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1. INTRODUCTION
The phenomenal growth in material wealth experienced in
developed countries throughout the twentieth century has
largely been driven by the availability of cheap energy de-
rived from fossil fuels (originally coal, then oil, and most
recently natural gas). However, the continued availability
of this cheap energy cannot be taken for granted given the
growing concern that increasing demand for these fuels (and
particularly, demand for oil) will outstrip our ability to pro-
duce them (so called ‘peak oil’) [9]. Many mature oil and gas
fields around the world have already peaked and their annual
production is now steadily declining. Predictions of when
world oil production will peak vary between 0-20 years into
the future, but even the most conservative estimates pro-
vide little scope for complacency given the significant price
increases that peak oil is likely to precipitate [1]. Further-
more, many of the oil and gas reserves that do remain are in
environmentally or politically sensitive regions of the world
where threats to supply create increased price volatility (as
evidenced by the 2010 Deepwater Horizon disaster and 2011
civil unrest in the Middle East). Finally, the growing con-
sensus on the long term impact of carbon emissions from
burning fossil fuels suggests that even if peak oil is avoided,
and energy security assured, a future based on fossil fuel use
will expose regions of the world to damaging climate change
that will make the lives of many of the world’s poorest peo-
ple even harder [15].

Against this background, many governments around the world
have begun taking action to transition to a low carbon econ-
omy. For example, the United Kingdom has legislated to
reduce CO2 emissions by 80% by 2050 (compared to 1990
levels) [8]. Achieving this aim requires that the direct use of
fossil fuels that we are familiar with today is almost entirely
eliminated. Thus, the use of electric vehicles and high speed
electric trains will have to become widespread in order to
reduce our reliance on oil for transportation.1 Likewise, our
homes and offices will have to be heated by efficient ground
and air source heat pumps powered by electricity rather than
existing natural gas and oil fired boilers [22]. As a result (and
given the general growth of the world economy), electricity
demand across the world is predicted to increase by 76%,
or 4800 gigawatts (GW), by 2030 (compared to 2007 levels)
[20]. Crucially, much of the electricity needed to meet this
demand will have to be generated from renewable wind, so-

1Electric motors are inherently more efficient than internal
combustion engines, and are ‘future proof’ in that their car-
bon emissions reduce as the electricity used to supply them
become cleaner.

lar, and tidal sources rather than the coal and natural gas
power plants that we use today.

It is this increased demand for electricity, and the require-
ments for its generation, that present perhaps the greatest
challenge. In most countries, the electricity grid has changed
very little since it was first installed, and all existing grids
are predicated on the central idea that electricity is pro-
duced by a relatively small number of large fossil fuel burn-
ing power stations and is delivered to a much larger num-
ber of customers, often some distance from these generators,
on-demand. The grid itself relies on ageing infrastructure
(e.g., 40-year old transmission lines and transformers, and
20-year old power stations), is plagued by poor information
flow (e.g., most domestic electricity meters are read at in-
tervals of several months), and has significant inefficiencies
arising from losses within the transmission (on a national
level) and distribution (on a local level) networks [12].

The vision of an electricity grid that makes extensive use
of renewable generation challenges this current situation.
Renewable generation is both intermittent and distributed,
with the output of such generators being determined by lo-
cal environmental conditions (such as wind speeds and cloud
cover in the case of wind turbines and photo-voltaic (PV)
solar panels, respectively) that can vary significantly over
minutes and hours. Thus, it will no longer be possible for
supply to continuously follow the vagaries of consumer de-
mand, but rather, the demand-side will have to be managed
to ensure that demand for electricity is matched against the
available supply. Electric vehicles will play a part in this,
since not only do they represent a significant extra load that
must be satisfied, but more positively, they also provide a
distributed form of energy storage2 which may allow the grid
to smooth out this variable supply.

Furthermore, meeting the increased demand for renewable
generation may require hundreds of thousands, or even mil-
lions of such generators, distributed across both the trans-
mission and distribution networks. These generators may
need to act together, effectively working as virtual power
plants, or may be located on every building across the grid,

2Energy storage in existing grids is typically limited to a
small number of pumped storage generators that pump wa-
ter from a low reservoir to a high one when electricity is
plentiful, and recover this potential energy by letting the
water flow back through a turbine, when electricity is in
short supply.



resulting in a distributed network of prosumers3 who both
produce and consume electricity depending on their local
requirements. Thus, unlike existing grids where electricity
generally flows one-way from generators to consumers, this
will result in flows of electricity that vary in magnitude and
direction continuously. To guarantee the security of the net-
work (i.e., the maintenance of stable voltages and frequen-
cies, and the reliability of supply) and to avoid the cascading
failures that plague today’s grid,4 new control procedures
must be devised. Indeed, the number and variability of gen-
erators will require that the grid is able to act autonomously,
under human supervision but not necessarily under human
control, to diagnose potential problems and self-heal.

Thus, there is a growing consensus that existing grids cannot
simply be extended to address these challenges, but rather, a
fundamental re-engineering of the grid is required; one that
envisages the creation of a ‘smart grid’, described by the US
Department of Energy [12] as:

A fully automated power delivery network that
monitors and controls every customer and node,
ensuring a two-way flow of electricity and infor-
mation between the power plant and the appli-
ance, and all points in between. Its distributed
intelligence, coupled with broadband communi-
cations and automated control systems, enables
real-time market transactions and seamless inter-
faces among people, buildings, industrial plants,
generation facilities, and the electric network.

