
Near-Optimal Continuous Patrolling with Teams of Mobile

Information Gathering Agents

R. Strandersa, E. Munoz de Coteb, A. Rogersa, N.R. Jenningsa,c

aElectronics and Computer Science

University of Southampton

Southampton, United Kingdom
bDepartment of Computer Science,

National Institute of Astrophysics, Optics and Electronics,

Tonantzintla, Mexico
cDepartment of Computing and Information Technology

King Abdulaziz University

Jeddah, Saudi Arabia

Abstract

Autonomous unmanned vehicles equipped with sensors are rapidly becoming the de
facto means of achieving situational awareness — the ability to make sense of, and
predict what is happening in an environment. Particularly in environments that are
subject to continuous change, the use of such teams to maintain accurate and up-to-
date situational awareness is a challenging problem. To perform well, the vehicles need
to patrol their environment continuously and in a coordinated manner.

To address this challenge, we develop a near-optimal multi-agent algorithm for con-
tinuously patrolling such environments. We first define a general class of multi-agent
information gathering problems in which vehicles are represented by information gath-
ering agents — autonomous entities that direct their activity towards collecting infor-
mation with the aim of providing accurate and up-to-date situational awareness. These
agents move on a graph, while taking measurements with the aim of maximising the
cumulative discounted observation value over time. Here, observation value is an ab-
stract measure of reward, which encodes the properties of the agents’ sensors, and the
spatial and temporal properties of the measured phenomena. Concrete instantiations
of this class of problems include monitoring environmental phenomena (temperature,
pressure, etc.), disaster response, and patrolling environments to prevent intrusions
from (non-strategic) attackers.

In more detail, we derive a single-agent divide and conquer algorithm to compute
a continuous patrol (an infinitely long path in the graph) that yields a near-optimal
amount of observation value. This algorithm recursively decomposes the graph, until
high-quality paths in the resulting components can be computed outright by a greedy
algorithm. It then constructs a patrol by concatenating these paths using dynamic
programming. For multiple agents, the algorithm sequentially computes patrols for
each agent in a greedy fashion, in order to maximise its marginal contribution to the
team. Moreover, to achieve robustness, we develop algorithms for repairing patrols

Email addresses: rs06r@ecs.soton.ac.uk (R. Stranders), jemc@inaoep.mx (E. Munoz de Cote),
acr@ecs.soton.ac.uk (A. Rogers), nrj@ecs.soton.ac.uk (N.R. Jennings)

Preprint submitted to Elsevier October 11, 2012

when one or more agents fail or the graph changes.
For both the single and the multi-agent case, we give theoretical guarantees (lower

bounds on the solution quality and an upper bound on the computational complexity
in the size of the graph and the number agents) on the performance of the algorithms.
We benchmark the single and multi-agent algorithm against the state of the art and
demonstrate that it typically performs 35% and 33% better in terms of average and
minimum solution quality respectively.

Keywords: Multi-agent Systems, Information Gathering Agents, Mobile Sensors,
Multi-Robot Path Planning, Patrolling, Sequential Decision Making

1. Introduction

Unmanned autonomous vehicles equipped with sensors are rapidly becoming the de
facto means of achieving situational awareness — the ability to make sense of, and
predict what is happening in an environment — in application domains that are highly
dynamic in nature, such as disaster management, military reconnaissance and climate
research. In these domains, and many others besides, the use of autonomous vehicles
reduces the need for exposing humans to hostile, impassable or polluted environments.
Moreover, in such environments the deployment of wireless sensor networks (WSNs)
is difficult, potentially not cost effective for temporary use, or cannot be performed
in a sufficiently timely fashion. Now, operating as a team, rather than a collection
of individuals, these unmanned vehicles can provide up-to-date coverage of a large
area by coordinating their movements, and improve the robustness of this coverage by
compensating for the failure of one or more vehicles. For example, in the aftermath
of a major earthquake, a team of unmanned aerial vehicles (UAVs) can support first
responders by patrolling the skies overhead (Maza et al., 2011). By working together,
they can supply real-time wide-area surveillance on the movements of crowds and the
spread of fires and floods (Delle Fave et al., 2012). In similar vein, teams of UAVs can
be used to track and predict the path of hurricanes (Fitzpatrick, 2009). Since these
UAVs face hostile environmental conditions, extra care must be taken to deal with
the potential loss of one or more UAVs. Under such conditions, the coverage provided
by the vehicles can be made to degrade gracefully if the responsibilities of their failed
counterparts are shared through teamwork.

