems.

Optimising an integrand (see Figure 13) is one fairly effectneans of exploring it: we will take samples
around the maxima of the integrand, which are likely to dbscthe majority of the mass comprising the
integral. A local optimiser, such as a gradient ascent @tgar will sample the integrand around the peak
local to the start point, giving us information pertinentatdeast that part of the integrand. If we use a global

The process of marginalisation refers to “integrating auttertainty. For example, gives(y, ) = p(y|68)p(8) we may obtain
p(y) by marginalising over the unknown paramefesuch thap(y) = [ p(y|0)p(6)dé.
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Figure 13: Samples (black dots) obtained by optimising digelikelihood (grey) using a global optimiser, and
in blue, the maximum likelihood approximation of the likedod surface.
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Figure 14: Samples obtained by taking draws from the pastaging an MCMC method.

optimiser, our attempts to find the global extremum willmakitely result in all the integrand being explored, as
desired.

Maximising an integrand is most common when performimgximum likelihood The integrands in (23)
are proportional to the likelihoog(y|0): if the prior p(0) is relatively flat, the likelihood will explain most of
the variation of the integrands as a functiondofMaximising the likelihood hence gives a reasonable means
of integrand exploration, as above. Maximum likelihoodwhkwer, specifies a generally unreasonable means
of integral estimation: the likelihood is approximated d3iwac delta function located at titethat maximised
the likelihood. As per Figure 13, this completely ignores thidth of the integrands, leading to potentially
problematic features [13]. This approximation finds usemthe likelihood is very peaked, as is the case when
we have a great deal of data.

A slightly more sophisticated approach to integral estiomais to take d_aplace approximationwhich fits
a Gaussian around the maximum likelihood peak. This givésast some representation of the width of the
integrands. Yet further sophistication is displayed by riethods ofVariational Bayeq14], which treat the
fitting of probability distributions to the problematic s in our integrands as an optimisation problem.

Monte Carlo techniques represent a very popular means d¢bringp an integrand.Simple Monte Carlo
draws random samples from the prija(®), to which our integrands are proportional. Note that (23) ba
rewritten as

p(y.ly) = / p(y.ly. 6) p(6ly) db. (24)

More sophisticatedlarkov Chain Monte Carldechniques [15] attempt to generate samples from the hgperp
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Figure 16: Bayesian quadrature fits a GP to the integrandthemdby performs inference about the integral.

rameter posterior

_ p(yl®) p(9)
p(Oly) = Tp(yl0) p(8)dd " (25)

to which (24) is proportional (Figure 14 illustrates sansplieawn using such a method). Sampling in this way
ensures that we have many samples where the prior/posteriarge, and hence, where our integrands are
likely to be large. This is a particular concern for multidinsional integrals, where the problem is complicated
by the ‘curse of dimensionality’ [16]. Essentially, the unie of space that could potentially be explored is
exponential in its dimension. However, a probability dizition, which must always have a total probability
mass of one, will be highly concentrated in this space; eéngwur samples are likewise concentrated is a
great boon. Moreover, Monte Carlo sampling ensures a non{a®bability of obtaining samples from any
region where the prior is non-zero. This means that we caeeelsome measure of broader exploration of
our integrands.

Monte Carlo, does not, however, provide a very satisfaatoegns of integral estimation: it simply approx-
imates the integral as the average over the obtained samydekiscussed by [17], this ignores the information
content contained in the locations of the samples, leadinghsatisfactory behaviour. For example, imagine
that we had three samples, two of which were identi@al= 6-. In this case, the identical value will receive
2/3 of the weight, whereas the equally useful other value wikree onlyl/s. This is illustrated in Figure 15.