What is perhaps most striking about this vision is that not
only does it present many challenges in terms of power sys-
tems engineering, telecommunications, and cyber-security,
but at its core are concepts, such as distributed intelligence,
automation, and information exchange, that have long been
the focus of research within the computer science and the
artificial intelligence (AI) communities. In particular, in this
paper we argue that the smart grid provides significant new
challenges for research in AI since smart grid technologies
will require algorithms and mechanisms that can solve prob-
lems involving a large number of highly heterogeneous actors
(e.g., consumers with different demand profiles or generators
with different volatilities), each with their own aims and ob-
jectives, having to operate within significant levels of uncer-
tainty (i.e., where the network conditions and the outcome
of actions taken by individual entities on the grid will be
more unpredictable or uncontrollable) and dynamism (i.e.,
where demand and supply at different points in the network
will be in a significant a state of flux). Hence, in the follow-
ing sections, we illustrate how such issues arise within the
key components of the smart grid — demand-side manage-
ment, electric vehicles, virtual power plants, the emergence
of prosumers, and self-healing networks — and by showing
which components and which interactions need to be smart,

3The term ‘prosumer’ was coined by futurologist Alvin Tof-
fler in his book Future Shock in 1970 in order to describe
the actors in the marketplace who would not just consume
but also actively participate in the production of customised
goods.
4The Northeast Blackout of 2003 that forced the shut-down
of over 100 power plants and affected 55M people — the
largest black-out in US history — was precipitated by a
single overloaded transmission line, in Ohio, sagging and
touching overgrown vegetation.

we provide a research agenda for this community for making
the smart grid a reality.

2. DEMAND-SIDE MANAGEMENT
A key requirement for a safe and efficient electricity grid is
that supply and demand are always in perfect balance. Now,
in the day to day running of the today’s electricity grid, this
is achieved by varying the supply-side in real-time to match
demand (increasing and decreasing the output of generators
such that voltage and frequency are maintained across the
grid). Hence, the idea that electricity should be available at
all times at the flick of a switch has permeated most, if not
all, of our daily activities in the modern world.

However, as far back as the 1980s, Schweppe and colleagues
highlighted numerous reasons why demand for electricity
should be made more adaptive to supply conditions [34].
They noted that doing so would allow peaks in demand to
be ‘flattened’, thus allowing generation assets to be reduced;
particularly, expensive (and carbon-intensive) peaking plant
that might only be used for several hours or less each day.
This flattening would result in longer term and cheaper pro-
duction contracts, producing a more efficient grid with lower
prices for consumers. Furthermore, it would also provide
significant benefits for grid operators. For example, if gen-
eration capacity was temporarily restricted due to some un-
foreseen event (either due to faults or if renewable energy
sources are unavailable), then controlling demand would en-
sure that those generators which were available were not
overloaded. In addition, after a power failure has occurred,
the ability to synchronise demand with supply as connec-
tions are recovered and generators are brought up to speed
would significantly accelerate recovery from such failures (a
point we will come back to in Section 6).

The need for demand-side management is even more appar-
ent within a grid that makes extensive use of intermittent
renewable generation. In this case, there is a high likelihood
that there will be periods when there is insufficient gener-
ation capacity to meet demand. It is thus imperative that
demand can be reduced at these times. Conversely, there
may also be times when renewable energy is plentiful, and
demand should increase to make the best use of this energy.

To date, approaches to reduce demand have been limited to
either directly controlling the devices used by the consumers
(e.g., automatically switching off high load devices such as
air conditioners at peak times), or to providing customers
with tariffs that deter peak time use of electricity. The ad-
vent of the smart grid with two way information flows, and
smart meters making real-time measurements of consump-
tion, would allow demand-side management to be deployed
at scale across the entire grid, providing every home and
every commercial and industrial consumer with the ability
to automatically reduce load in response to signals from the
grid.

However, doing so may be ineffective, or at worst, detri-
mental, since such initiatives tend to reduce the natural di-
versity of consumers’ peak demands and shift all of these
peaks to specific periods [36]. For example, static time-of-
use (TOU) pricing where the price of electricity at night is
cheaper than during the day, has been observed to create sig-



nificant additional peaks in demand as soon as the off-peak
period is reached [30, 36]. Similarly, critical peak pricing
(CPP), which is often applied on the west coast of the USA
to control air-conditioners at peak times, can often create
additional peaks as devices turn back on as soon as the crit-
ical period is over. Given this, a number of researchers have
suggested that more sophisticated tariffs, such as real-time
pricing (RTP) or spot pricing (where the price per kWh
of electricity consumed, is different for each half-hour, and
is provided to the consumer a day, or a few hours, ahead
of time), in conjunction with more sophisticated ‘agents’
that can autonomously respond to these price signals, would
avoid this [34]. However, even RTP can create unexpected
peaks in demand, when all individuals respond to a signal
in the same way, and inadvertently synchronise with others
[30].