In light of this, the main challenge we address in this paper is the use of a team
of autonomous vehicles in order to monitor the continuously changing state of the
phenomena in their environment — or put differently — to provide accurate and up
to date situational awareness. In order to do so they need to patrol the environment
continuously in a coordinated manner.

We model this challenge as a general class of information gathering problem, in
which vehicles are represented by information gathering agents — autonomous enti-
ties that direct their activity towards collecting information with the aim of providing
accurate and up-to-date situational awareness. The generality of this class of problems
is achieved through the use of the concept of an information value function. This func-
tion encodes the properties of the agents’ sensors (such as their accuracy and range),
the spatial and temporal properties of the measured phenomenon (e.g. how much cor-
relation exists between measurements at two different locations and how quickly these

2

measurements becomes stale), and a metric of the agents’ performance (e.g. the pre-
diction accuracy of the current and future temperature across the environment, or the
maximum time that has elapsed between two observations of the same location). The
physical layout of the environment is modelled by a graph, which defines the allowed
movements of the agents. Given this, the main objective of the team of agents is to
patrol the graph continuously so as to maximise the cumulative discounted observation
value over time.

Solving this problem optimally for all but the smallest instances is impossible due
to the exponential growth of the number of possible paths in the size of the graph and
the number of agents (to be more precise, it is known to be NP-hard (Karp, 1982)).
Therefore, we develop a multi-agent algorithm that computes patrols that are bound-
edly optimal, i.e. policies that are guaranteed to be within a (small) factor of the
optimal one. This algorithm solves two interrelated issues: (i) specifying how individ-
ual agents should behave, and (ii) determining how a team of agents should interact
in order to maximise team performance. The structure of our multi-agent algorithm
reflects this dichotomy; it invokes a single-agent algorithm for each individual agent
to maximise its marginal contribution to the performance of the multi-agent team.

In more detail, the single-agent algorithm uses a divide and conquer strategy to
efficiently compute a high quality patrol (in terms of observation value). This algo-
rithm uses three main operations: Divide, Conquer and Merge. Divide recursively
decomposes the graph using a graph clustering algorithm, until the diameter of the
resulting components is “small enough”. Conquer then solves the problem within
these components using a greedy algorithm that computes high quality paths through
them. Finally, Merge concatenates these paths using dynamic programming into a
patrol for the top level problem (the entire graph).

To compute patrols for multiple agents, the single-agent algorithm is invoked in-
crementally for each agent with the aim of maximising its marginal contribution to the
team. More precisely, the observation value collected by agent i is maximised subject
to the patrols for agents 1, . . . , i − 1. This is commonly referred to in the economic
cost-sharing literature as a marginal contribution scheme (Nisan et al., 2007). In this
scheme, each agent is given a reward proportional to the welfare it contributes to the
team. Effectively, under this reward structure, agent i’s goal becomes to collect the
reward left behind by agents 1, . . . , i− 1. We show that this results in greatly reduced
computational overhead compared to searching the joint solution space of patrols for
all i agents.

We provide theoretical guarantees on the performance and computation of both
the single and multi-agent algorithms. Given the potential life critical nature and
sensitivity of the application domains in which the agents are often operating, these
guarantees — particularly on the worst-case performance — are important when the
algorithm is applied in the real world. Specifically, we show that the multi-agent patrol
obtained through greedy computation is at least 63% as good as the best set of single-
agent patrols (i.e. of the type computed by the single-agent algorithm). Moreover,
we show that our algorithm scales well with the size of the environment. However, it
scales exponentially with the number of agents, but we empirically demonstrate that
this can be kept in check by pruning those states in the MDP that are not reachable
from a given initial state of the environment.