In attempt to address these issues, Bayesian quadratyrgqi@rovides a model-based means of integral
estimation. This approach assumes Gaussian processetheviategrands, using the obtained samples to
determine a distribution for the integrals (see Figure IB)is probabilistic approach means that we can use
the obtained variance in the integral as a measure of ourdmde in its estimate. Of course, we still need
to determine the hyperparameters for the GPs over the anidgr This problem is solved by adopting simple
covariance functions for these GPs and using maximum Hikelil to fit their hyperparameters (the maximum
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likelihood output scale even has a closed-form solutiomis Tenders the approach computationally tractable,
to complement its superior accuracy.

In the examples to follow, we’'ll exclusively use Bayesiamdrtature to marginalise the hyperparameters of
our GP models. Where desired, similar techniques are aks tescalculate the posteriors for such hyperpa-

rameters ( ‘0) (6)
__pyv)p

Where the posterior for a hyperpameter is highly concesdratround a particular value, we'll informally
describe the hyperparameter as having beemedas having that value.

5 Examples

In the following examples we briefly illustrate the Gausgmocess approach to practical timeseries analysis,
highlighting the use of a variety of covariance and meantians.

5.1 Multi-dimensional weather sensor data

The first example we provide is based on real-time data wisicoliected by a set of weather, sea state and
environment sensors on the south coast of the UK (see [7]doe ahetails). The network (Bramblemet) consists
of four sensors (named Bramblemet, Sotonmet, CambermeChimdet), each of which measures a range of
environmental variables (including wind speed and dicegtair temperature, sea temperature, and tide height)
and makes up-to-date sensor measurements. We have twdrdatasfor each variable at our disposal. The
firstis the real-time, but sporadic, measurements of the@mwental variables; it is these that are presented as
a multi-dimensional timeseries to the GP. Secondly we haeess, retrospectively, to finer-grained data. We
use this latter dataset for assessment only.

Figure 17 illustrates the efficacy our GP prediction for @ ittight dataset. In order to manage the four
outputs of our tide function (one for each sensor), we revgit that we have a single output and inputime,
and!, a sensor label, as discussed in Section 3.1 and the sulvsabtve.

Note that our covariance over time is the sum of a periodim tend adisturbanceterm. Both are of the
Matérn form withy = g This form is a consequence of our expectation that the tisdesd be well modelled
by the superposition of a simple periodic signal and an écnakdisturbance signal due to exceptional condi-
tions. Of course, for a better fit over the course of, say, & yeaould be possible to additionally incorporate
longer-term drifts and periods.

The periodT’ of the periodic covariance term was unsurprisingly leasib@ing about half a day, whereas
for the disturbance term the time scalevas found to be about two and a half hours. Note that thisr legult
is concordant with our expectations for the time scales ®ftbhather events we intend our disturbance term to
model.

Our algorithm learned that all four sensors were very sisoogrrelated, with spherical decomposition of
the inferred correlation elements all very close to one. Ayerparameter matriX: of Equation 18 (which
defines relationships between variables) additionallggi@n appropriate length scale for each sensor. From
this inference we determined weather events to have indtleaages in tide height on the order2of%.

We also make allowances for the prospect of relative latemegngst the sensors by incorporating delay
variables, introduced by a vector of delays in time obs@wmat[7]. We found that the tide signals at the
Cambermet and Chimet stations were delayed by ab@uninutes relative to the other two. This makes
physical sense — the Bramblemet and Sotonmet stationscatetbto the west of the Cambermet and Chimet
stations, and the timing of high tide increases from wesast within the English channel.
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Figure 17: Prediction and regression of tide height data(d@rndependent and (b) multi-output Gaussian
processes.

Note the performance of our multi-output GP formalism whenBramblemet sensor drops out at 1.45
days. In this case, the independent GP quite reasonablyctzrdbat the tide will repeat the same periodic
signal it has observed in the past. However, the GP can achietter results if it is allowed to benefit from
the knowledge of the other sensors’ readings during thisrnvat of missing data. Thus, in the case of the
multi-output GP, byt = 1.45 days, the GP has successfully determined that the sensogdl &ery strongly
correlated. Hence, when it sees an unexpected low tide ilCtimet sensor data (caused in this case by
the strong northerly wind), these correlations lead it ferira similarly low tide in the Bramblemet reading.
Hence, the multi-output GP produces significantly more eteupredictions during the missing data interval,
with associated smaller error bars. Exactly the same eiffesten in the later predictions of the Chimet tide
height, where the multi-output GP predictions use obsematfrom the other sensors to better predict the high
tide height at = 2.45 days.