Thus, it appears that demand-side management technolo-
gies that simply rely on reacting to control or price signals
will not be enough. Rather, what is necessary are more so-
phisticated approaches that are truely adaptive to the state
of the grid, that are able to learn the correct response given
any particular situation, and that can look ahead and pre-
dict both supply and demand trends in the near future, in
order to prepare for future reductions in available supply, or
to make the most effective use of supply when it is available.

The design of such intelligent systems is challenged by the
complexity of the domains in which they are deployed. For
example, within a home, demand reduction may involve
shifting the time of use of a number of electrical appliances,
each with their own individual constraints (e.g., lighting can-
not be shifted, a washing machine can be shifted by a day
or two, while a dishwasher may be shiftable by a few hours
[24]). Similarly, both heating (given that this will be likely
to be electrified through the use of efficient heat pumps)
and cooling loads can be shifted as long as the comfort and
temperature preferences of the householders are met. To be
effective in this, it may also be necessary for such systems to
learn the thermal properties of the home in which they are
deployed, as well as the local weather conditions, and the
way in which these local conditions impact on the heat loss,
or gain, of the home. Crucially, these approaches will have to
take into account the fact that each individual householder
will have her own preferences, and that these preferences
must either be explicitly elicited, or learnt. Since these pref-
erences are likely to exhibit change over time, and depend on
the current activities of the householder and local weather
conditions, in computational terms this translates into an
online learning and scheduling problem under uncertainty.

Similarly, commercial and industrial consumers will be con-
strained by existing contracts and commercial considera-
tions (e.g., a factory may have to deliver products within
certain deadlines, while a data centre has to be available to
its customers twenty four hours a day), and must balance
demand reduction against these additional factors. Large
industrial consumers of electricity with significant heating,
cooling, or pumping loads may have considerable flexibility
regarding when they actually consume electricity as long as
some overarching constraints are satisfied.5 However, to do

5During the 2000 California electricity crisis, which saw ex-

so in a responsive way, requires that the usage optimisation
algorithm that is deployed is able to model and predict both
the prices within the grid, and also the industrial processes
themselves (similar to the home heating setting above where
a thermal model of the home must be learnt). Furthermore,
in both settings, it will be essential that the householders
and business owners are able to understand the consequences
of the automated actions that are taken, and are happy to
delegate control to an intelligent device or software agent.
In this respect, it will be important to define the adjustable
autonomy of such systems; to what extent should the agent
automatically decide to shift devices to run at certain times,
and when should it ask for confirmation from the user [33].

Now, the development of these autonomous technologies raises
the prospect that such systems will be widely deployed in
possibly millions of homes; each individually reacting to
prices and to the preferences of householders. Defining the
convergence properties (i.e., how the aggregate demand pro-
file will respond to price signals) of such a complex system
will be central to the definition of what constitutes safe and
efficient behaviours for the grid. In particular, it will be nec-
essary to ensure that neither significant inefficiencies, nor ex-
cessive volatility ensue from these autonomous systems con-
verging to poor equilibria (or not converging at all). Hence,
it will be important to design simulation systems that can
accurately represent both the grid and the reaction of con-
sumers, in order to predict the emergent properties of the
system under a range of different conditions (e.g., weather
patterns or social activities) and worst case scenarios (e.g.,
some generators fail or lines trip).

Against this background, recent work has begun to research
the use of autonomous agents, representing individual con-
sumers, that interact through markets [40, 10], and individ-
ually learn to optimise their use of electrical loads or storage
devices in a number of simplified settings [30, 28]. Simula-
tions of such systems point to the effectiveness of adaptive
behaviours (that learn to react to prices) on the grid. In ad-
dition, human-computer interaction technologies have also
been proposed to improve the reaction of users to the in-
formation from smart meters [37, 16]. While promising, we
believe that this work represents only the beginnings of the
research needed in this area.

Thus, in summary, we believe the key AI challenges in demand-
side management are:

• Designing automation technologies for heterogeneous
devices that learn to adapt their energy consumption
against real-time price signals when faced with uncer-
tainty in predictions of future demand and supply, the
individual users’ preferences, and the constraints of the
overarching system (domestic, commercial, or indus-
trial) within which it is deployed.

• Developing the means by which the automated deci-
sions of these systems can be effectively communicated
to, and controlled by, their human owners, whilst al-
lowing a varying range of autonomous behaviours.

tremely high spot prices, several bauxite smelters realised
that there was greater profit to be had in reselling electric-
ity that they had bought in long-term forward contracts,
than in using it themselves to produce aluminium [3].



• Developing simulation and prediction tools to allow the
system-wide consequences of deploying pricing mech-
anisms and energy management agents to be assessed
by grid operators and suppliers.

3. ELECTRIC VEHICLES
With the advent of commercially viable electric vehicles (EV),
such as the Nissan Leaf and the Chevy Volt, the coming
years are likely to see the large-scale adoption of electric ve-
hicles that will shift the energy requirements of transport
from fossil fuels to renewable electricity from the smart grid
[12, 26]. EVs are one of the key mechanisms to deliver signif-
icant reductions in carbon emissions as the transport sector
is one of the largest contributors in most developed coun-
tries (about 20% in the UK and 30% in the US), and the
majority of these emissions are the result of private motor
vehicles. As millions of EVs are deployed onto the roads,
novel mechanisms, building upon the communication infras-
tructure and distributed intelligence in the smart grid, will
be needed to ensure that the batteries of these vehicles are
fully charged when their owners need to use them, without
overloading the network. In addition, these same batteries
will form part of the decentralised demand-side management
system used to reduced variations in demand and supply by
charging when low-carbon renewable energy is plentiful, and
discharging back into the grid when it is in short supply; so
called vehicle-to-grid or V2G.