Next, we make the multi-agent algorithm robust against component failure (which
may occur in hostile environments) by developing efficient algorithms for repairing

3

patrols in the event of failure of one or more agents, or when the layout graph changes.
In the former case, agents fill the gap left behind by the failed agent by adopting the
patrol of their predecessors. Rather than recomputing these patrols from scratch,
existing patrols can be (partially) reused, resulting in a reduction of up to 50% in the
number of states that needs to be searched (which is proportional to the computation
time required) without losing solution quality. In the latter case, the recursive nature
of the single-agent algorithm is exploited to limit the recomputation to the affected
subproblem in which the graph changes occurs.

Finally, to ascertain how the algorithm performs in practical settings, and how this
relates to the theoretical performance guarantees, we provide an extensive empirical
evaluation of our algorithms in two challenging information gathering scenarios. The
first models a general patrolling task, in which agents are tasked with minimising the
intra-visit time of different areas of their environment. The second resembles a disaster
response scenario, in which the agents’ goal is to monitor a continuously changing envi-
ronmental phenomenon (e.g. temperature, radiation, pressure and gas concentration).
Our findings show that our algorithm outperforms three state-of-the-art benchmark
algorithms taken from the literature in terms of minimising average and maximum
intra-visit time (in the first scenario) and average and maximum root-mean-square er-
ror (in the second scenario). Specifically, it typically reduces the former metric by 35%
and the latter metric by 33% for 6 agents. Moreover, using a best-response algorithm
in an attempt to compute the optimal multi-agent policy, we demonstrate that our al-
gorithm achieves approximately 91% optimality in the problem instances we consider,
providing strong evidence for the near-optimality of the multi-agent algorithm.

Now, recent work has addressed similar challenges in environments that are static
over time, or are changing at a rate that is negligible compared to the time required
to traverse them (Meliou et al., 2007; Singh et al., 2009). Similarly, techniques from
the literature on continuous localisation and mapping (SLAM) (Thrun et al., 2005,
Chapter 10), while relevant, also typically assume that the environment is static,
and as such agents need not revisit areas in order to update their beliefs about the
environment. As a consequence, these algorithms compute finite length paths, which
tend not to return to previously visited locations, since no additional information can
be obtained from doing so. In contrast, in continuously changing environments, it
is imperative that agents periodically revisit locations in order to provide up-to-date
situational awareness. As a result, these existing approaches fall short of explicitly
dealing with the rapid rate of change within the agents’ environment that we consider
here.

However, two algorithms from related work address this shortcoming (see Section
2 for more details). First, the decentralised algorithm proposed by Stranders et al.
(2010a) is specifically geared towards multi-agent patrolling in environments subject
to rapid change. It allows agents to patrol continuously by planning new portions of
their paths using receding horizon control. Since it has a limited look-ahead, however,
it does not provide guarantees on long term solution quality — a drawback given
the potential life critical nature of the applications. Second, Elmaliach et al. (2009)
consider the problem of repeatedly visiting all cells in a grid with an maximal frequency.
Their algorithm computes a circular path (which we call a patrol), on which multiple
robots are then are deployed equidistantly. However, our problem formulation is more
general; the intra-visit time is but one of the possible performance metrics. Moreover,
in our problem, moving equidistantly on a circular path is not necessarily optimal, and

4

our algorithm therefore attempts to maximise the marginal contribution of each agent
to the team instead.

To summarise, the primary contributions of this paper are:

• A new general class of information gathering problems involving multiple infor-
mation gathering agents moving on a graph. This class relies on the concept of
an information value function to encompass a large spectrum of concrete appli-
cations of UAVs, UGVs, and even mobile cleaning robots. It captures the spatial
and temporal dynamics of the phenomenon of interest, the sensing capabilities
of the agents, and the performance metric of the situational awareness achieved
by the agents.

The novelty of our problem formulation, compared to that of Singh et al. (2009)
on which it is based, lies in the property of temporality. This property models
the change of the environment over time.

• A non-myopic1 divide and conquer algorithm for computing near-optimal patrols
for single information gathering agents. The key novelty of this algorithm lies in
the fact that it computes continuous patrols for patrolling rapid and continuously
changing environments.

• An algorithm for computing near-optimal patrols for multiple agents by itera-
tively computing single-agent policies. This is done by maximising the marginal
contribution of each agent, by collecting the reward that other agents were un-
able to collect. We achieve this by avoiding both synchronous double-counting,
which occurs when two or more agents patrol the same cluster, and asynchronous
double-counting, which occurs when an agent i patrols a cluster before another
agent j (i > j), thereby effectively transferring the received reward from agent i
to agent j.