Note also that there are two brief intervals of missing dataafl sensors just after both of the first two
peak tides. During the second interval, the GP’s predistimn the tide are notably better than for the first —
the greater quantity of data it has observed allows it to ycedmore accurate predictions. With time, the GP
is able to build successively better models for the series.

The predictive performances for our various algorithmsrdhes dataset can be found in Table 1. For
the Kalman filter comparison, a history length of 16 obséovet was used to generate each prediction, since
this gave rise to the best predictive ability for the Kalmaodel on out-of-sample data. However, note that our
multi-output GP which exploits correlations between thesses, and the periodicity in each individual sensors’
measurements, significantly outperforms both the Kalméer find the independent GP [7]. The naive result
is obtained by repeating the last observed sensor valueaisaabt and is included as a baseline only.
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Table 1: Predictive performances for five-day Bramblenag tieight dataset. We note the superior perfor-
mance of the GP compared to a more standard Kalman filter madelr metrics shown are Root Mean Square
Error (RMSE) and Normalised Mean Square Error (NMSE), wiggtresented on a logarithmic, decibel scale.

Algorithm RMSE (m) NMSE (dB)
Naive 7.5x1071 2.1
Kalman filter 1.7x1071 -15.2
Independent GPs 81072 -20.3
Multi-output GP 3.8x1072 -27.6

5.2 Active Data Selection

We now demonstrate our active data selection algorithm.ndgJdie fine-grained data (downloaded directly
from the Bramblemet weather sensors), we can simulate hov&Buvould have chosen its observations had
it been in control. Results from the active selection of olestions from all the four tide sensors are displayed
in Figure 18. Again, these plots depict dynamic choicesinae t, the GP must decide when next to observe,
and from which sensor, given knowledge only of the obsermatrecorded prior tg, in an attempt to maintain
the uncertainty in tide height below 10cm. The covariangetion used was that described in the previous
example, namely a sum of two= 5/2 Matérn covariance functions, one stationary and the athperiodic
form. Consider first the case shown in Figure 18(a), in whiahasate independent GPs are used to represent
each sensor. Note that a large number of observations ame itaikially as the dynamics of the sensor readings
are learnt, followed by a low but constant rate of observatitn contrast, for the multi-output case shown
in Figure 18(b), the GP is allowed to explicitly representretations and delays between the sensors. As
mentioned above, this data set is notable for the slightydafighe tide heights at the Chimet and Cambermet
sensors relative to the Sotonmet and Bramblemet sensagodhe nature of tidal flows in the area. Note
that after an initial learning phase as the dynamics, caticgls, and delays are inferred, the GP chooses to
sample predominantly from the undelayed Sotonmet and Beandi sensors. The dynamics of the tide height
at the Sotonmet sensor are more complex than the other sethg@to the existence of a ‘young flood stand’
and a ‘double high tide’ in Southampton. For this reason,Gleselects Sotonmet as the most informative
sensor and samples it most often. Despite no observatiotiee d€himet sensor being made within the time
span plotted, the resulting predictions remain remarkablurate. Consequently only9 observations are
required to keep the uncertainty below the specified toterawhereag58 observations were required in the
independent case. This represents another clear demarstshhow our prediction is able to benefit from the
readings of multiple sensors.