In more detail, electric vehicles place a considerable addi-
tional load on the grid due to the high charging rates that
are necessary to ensure both a reasonable vehicle range of
around 100 miles, and the ability to rapidly charge the bat-
tery. While a typical house may use between 20 to 50 kWh
of energy per day, an EV battery may be charged with 32
kWh of energy in just a few hours [18]. Thus, the total
energy required by these vehicles may be comparable to the
total electricity consumption within the domestic sector, but
all of this demand is likely to be concentrated over particu-
lar periods of the day, and over particular geographical ar-
eas; both of which are subject to shifts. For example, if all
the EVs in a local neighbourhood are charged at the same
time (as is likely to happen as householders return home at
the end of the day), the local distribution network, and in
particular, the street level transformer (which is typically
undersized and allowed to cool over night), may become a
significant bottleneck to supply. When the owners of these
vehicles drive to work and plug in, the demand will shift in
both time and geographic distribution. Similar issues occur
when a large number of EVs simultaneously attend large
scale social events at sporting arenas or shopping malls [26].

Given these continuously changing demands imposed on the
local distribution network by the movement and charging of
vehicles within it, and the variable supply of renewable en-
ergy, it will be necessary to devise sophisticated approaches
to schedule the charging of electric vehicles. This scheduling
should make the most effective use of what renewable energy
is available, while also ensuring that the vehicles’ batteries
are fully charged when required by their owners. Further-
more, this must be done in the context of uncertainty re-
garding both the future availability of renewable energy, and
future vehicle use. Building upon this, it will be important
to design decentralised control mechanisms that can guide

the charging of EVs to various points in the network, given
its dynamic conditions and constraints. In particular, these
mechanisms will have to take into account that consumers
need to be incentivised (e.g., in terms of charging prices or
speeds at specific points) to adapt their behaviour as they
may only care about their individual travel needs. The chal-
lenge is to ensure such incentives are properly designed to
induce charging profiles that stabilise the grid (i.e., ensure
flows are secure and transformers are not overloaded) while
satisfying the needs and preferences of the highly heteroge-
neous population of EVs each with their individual battery
capacity, charging speeds, and usage pattern.

More positively, EVs will also be a key resource in the demand-
side management systems discussed previously. In such sys-
tems, the ability to defer demand to times when renewable
energy is more plentiful is essential, and currently, this is
only possible with subset of electrical loads that are not re-
quired to have immediate effect (e.g., washing machines or
dishwashers). However, the ability to store energy within
large batteries allows any electrical load to be shifted, and
we are likely to first see energy from electric vehicle batter-
ies support the shifting of loads within their owners’ home
(vehicle-to-home or V2H), and then to providing energy
back to the grid itself (V2G) [26, 25].6 Hence, while the im-
pact of scheduling loads in the home on the user’s lifestyle
may be minimised through the use of the EV battery, the
scheduling of the battery charging and discharging cycles
will need to ensure there is sufficient capacity to satisfy
the loads in the home, and the travel needs of the vehicle’s
owner, while minimising the cost of electricity used. More-
over, this schedule will need to be optimised for, and adapt
to, the changing needs of the vehicle owner, the (real-time)
price paid for feeding back to the grid, as well as the battery
capacity and efficiency. Hence, such optimisations will also
require learning algorithms to predict the pattern of use of
the vehicle, and also the demand of the home.

Addressing these challenges requires intelligent systems that
can fully automate the charging and discharging of these
vehicles, whilst taking account of the current and future
availability of the renewable generation, and being aware
of the local constraints of the distribution network. Re-
cent work has begun to address these challenges with online
mechanism design being used to elicit users’ travel require-
ments (i.e., the amount of charge required and the time at
which the EV is needed) and schedule the charging of their
vehicles [17], and suggestions to apply peak and dynamic
pricing to shift demand across a city [25]. These mecha-
nisms are likely to work and be of social value (i.e., not
impede the daily activities of the vehicle owners) only if
they minimise waiting (charging) times for consumers and
never leave consumers stranded. As such, these systems will
have to draw on diverse sources of information, such as dis-
tribution network load information (e.g., load on the lines,
number of EVs connected at various positions and prices at
different charge/discharge points), traffic information from
road cameras, and geolocation services such as Google Lat-
itude (http://latitude.google.com) or Facebook Places
(http://www.facebook.com/places) which contain rich in-

6In addition to providing energy, the vehicles may also be
able to provide regulation services to the grid to stabilise
both the voltage and frequency of electricity[31].



formation that can be mined to predict future movements
of consumers to specific locations and, hence, likely bot-
tlenecks on specific lines and transformers in the system.
Systems that can optimise the charging cycle of an EV by
making sense of such a wide range of heterogeneous infor-
mation sources are likely to play a key role in ensuring EVs
are seamlessly integrated into the smart grid.