The novelty of this approach lies in the application of the sequential allocation
technique (Singh et al., 2009) for the computation of a joint continuous patrol,
which allows the algorithm to (empirically) scale much better than an algorithm
that searches the entire joint space of patrols. While the latter does not scale
beyond two agents in the settings we consider, our algorithm computes policies
for six agents in less than one minute on a standard desktop machine.

• Algorithms for improving the robustness of the multi-agent patrols in the event
of failure of one or more agents or changes in the graph. These algorithms repair
the offline computed patrols during their execution. Both can save a significant
amount of computation by reusing results from the offline stage (typically in
excess of 50%), making them efficient methods for coping with a priori unknown
events.

• Theoretical guarantees on both solution quality and computation cost of both
the single-agent and multi-agent algorithms.

1We refer to a non-myopic algorithm as one that uses a multiperiod optimisation criterion, as
opposed to a myopic optimisation one. Note that cyclic patrols use a multiperiod (or more accurately,
infinite period) optimisation criterion.

5

• An empirical evaluation of our multi-agent algorithm by benchmarking it against
a range of state of the art algorithms, such as the decentralised receding horizon
control (RHC) algorithm (Stranders et al., 2010a), the global greedy algorithm
(Vidal et al., 2001) and an algorithm that solves a modified Travelling Salesman
Problem (TSP) to make the agents periodically observe the entire environment
(Sak et al., 2008). We demonstrate that our multi-agent algorithm typically
performs 35% better in terms of the average quality of situational awareness,
and 33% better in terms of minimum quality. Finally, we empirically evalu-
ate the near-optimality of the multi-agent algorithm by attempting to improve
the multi-agent patrols using a best-response algorithm, whereby agents repeat-
edly compute the best patrol in response to their peers. While this algorithm
is moderately effective (yielding up to 9% improvement), the improvement it
achieves comes at a considerable computational cost (it searches 10–100 times
more states than the multi-agent algorithm). We consider this evidence for the
relative effectiveness and efficiency of our algorithms.

The remainder of the paper is organised as follows. In Section 2 we discuss the
state of the art. In Section 3 we formally define the problem of multi-agent information
gathering. In Section 4 we describe our algorithm for computing patrols for single and
multiple information gathering agents. In Section 5 we derive bounds on the solution
quality and the computational complexity of this algorithm. In Section 6 we describe
the algorithms for repairing patrols in response to a priori unknown events. In Section
7 we empirically evaluate the algorithms. We conclude in Section 8.

2. Related Work

Recent work in (multi) sensor/robot patrolling can be classified along four orthogonal
dimensions pertaining to algorithmic properties:

• Offline vs. online. Offline algorithms compute patrols before sensors are de-
ployed, while online algorithms control the sensors’ motion during operation. As
a result, online algorithms are better able to revise patrols after (the sensors’ be-
lief of) the environment has changed, or when sensors fail unexpectedly during
their mission.

• Finite vs. infinite planning horizon. Finite planning horizon algorithms compute
patrols that maximise reward (or performance) over a finite horizon, infinite
horizon (non-myopic) algorithms maximise an expected sum of rewards over an
infinite horizon.

• Continuous patrolling vs. single traversal. Continuous patrolling is geared to-
wards monitoring dynamic environments. These include those found in military
and security domains, in which intruders attempt to breach a perimeter — which
has to be continuously patrolled — or disaster management scenarios, in which
decision makers continuously need accurate and up-to-date situational awareness.
Single traversals are useful when the aim is to obtain a one-off snapshot of an en-
vironment. The work on single traversal is relevant, because techniques for com-
puting single traversals can be exploited to compute infinitely long continuous
patrols by concatenating single traversals in different parts of an environment.

6

• Strategic vs. non-strategic patrolling. Strategic patrolling attempts to reduce the
loss caused by intrusions or attacks from perfectly rational (i.e. expected payoff
maximising) intruders. Non-strategic patrolling takes place in the absence of such
strategic entities, for example when monitoring nature or searching for confused
civilians after a disaster. This work is non-strategic, but we discuss strategic
patrolling work as well in light of future extensions.