5.3 Changepoint Detection

In [9, 10] a fully Bayesian framework was introduced for perfiing sequential time-series prediction in the
presence of changepoints. The position of a particular gdamint becomes a hyperparameter of the model
which is marginalised using Bayesian quadrature. If thatioas of changepoints in the data are of interest, the
full posterior distribution of these hyperparameters cambtained given the data. The result is a robust time-
series prediction algorithm that makes well-informed jo#ohs even in the presence of sudden changes in the
data. If desired, the algorithm additionally performs ajgpoint and fault detection as a natural byproduct of
the prediction process. In this section we briefly presemiesexemplar data sets and the associated changepoint
inference.
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Figure 18: Comparison of active sampling of tide data usajgirfdependent and (b) multi-output Gaussian
processes. Note that, in the case of multi-output GPs, amoseeading (Sotonmet) slightly leads the other
readings and is hence sampled much more frequently. In sasescsuch as the Cambermet readings, only
occasional samples are taken yet the GP forecasts areesxcell

5.3.1 Nile data set

We first consider a canonical changepoint dataset, the mmimater levels of the Nile river during the period
AD 622-1284 [20]. Several authors have found evidence stipgoa change in input scale for this data
around the year AD 722 [21]. The conjectured reason for th@gepoint is the construction in AD 715 of a
new device (a “nilometer”) on the island of Roda, which atiéecthe nature and accuracy of the measurements.

We performed one-step (next datum) lookahead predictidhismataset using the input-scale changepoint
covariance discussed earlier. The results can be seen umeFi®. The left-hand plot shows our one-step
predictions on the dataset, including the mean aaderror bars. The right-hand plot shows the posterior
distribution of the number of years since the last changgpd\ changepoint around AD 720-722 is clearly
visible and agrees with previous results [21].
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Figure 19: Prediction for the Nile dataset using input-sadiangepoint covariance (left panel) and the corre-
sponding posterior distribution for time since changep@ight panel).
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Figure 20: Online (sequential) one-step predictions (tapgt) and posterior for the location of changepoint
for the Dow-Jones industrial average data using an outmale £hangepoint covariance (lower panel).

5.3.2 1972-1975 Dow-Jones industrial average

As a second canonical changepoint dataset we present tee sedaily returns of the Dow-Jones industrial
average between the 3rd of July, 1972 and the 30th of Juné [P2]. This period included a number of
newsworthy events that had significant macroeconomic infleigas reflected in the Dow-Jones returns.

We performed sequential one-step (next datum) predictiothis data using a GP with a diagonal co-
variance that assumed all measurements were 11D (as unelefftbient market hypothesis, returns should be
uncorrelated). However, the variance of these obsenatias assumed to undergo changes, and as such we
used a covariance that incorporated such changes in outplgt sAs such, we had three hyperparameters to
marginalise: the variance before the changepoint, thaneei after the changepoint and, finally, the location
of that changepoint.

Our results are plotted in Figure 20. Our model clearly idiest the important changepoints that likely
correspond to the commencement of the OPEC embargo on theflGictober, 1973, and the resignation of
Richard Nixon as President of the U.S.A. on the 9th of Augl874. A weaker changepoint is identified early
in 1973, which [22] speculate is due to the beginning of theefgate scandal.

5.4 Quasi-periodic modelling of stellar light curves

Many Sun-like stars display quasi-periodic brightnessati@mns on time-scales of days to weeks, with ampli-
tudes ranging from a few parts per million to a few percentesehvariations are caused by the evolution and
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rotational modulation of magnetically active regions, gthare typically fainter than the surrounding photo-
sphere. In this case, we may expect a range of both periodarience scales and evolutionary time-scales
A, corresponding to different active region sizes and lifiees respectively. This can be achieved by replacing
one or both of the squared exponential (SE) kernels in Eguaf by rational quadratic (RQ) kernels (Equation
14). Finally, we can also allow for short-term irregularighility or correlated observational noise by includ-
ing a separate, additive SE or RQ kernel. For example, [23] asGaussian process with such quasi-periodic
kernels to model the total irradiance variations of the Suorder to predict its radial velocity variations.