Thus, against this background, we identify the key AI chal-
lenges in the deployment of EVs in the smart grid as follows:

• Predicting an individual user’s EV charging needs based
on data about her daily activities and travel needs.

• Predicting aggregate EV charging demands at different
points in the network given the continuous movement
of EVs, the available charge in their batteries, and the
social activities their users engage in.

• Designing decentralised control mechanisms that coor-
dinate the movement of EVs (each with different bat-
tery capacities and charging speeds) to different charge
points by providing incentives to consumers to do so.
The aim being to maintain secure flows on the grid
and ensure that transformers do not trip due to excess
demand.

• Designing algorithms to optimise the charging cycles
of EVs to satisfy the predicted needs of the user (to
shift loads or to travel) while maximising the profits
generated from participating in V2G sessions.

4. VIRTUAL POWER PLANTS
As larger numbers of actors (e.g., EVs, homes, or renewable
energy providers) in the smart grid communicate and coor-
dinate with each other to control demand at different points
in the network (e.g., using demand-side management to en-
sure that demand is able to follow the supply of renewable
energy, and EV discharging to the grid to cope with excess
demand), it will be important to harness synergies that ex-
ist between them to improve the efficiency of the grid (e.g.,
EV discharging to satisfy demand at times when demand-
side management techniques cannot shift enough usage to
later times). To this end, the concept of a virtual power
plant (VPP) [2] has been proposed to capture the notion
of a number of actors, coming together to sell electricity,
as an aggregate.7 However, several challenges arise in the
formation and management of VPPs that coordinate a num-
ber of heterogeneous actors (e.g., EVs or renewable energy
providers) to maximise the amount of energy delivered in
the system while minimising the costs and uncertainties in
doing so. In particular, these individual actors need to be
able to come to an agreement in technical (i.e., how they
coordinate their consumption or production patterns) and
economical (i.e., how they share the profits generated by
the VPP) terms in order to maximise the value of the set of
energy services (i.e., providing electricity, storing electricity,
or shifting demand) they provide as a VPP.

Now, the process of forming VPPs at a technical level means
that the individual actors need to synchronise the largely
7The term virtual power plant is also used to describe com-
panies, which may not have any generation capacity and
that simply buy generation capacity from a generator. We
do not deal with such VPPs here.

heterogeneous services they provide within the VPP in an
agile fashion so as to meet the requirements of the contracts
they make with their customers. In particular, individual ac-
tors need to estimate the impact of their individual produc-
tion (or demand reduction) on the aggregate performance of
the VPP, and communicate and optimise the joint actions
taken to meet the VPPs’ objectives (i.e., satisfy demand).
These technical arrangements may need to be specified on
a daily, and even on an hourly basis to maximise the prof-
its of the individual actors. This is because, if some actors
can only produce energy at specific times of the day (e.g.,
PVs generate energy during the day and tidal energy may be
available at night), they will want to choose those partners
they can complement better at those times (e.g., a PV farm
and a tidal generator may generate energy out of phase with
each other and hence be highly complementary, while wind
energy providers whose turbines are located in the same re-
gion will generate energy at the same time and hence be
less complementary). In turn, if new actors become better
partners due to changes in the environment (e.g., more wind
blows at night resulting in higher predicted wind energy pro-
duction than tidal or more EVs converge to a specific region
due to a social event, resulting in more storage being avail-
able), then some of them might decide to leave their current
VPP and form a new one (e.g., PV owners may be better
off storing their excess energy during the day in the EVs
to be able to supply at night rather than collaborate with a
tidal energy provider). Given the scale and dynamism of this
optimisation problem, it will be important to design decen-
tralised coordination algorithms and strategies that allow
individual VPP participants to come to the most efficient
arrangements within a reasonable time. Moreover, they will
need to ensure such arrangements do not overload the local
distribution networks, in which they are connected. Given
this, and the restrictions imposed by the network operator
due to possible network congestion, the VPP may further
have to re-optimise individual members’ operations. Typi-
cally, such optimisations would have to be done while being
confronted with uncertainty about the individual members’
generation and consumption capacity.

The negotiation of technical arrangements needs to take
into account that each potential member of a VPP is typ-
ically motivated to maximise its own profit, even though,
as a group they compete against other actors (individuals,
VPPs or large power stations) in the system to maximise
the group’s profits. Hence, it is in each actor’s interest
to take actions that will cost it the least while maximis-
ing its share of the profits obtained by the VPP operations
as a whole. This leaves some room for any individual re-
source to manipulate what it reveals as its predicted capa-
bility (i.e., production, demand-response, or storage ability)
as opposed to what it actually delivers on the day. For ex-
ample, given their uncertainty about their production, some
resources may prefer to understate their predicted produc-
tion profile in case they get penalised by the group for un-
der producing. Alternatively, some resources may prefer to
overstate their predicted production in the case that penal-
ties for under producing are not significant, and doing so
increases their share of the profits. Such strategic consider-
ations highlight the need to capture the provenance of deci-
sion made by the VPP, such that it is possible to track and
verify the individual actions, reports, and resulting rewards



of each VPP member. The amount of provenance informa-
tion this will generate will require efficient frameworks and
mechanisms to represent, store, audit, and share it. Build-
ing upon provenance information it may then be possible
to model the trustworthiness of individual VPP members
through trust and reputation mechanisms similar to those
used in online marketplaces such as eBay or Amazon for ex-
ample [29]. These mechanisms would, in turn, need to be
designed to ensure they are robust to wrong or manipulative
reports so that security measures can then be taken to en-
sure that those actors with low trust do not cause significant
disruption to the network in case they do not fulfil their part
of the VPPs’ operations.