Furthermore, these approaches assume or exploit properties of the environments in
which the sensors are situated:

• Spatial or spatio-temporal dynamics. In environments with spatial dynamics
only, observations vary only along the spatial dimensions, while in environments
with spatio-temporal dynamics, observations are a function of both their spatial
and temporal coordinates. The former is consistent with phenomena that stay
(almost) fixed over time, such as terrain height or the layout of a building. The
latter is consistent with phenomena that vary in space and time, such as weather
conditions, radiation or gas concentration.2

Since the primary contribution of this paper is a non-myopic algorithm for com-
puting patrols in environments with spatio-temporal dynamics, we will use the two
corresponding dimensions — myopia and spatio-temporal dynamism — to discuss the
state of the art. Table 1 summarises these, as well as the other two aforementioned
properties.

Non-myopic spatial algorithms. Previous work in the class of infinite horizon spatial
algorithms are based on the assumption that the environment is static over time. Un-
der this assumption, it suffices to traverse the environment once, while ensuring that
the informativeness of the observations made along the path is maximised. Since vis-
iting the same location twice does not result in new information, these algorithms
will attempt to avoid this. This is in contrast with our assumption that the environ-
ment varies in time as well as space, in which case revisiting locations is a necessary
requirement for optimality. Algorithms found in this non-myopic spatial class con-
sist primarily of approximation algorithms for the single-sensor non-adaptive (Singh
et al., 2007) and multi-sensor adaptive (Singh et al., 2009) setting with energy con-
straints (e.g. finite battery or mission time). Both works exploit an intuitive property
of diminishing returns that is formalised in the notion of submodularity : making an
observation leads to a bigger improvement in performance if the sensors have made
few observations so far, than if they have made many observations. This property
holds in a wide range of real-life sensor applications, and is an assumption that our
work shares with that of Singh et al. However, apart from solving a different problem
(i.e. single traversal vs. continuous patrolling) the solution proposed by Singh et al.
(2009) also differs algorithmically from ours. While they define a two-step algorithm
for computing high quality single traversals through the environment, our solution is
a full divide and conquer algorithm. In more detail, in the first step the algorithm of
Singh et al. divides the environment into clusters, and computes high-quality paths

2Environments that vary along the temporal dimension only can monitored with a single fixed
sensor, and are not of relevance here.

7

Property

Algorithm Online3 Infinite
look-
ahead

Continuous
Patrolling

Spatio-
Temporal

Strategic

Singh et al. (2007) ×
Singh et al. (2009) × ×
Meliou et al. (2007) × × ×
Paruchuri et al. (2007) × ×
Tsai et al. (2010) × ×
Basilico et al. (2009) × × × ×
Agmon et al. (2008) × × × ×
Elmaliach et al. (2009) × × × ×
Grocholsky (2002) × ×
Fiorelli et al. (2006) × ×
Martinez-Cantin et al. (2007) × ×
Ahmadi and Stone (2006) × × ×
Stranders et al. (2009) × × ×
Stranders et al. (2010a) × × ×
Our algorithm × × × ×

Table 1: The properties of the state of the art.

through these clusters. In the second step, these paths are concatenated to yield the
desired traversal. The two steps bear similarity to the first two operations used in
our algorithm (Divide and Conquer). However, our algorithm uses completely dif-
ferent techniques (sequential decision making) for concatenating paths within a single
cluster into infinite-length patrols, which, unlike their solution, are recursively applied
to increasingly smaller subdivisions of the environment, until the patrolling problem
within these subdivisions becomes efficiently solvable.

Within this class of algorithms we also find work on deploying fixed security check-
points to prevent intrusions by strategic opponents (Paruchuri et al., 2007; Tsai et al.,
2010). In this context, both authors develop an efficient procedure for generating check-
point deployments that prevent intrusions or at least minimise their impact. The work
focuses on tractability, directly dealing with the exponential explosion incurred in the
attacker’s and defender’s strategy spaces. Although finding checkpoint deployments is
not directly linked to our work — i.e. there is no temporal element in their approach,
and they use Stackelberg games to model the problem (instead of MDPs) — it is a
problem somewhat related to the one studied here.