In Figure 21, we show the results of a quasi-periodic Gangsiacess regression to photometric observa-
tions of the well-known planet-host star HD 189733, takemf{24]. The kernel used consists of a periodic
SE component (Equation 21) multiplied by a RQ term (Equatiénto allow for a range of evolutionary time-
scales, plus an additive white noise term (Equation 12gréwfce over the hyperparameters of interest yielded
expected values df = 6.68 mmag,T = 11.86 days,w = 0.91, « = 0.23, A = 17.81 days andr = 2.1
mmag, wherers is the amplitude of the white noise term. Our period is in #goe agreement with [24]. The
relatively long periodic length-scake indicates that the variations are dominated by a small numwibiirly
large active regions. The evolutionary term has a relatigbbrt time-scale), but a shallow indexy, which
is consistent with the notion that the active regions ongtas evolve relatively fast and/or that, as in the Sun,
active regions located at different latitudes have differetation rates (known as differential rotation).
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Figure 21: Predictive distribution for a quasi-periodicuSsian process model using a mixed SE and RQ kernel,
trained and conditioned on observations made with the 0.8 #&lescope [24] using the Stromgreandy
filters. The black dots represent the observations, thémedd the mean of the predictive posterior distribution
and the shaded region encompassestihénterval.

5.5 Modelling light curves of transiting exoplanets

One of the most successful ways of discovering and charsicigrextra-solar planets (i.e. planets not in our
solar system) is through observing transit light curves. rakagit occurs when a planet periodically passes
between its host star and the Earth blocking a portion of tiltas light, and produces a characteristic dip in
the light curve. From this transit we can measure such phlyp@rameters as the planet-to-star radius ratio
and the inclination of the orbit. Whilst transit light cussare readily described by a deterministic parametric
function, real observations are corrupted by systematigenio the detector, external state variables (such as
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the temperature of the detector, orbital phase, positiahehost star on the CCD array etc), as well as the
underlying flux variability of the host star. As it is not pdse to produce a deterministic model to account for
all these systematics, a Gaussian process may be used ¢oapthstribution over possible artefact functions,
modelling correlated noise as well as subtle changes innobddight curves due to external state variables.
We hence encode the transit curve as the mean function of &l@Pcovariance function has inputs given
by time and external state variables (hence this is a myititi, single output model). By integrating out our
uncertainty (see Section 4) in the hyperparameters of théwbizh model all the systematic artefacts and
noise processes), we can gain much more realistic inferehpebability distribution of the transit function
parameters (the hyperparameters of the mean functionp &etailed discussion of the application of Gaussian
processes to transit light curves see [25], in which thenséntal systematics are represented by a GP with a
squared exponential kernel (Equation 13) and input paemmetpresenting the external state variables. Robust
inference of transit parameters is required to performileéetatudies of transiting systems, including the search
for atomic and molecular signatures in the atmospheresagflarets. Figure 22 shows this GP model fitting
to the timeseries of observations. More details are fourjd5h
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Figure 22: As an example of a complex mean function, we herdeingata from an exoplanet transit light
curve. The data is fitted with a GP with an exoplanet transamfanction and a squared exponential covariance
kernel to model the correlated noise process and the efieetsternal state variables. The shaded regions are
at+1, 20 from the posterior mean.

6 Conclusion

In this paper we have presented a brief outline of the cone¢pind mathematical basis of Gaussian process
modelling of timeseries. As ever, a practical implementatf the ideas concerned requires jumping algorith-
mic rather than theoretical hurdles which we do not haveespadliscuss here. Some introductory code may
be found aftp://ftp.robots.ox.ac.uk/pub/outgoing/mebden/n@$ttut.zipand more general code can be down-
loaded fromhttp://www.gaussianprocess.org/gpripace has not permitted discussion of exciting recendsren
in Gaussian process modelling which allow for more expliwibrporation of differential equations governing

25



the system dynamics (either observed or not), suchaésnt Force Model$26]. Further extensions, using
Gaussian processes as building blocks in more complex i@ models are of course possible and recent
research has also highlighted the use of GPs for numerieagration, global optimisation, mixture-of-experts
models, unsupervised learning models and much more.
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