Assuming trust and reputation mechanisms can render VPPs
reliable, it is important to ensure that the negotiations that
individual energy providers engage in, converge in such a
way that the most efficient VPPs (i.e., generating the max-
imum social welfare) are most effectively formed (i.e., in
minimum time and with minimum communication costs) in
the system [11]. Here, convergence is achieved when all the
members of the VPP are satisfied with their share of the
profits generated. The strategic and computational aspects
of such negotiation processes are typically studied within
multi-agent systems using tools such as cooperative game
theory [4] to partition the profits of groups among their
members and combinational optimisation algorithms to par-
tition actors into the most efficient groupings for the sys-
tem respectively [27]. However, the VPP formation process
presents a number of unique challenges for AI research. In
particular, given that all actors are connected in a network
where flows are limited on each line, the actions (energy
production or consumption) taken by each actor or VPP re-
stricts the actions (to different degrees) of all VPPs in the
system. Hence, the formation of each VPP can have signif-
icant externalities (e.g., the flows created by one VPP can
congest some lines, which, in turn, may prevent other VPPs
from using energy sources or providing energy to consumers
at the nodes connected to those lines). Moreover, the fact
that each VPP compounds the uncertainty in production
of each member (e.g., due to uncertainty in the weather
forecast or demand-side managed consumption) renders the
VPP formation process highly stochastic.

All these issues will require the definition of computationally
efficient search algorithms to allocate the payoffs to individ-
ual members of VPPs (as defined by game-theoretic solution
concepts), while taking into account uncertainty in defining
the relative contributions of each member to the aggregate
performance (i.e., mainly the profits generated) of the VPP.
Moreover, given that different coalitions may be formed over
time, an energy provider will choose its membership of coali-
tions in such a way as to maximise its revenues in the long
run. This makes the search for efficient payoff allocations
exponentially harder since it extends the search space to in-
clude future possible coalitions (and their expected returns)
as well as present ones. Initial work in applying multi-agent
systems approaches to the VPP formation process include [5]
which provides solutions to the formation of VPPs of wind
turbines with uncertain production and [13] which provide
an agent-based framework for VPP formation. These ap-
proaches, however, are still at a preliminary stage.

To advance the state of the art in this domain, the following
key AI challenges still need to be addressed:

• Designing agent-based models of different VPP actors
and processes in order to capture the complexity of the
technical arrangements needed to form and manage
VPPs.

• Distributed combinatorial optimisation of the techni-
cal arrangements of demand-side management, V2G
sessions, and micro-generation, to maximise rewards.

• Designing online mechanisms to form statistically cor-
rect trust measures for energy providers and automat-
ically capture, track, and reason about the provenance
of information revealed by energy providers to form
VPPs.

• Designing search algorithms and negotiation mecha-
nisms for individual actors to agree on which VPP to
form at different points in time and how to share the
profits, using computationally efficient game-theoretic
solution concepts, of a VPP given uncertainty in their
performance, trust in their revealed capabilities, and
changing weather and demand patterns.

5. ENERGY PROSUMERS
Our discussion, so far, has highlighted the significant hetero-
geneity of the large numbers of renewable energy resources
in the smart grid and the complexity of the interactions be-
tween them and consumers. When taken altogether, this will
neccesitate significant changes in the way energy is bought
and sold. In particular, this is set against the current op-
eration of the grid where, in many countries (e.g., the US,
UK, and in many parts of the EU), the electricity market
is deregulated, such that large generators (located far from
the point of use) trade directly with retailers who then sell
the electricity on to consumers through fixed contracts and
tariffs [19, 35]. In these countries, electricity is traded in for-
ward and futures markets on a long-term ahead basis (weeks,
months, seasons and even years) and on day-ahead spot mar-
kets through a range of different contracts (e.g., baseload,
off-peak or half-hourly contracts). Any real-time excess or
shortfall in supply and demand (with respect to contracted
volume) is settled in the balancing market (also termed the
settlement process) where the price to buy and sell electric-
ity is typically set by the market maker rather than being
based on the direct matching between bids and offers in the
day-ahead market.

In contrast, in the smart grid, market operations will have
to adjust to a much larger number of heterogeneous enti-
ties, distributed throughout the network (closer to the point
of use of electricity), trading much smaller amounts of en-
ergy. Indeed, the widespread adoption of renewable genera-
tion at the level of individual homes and businesses will lead
to the creation of markets composed of many millions of pro-
sumers who both produce and consume energy [14]. Given
this, while some prosumers may try to find an agreement
with other prosumers to form VPPs (and resort to coop-
erative game-theoretic solutions as discussed in Section 4),
many will directly trade in the electricity market (where the
game-theoretic considerations are purely non-cooperative).
Hence, compared to typical consumers who are mainly con-
cerned about optimising their electricity usage and who are



typically agnostic to the real-time conditions on the electric-
ity market, prosumers will need to optimise both their pro-
duction and consumption of energy in order to make trading
decisions in real-time, through internet-based interfaces to
spot or forward markets, so that they maximise the profits
they can make by buying (to consume or store) and selling
energy (either energy that they generate, or have stored ear-
lier). By making their own localised trading decisions, pro-
sumers may reduce the inefficiencies (added costs for end
users and lower margins for generators) resulting from re-
tailers hedging their energy purchases to minimise their ex-
posure to risk (in the balancing market) and selling fixed
long-term contracts to their consumers at high costs.