Non-myopic spatial-temporal algorithms. In the class of infinite horizon spatio-temporal
algorithms we find a variation of the aforementioned work of Singh et al. (2007) that
addresses the setting wherein the environment changes slowly over time (Meliou et al.,
2007). Here, the challenge is to compute a sequence of informative paths conditioned
on the observations collected along previous paths. The time it takes to patrol en-
vironments is assumed to be negligible compared to the rate at which they change.
Therefore, the environment is considered static while sensors traverse paths. We do
not make this assumption. Rather, we assume that environments often change at a
rate that is too high for a single sensor to take an accurate snapshot.

Other work in this class focuses on patrolling in the presence of strategic evaders or
intruders; a problem that is characterised by (possibly multiple) attackers attempting
to avoid capture or breach a perimeter. The agents’ main challenge in such cases is

3Our algorithm is online in that it is able to repair offline computed patrols in response of the
failure of agents and changes in the graph (see Section 6). It does not perform online path planning.

8

to detect and capture these attackers in an effort to minimise loss. A good patrolling
policy is one that frequently revisits locations, since attackers can appear anywhere
at any time. Several offline and centralised optimal algorithms have been proposed
(see for example Basilico et al. (2009); Agmon et al. (2008)) that compute non-myopic
policies for multiple mobile robots. Due to the strategic nature of the problem, these
require different techniques than the ones we use in our algorithm— Stackelberg games
and partially observable stochastic games instead of the Markov decision processes. We
will investigate the use of these techniques for strategic patrolling as a future extension
of our work. However, since the problem of strategic patrolling is NP-hard (Basilico
et al., 2009) (as is the problem we address in this paper), these optimal algorithms
scale poorly and are only capable of solving small problem instances. As a consequence,
approximation algorithms — such as the ones we propose in this paper — are needed
to solve most practical patrolling problems in large graphs with many sensors.

A more similar approach to ours is that of Elmaliach et al. (2009), who consider
the problem of repeatedly visiting all cells in a grid with an optimal frequency (similar
to the TSP benchmark used in Section 7, but more scalable). Their solution is to
find a circular path (which we call a patrol) based on a spanning tree (induced by the
grid’s topology). Multiple robots are then deployed equidistantly on this circular path.
This process induces a Hamiltonian cycle and every cell will be visited with the same
frequency. Nevertheless, there are several differences with our work. Our problem
definition is more general: (i) it supports general (undirected) graphs instead of just
grids, (ii) agents can observe more than one vertex at a time, (iii) different parts of
the graph are not necessarily of equal importance, and (iv) the frequency of visiting
vertices is but one of the possible performance metrics (see Experiments 1 and 2 in
Section 7). Because of this, ensuring that robots move equidistantly on the circular
path is not necessarily optimal (or even desirable). Therefore, our algorithm attempts
to maximise the marginal contribution of each agent to the team instead.

Finite horizon spatial algorithms. The class of finite horizon spatial algorithms can be
further categorised by the length of look-ahead. Some algorithms use greedy (i.e. sin-
gle step look-ahead) gradient climbing techniques to reduce entropy in the prediction
model (thus reducing the prediction error) (Grocholsky, 2002), optionally in combi-
nation with potential fields that force groups of agents into desirable formations for
observing their environment (Fiorelli et al., 2006). Other algorithms use an increased
(but finite) look-ahead by applying receding or finite horizon control. One application
of this technique is to control a single agent whose goal is to minimise uncertainty
about its own position as well as the location of various targets in its environment
(Martinez-Cantin et al., 2007). Unfortunately, algorithms within this class cannot
give performance guarantees due to their finite look-ahead.

Finite horizon spatial-temporal algorithms. Finally, the class of finite horizon spatio-
temporal algorithms also use receding horizon control. To this end Ahmadi and Stone
(2006) use decentralised negotiation to continuously refine the dimensions of the par-
titions which the agents are assigned to patrol. Stranders et al. (2009) and Stranders
et al. (2010a) use the max-sum algorithm for decentralised coordination (Rogers et al.,
2011) at predefined intervals to plan the next sequence of moves that yields the high-
est probability of non-strategic target capture (in the pursuit evasion domain), or the
lowest prediction error (for monitoring environmental phenomena). While shown to

9

be adaptive and effective, however, neither give performance guarantees on long-term
performance.

This paper seeks to address the aforementioned shortcomings of the state of the
art in the context of the central problem addressed in this paper, by not only taking
the immediately received reward over a finite number of moves into account, but also
the reward received over the remainder of the sensors’ mission, making it non-myopic.
As a result, the algorithm presented in this paper computes infinite length patrols
for multiple sensors in highly dynamic environments. In addition, it can repair these
offline computed patrols online in the event of failure of one or more agents.4 Before
discussing our algorithm in detail, however, we first present the formalisation of the
problem it aims to solve.

3. Problem Definition

In this section we present a general formalisation of the multi-agent information gath-
ering problem. This formulation is domain independent, and therefore does not ref-
erence any domain specific properties (such as targets, environmental phenomena, or
intruders). This is accomplished through the use of the concept of observation value
(cf. Meliou et al. (2007)), which abstracts from the chosen representation of the envi-
ronment, and defines the value of observations in terms of their contribution towards
improving the accuracy of situational awareness. Put differently, the collected obser-
vation value is a metric of how well the agents are performing.

Our formalisation is inspired by that of Singh et al. (2007), which we extend with
a temporal dimension through the property of temporality. This property models
the dynamism in the environment which is one of the central foci of this paper. In
what follows, we introduce the three main aspects of the problem: (i) the physical
environment, (ii) the information gathering agents and their capabilities and (iii) the
agents’ objective. A summary of the notation introduced in this section and used
throughout this paper can be found in Table 2.

3.1. The Physical Environment

The physical environment is defined by its spatial and temporal properties. The former
is encoded by a layout graph, which specifies how and where agents can move:

Definition 1 (Layout Graph). A layout graph is an undirected graph G = (V,E)
that represents the layout of the environment, where the set of spatial coordinates V
is embedded in Euclidean space and edges E encode the movements that are possible
between them.

By modelling the physical layout of the environment as an undirected graph, we
assume that agents can move along edges in both directions. While this is common in
most environments, there are certain cases in which this assumption does not hold, for

4Since our algorithm is based on sequential decision making in order to compute infinitely long
patrols, our repair algorithm is not related to plan repair in classical planning (which is characterised
by the existence of a predefined goal state). A discussion of plan repair in classical planning is therefore
considered beyond the scope of this paper.

10

Symbol Meaning

A = {1, . . . ,M} A set of agents
A−i The set of agents {1, . . . , i− 1}

G = (V,E) An undirected graph encoding the physical layout of an
environment (Definition 1)

adjG(v) The set of vertices adjacent to v in a graph G

d(u, v) The Euclidean distance between coordinates u and v

(Definition 2)
dG(u, v) The shortest path (Dijkstra) distance between vertices u

and v in graph G (Definition 3)
diam(G) The diameter of a graph G, i.e. the length of the longest

shortest path between any pair of vertices of G
T = {1, 2, . . . } A discrete set of time steps (Definition 4)
O = V × T The set of all observations, i.e. the set of all spatio-

temporal coordinates (Definition 7)
Ot

A The observations made by all agents at time t

Ot
i The observations made by agent i at time t

Ot
A The observations made by all agents at or before time t

C = (VC , EC) A cluster (Definition 15)
T = (VT , ET) A transit node (Definition 17)

G[C] = ((C ∪T), EC) A cluster graph: an undirected bipartite graph of transit
nodes and clusters in a given graph G. Edges EC encode
the connections between the two

Cmax The maximum number of clusters Divide creates before
further recursive division is necessary

(T,C, T ′) A subpatrol starting from transit node T through cluster
C to transit node T ′ (Definition 19)

PT,C,T ′ The sequence of vertices in G visited by subpatrol
(T,C, T ′)

c(PT,C,T ′) The length (number of vertices) of subpatrol (T,C, T ′)
I(C, λC , T, T

′) The value of subpatrol (T,C, T ′) given that cluster C was
patrolled λC time steps ago

λC The number of time steps since cluster C was last visited
B The maximum number of time steps allocated to an agent

to patrol a cluster
f A set function f : 2O → R

+ that assigns observation

value to a set of observations (Definition 10)
δ The minimum distance between two observations for

these to be considered independent (Property 3)
τ The minimum time between two observations for these

to be considered independent (Property 4)
γ The discounting factor
πi The policy of agent i
si The state of agent i

Sr(s) The set of states reachable from state s

Table 2: A summary of the notation used throughout this paper.