To do so, however, means that prosumers will need to be
endowed with effective trading strategies that can cope with
uncertainty in the market. To minimise this uncertainty,
they will need to be informed by predictions of their own
demand (that may vary according to their needs and social
activities) and generation capacity (e.g., using weather fore-
casts or their EV usage needs), as well as the future price
of electricity on the market. Given that these trading deci-
sions may need to be taken in real-time, these predictions
will also need to be generated in real-time, and furthermore,
to ensure users understand the life-style or operational im-
plications of, and agree to, autonomously chosen trading de-
cisions, human-computer interaction mechanisms will have
to be designed to ensure that large numbers of users trust
and participate in these markets.

Essentially, as more prosumers populate the market, elec-
tricity will become a commodity with similar properties to
those traded on stock markets. Given this, prosumers will be
able to speculate in markets, buying and selling not simply
to consume or supply electricity, but also to profit. How-
ever, while speculation may help make the market more ef-
ficient, it may also adversely impact on the operation of the
grid, if the traded flows do not actually satisfy the physi-
cal constraints of the distribution network. Potential solu-
tions point to the application of regulatory measures to re-
duce speculation and more importantly, to congestion pric-
ing mechanisms [39] within the distribution network, sim-
ilar to the locational-based pricing that is used within the
transmission network in many parts of the US [35]. In such
mechanisms, prices vary geographically throughout the net-
work to ensure that the flows of electricity within it do not
exceed the limits of any of the transmission lines. To ensure
these mechanisms do guarantee an efficient system it will be
important to study the equilibrium conditions (e.g., market
efficiency, loads on transmission lines) resulting from the
application of these congestion prices against significantly
heterogeneous populations of prosumers.

In summary, the AI challenges involved in endowing pro-
sumers with the intelligence to trade in electricity markets
whilst ensuring safe network flows include:

• Developing computationally efficient learning algorithms
that can accurately predict both the prosumers’ con-
sumption and generation profiles (instead of only the
usage profile for a consumer) as well as the price of elec-
tricity in real-time in order to inform profitable trading
decisions.

• Developing autonomous trading agents that can use
such predictions to maximise their profit in the elec-
tricity market, and efficient algorithms to marry con-
gestion management with market operation in distri-
bution networks while guaranteeing good equilibrium
conditions in the system.

• Developing human-agent interaction mechanisms, to
allow prosumers to guide their agents trading deci-
sions, that take into account the prosumers’ daily con-
straints and preferences to consume or produce energy.

6. SELF-HEALING NETWORKS
So far, we have discussed a number of ways in which the elec-
tricity flows are likely to become both more unpredictable
and bidirectional in the smart grid. This will result in a
greater need for decentralised control strategies given the
sheer numbers of active entities embedded in the system.
While this renders fault-correction mechanisms in the net-
work even more complex, the intelligence on which these
active entities rely to make their consumption or generation
decisions, could also be used to naturally distribute (and
hence make more robust) the decision making needed to ap-
ply self-healing strategies on the network when faults occur.
Generally speaking, faults may arise either because lines be-
come overloaded or because of old infrastructure becoming
more prone to failure. To prevent such faults and remedy
them, network operators already rely on a number of in-
telligent systems at the transmission network level. Tradi-
tionally, this is achieved with the help of automatic voltage
regulators and using supervisory control and data acquisi-
tion systems [6] with phasor measure units8 for situational
awareness. Using such systems, active network management
[21] techniques can help to automatically reconfigure the
network and send control signals to individual generators
to increase generation or to pre-contracted loads to reduce
their consumption [7]. By endowing individual components
on the network with the intelligence to apply these tech-
niques, they can automatically correct faults as and when
they occur and therefore let the network self-heal.

Extending these techniques to the management of the distri-
bution network where large numbers of prosumers will op-
erate, will require a much larger number of phasor measure
units to be deployed, both because the distribution network
contains many more nodes, but also because the heterogene-
ity of the prosumers within it means that network conditions
are likely to vary more rapidly, necessitating accurate and
timely monitoring and control. Fully instrumenting such
networks is likely to be too expensive, and thus, there is a
clear need for the development of state estimation systems
that do not need to have every node in the network mon-
itored. More importantly, we will need systems that can,
using information gleaned from across the grid, learn corre-
lations between state parameters at different nodes to pro-
vide accurate and robust estimates of the system state. The
vast amount of data generated from multiple actors and sen-
sors, and the micro-second level measurements being made,
will present formidable computational challenges in trying
to estimate or predict the future state of the system.
8Phasor measurement units measure both magnitudes and
phase angles of voltages and currents within the network,
and are used to assess the state of a power system in real-
time.



Now, if accurate information about the network can be ob-
tained, active network management techniques, supported
by distributed intelligence in the network, could help recover
from faults faster than previously possible. For example, if
voltages tend to drift in some parts of the network, auto-
matic actions on transformers may be taken to re-establish
the correct voltage levels, or assistance may be requested
from EVs that are currently plugged into the network [38].
Furthermore, if faults are detected in one part of the net-
work, that part of the system could be disconnected, leaving
other independent parts running separated (i.e., effectively
‘islanded’) provided they can sustain the balance between
supply and demand (e.g., using demand-side management).
This could eventually avoid rolling blackouts or even help
recover from those blackouts that do happen.

To build such self-healing mechanisms, however, will require
that all these actors can communicate their action space
(e.g., limits on voltage regulation, generation capacity, de-
mand reduction ability) and agree on joint actions to imple-
ment islanding strategies. Given the uncertainty that per-
meates the actions of some of these entities (e.g., weather
patterns that affect generation or social activities that af-
fect the movement of EVs), it will be important to predict
the impact of such uncertainty on the joint actions chosen
to avoid electing those that may result in cascading fail-
ures in the worst case. Moreover, given the individual pref-
erences of all actors involved (e.g., to consume electricity
for specific activities or to sell electricity to maximise prof-
its) these joint actions may need to be negotiated rapidly
among them to ensure they end up in an agreement all par-
ties commit to [23]. Initial approaches aiming to achieve
this level of coordination express the problem as centralised
(constrained) optimisation problems that can be solved us-
ing (non) linear programming tools [7]. Clearly, centralis-
ing active network management involving potentially thou-
sands of different types of actors, each with their own en-
ergy generation and production requirements is unlikely to
scale very well in both the communication and computation
costs it incurs. Hence, more scaleable decentralised plan-
ning approaches that rely on short range communication
between individual actors (e.g., distribution network nodes,
consumers, and EVs) will be needed [38] or [32].

Hence, we summarise the AI challenges of self-healing mech-
anisms as follows:

• Designing computationally efficient state estimation
algorithms that can predict voltage and phase informa-
tion at different nodes in the (partially observable) dis-
tribution network, in real-time, given the prosumers’
current and predicted energy demand and supply.

• Enabling distributed coordination of automatic volt-
age regulators and energy providers and consumers for
voltage control and balancing demand and supply dur-
ing recovery from faults.

• Automating distributed active network management
strategies given the uncertainty (either because they
cannot be accurately measured or there is incomplete
information about certain nodes) about demand and
supply at different points in the network.

7. CONCLUSIONS

There is a significant drive within the developed world to
reduce our reliance on fossil fuels and move to a low-carbon
economy in order to guarantee energy security and mitigate
the impact of energy use on the environment. This transi-
tion requires a fundamental re-think and re-engineering of
the electricity grid. The ensuing smart grid must be able to
make efficient use of intermittent renewable energy sources
and supply the additional electricity required by electric ve-
hicles. Doing so, will require extensive use of demand-side
management and virtual power plants to balance supply and
demand. It will also see large numbers of prosumers, buying
and selling electricity in real-time, whilst automated network
control algorithms maintain the safe operation of the grid,
and allow it to self-heal when something does go wrong.

The automation, information exchange, and distributed in-
telligence needed to deliver such technologies creates many
new challenges for the AI communities investigating ma-
chine learning, search, distributed control, and optimisa-
tion. In this paper, we have enumerated what we believe
to the main challenges that, if met, will allow the full po-
tential of the smart grid to be realised. Our claims build
upon an extensive survey of the state of the art that goes
beyond the papers cited and includes a large number of ref-
erences (spanning technical papers, books, and policy doc-
uments relating to the deployment of specific smart grid
technologies and evaluations of these) provided in the on-
line appendix. In particular, we have highlighted the key
issues in learning and predicting demand or supply at vari-
ous points in the network given the variety of demand con-
trol mechanisms (e.g., demand-side management and EV
charging) and energy sources, each with different degrees
of uncertainty in their production capability (e.g., VPPs or
renewable energy sources). Moreover, we showed that the
automated decentralised coordination between such entities
(to balance demand and supply while ensuring flows on the
network are always secure) will need to factor in both the
individual properties of all actors (e.g., EVs with different
batteries, different types of renewable energy sources, users
with their own understandings of trading decisions and their
agents’ decisions) involved and the incentives given to them
to behave in certain ways (e.g., consumers shifting demand
due to real-time pricing, or VPPs sharing profits equitably).
Building upon this, we also discussed some initial attempts
at solving them within the various sub-areas of the smart
grid. Cutting across these various challenges are the issues
of human-computer interaction, heterogeneity, dynamism,
and uncertainty that are an intrinsic part of decision mak-
ing and acting in the smart grid. By dealing effectively with
these factors, we believe it will be possible for future gener-
ations to rely on their energy systems to deliver electricity
efficiently, safely, and reliably.

Finally, we note that many of the issues present within the
smart grid also arise within other domains such as water dis-
tribution, transportation, and telecommunication networks
where large numbers of heterogeneous entities act and inter-
act in a similar fashion to those within the grid. Hence, there
is potential to transfer technologies across these domains and
also address broader issues that affect the sustainability of
such systems in a unified manner, such as cyber-security and
the ethics of delegating human decision making to intelligent
systems.
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