11

instance in the presence of one-way streets or corridors. The reason for the focus on
undirected graphs in this paper is that dealing with directed graphs requires the exis-
tence of appropriate graph clustering algorithms that satisfy the requirements stated
in Section 4.1.1. This issue is discussed in further detail in Section 4.1.1.

In this paper we use two different measures of distance related to spatial coordinates
V and layout graph G:

Definition 2 (Euclidean Distance). The Euclidean distance between two spatial coor-
dinates v1 ∈ V and v2 ∈ V is denoted by d(v1, v2).

Definition 3 (Dijkstra Distance). The Dijkstra distance between two spatial coordi-
nates v1 ∈ V and v2 ∈ V is equal to the length of the shortest path and is denoted by
dG(v1, v2).

The temporal properties of the physical environment are defined as follows:

Definition 4 (Time). Time is modelled by a discrete set of temporal coordinates
T = {1, 2, 3, . . . } (henceforth referred to as time steps) at which the agents observe the
environment and at which their performance is evaluated.

3.2. Information Gathering Agents

Agents are situated in the physical environment defined above.

Definition 5 (Information Gathering Agent). An information gathering agent (agent
for short) is a physical mobile entity capable of taking observations. The set of all
information gathering agents is denoted as A = {1, . . . ,M}.

The movement and observation capabilities of agents are defined as follows:

Definition 6 (Movement). At all time steps T , all agents are positioned at one of the
vertices of layout graph G. Multiple agents can occupy the same vertex. Movement
is atomic, i.e. takes place within the interval between two subsequent time steps, and
is constrained by layout graph G, i.e. an agent positioned at a vertex v ∈ V can only
move to a vertex v′ ∈ adjG(v) that is adjacent to v in graph G. The speed of the agents
is assumed to be sufficient to reach an adjacent vertex within a single time step.

Definition 7 (Observation). An observation is a pair (v, t), where v ∈ V is the
spatial and t ∈ T is the temporal coordinate at which it is taken. The set of all possible
observations is denoted by O = V × T .

Definition 8 (Taking observations). Agents take observations at each time step at or
near their current position. The time it takes to collect an observation is assumed to
be negligible. Depending on type of the sensors they are equipped with, agents are able
to observe one or more vertices in V at once. For example, an agent equipped with a
camera can observe all vertices in the line of sight, possibly up to a certain distance.
However, with a standard temperature sensor, an agent can only observe the current
position. Hence, our model supports both types of sensors.

There are several different sets of observations used in the formalisation of the
optimal solution and our algorithms. To formalise these, we use the following notation:

• Ot
i : the set of observations made by agent i at time t.

12

• Ot
A =

⋃

i∈A Ot
i : the set of observations made by all agents at time t.

• Ot
A =

⋃

t′≤t O
t′

A: the set of observations made by all agents at or before time t.

For convenience, we define Ot
A = ∅ for t < 0.

3.3. The Objective

As stated in the introduction, the objective of the agents is to maximise the qual-
ity of the situational awareness they provide. This quality is measured in terms of
observation value:

Definition 9 (Observation Value). The observation value of a set of observations is
proportional to the increase in situational awareness it brings about. Put differently,
the better a set of observations allows the agents to understand and predict what is
happening in their environment, the higher its observation value.

The observation value of a set of observation is calculated by an observation value
function:

Definition 10 (Observation Value Function). An observation value function f is a
set function f : 2O → R

+ that assigns observation value to a set of observations.

To ensure generality of our model, the semantics of the observation value function
are deliberately left abstract, as they can vary significantly depending on the type of
environment, the agents’ mission, and the phenomena they observe within it. It is
important to note, however, that the observation value function encodes the following
information:

• Any information about the dynamics of the process that is known a priori, such as
the type of phenomenon that is monitored, the speed at which the environment
is changing, and the correlation between observations along the temporal and
spatial dimensions.

• The metric of the agents’ performance. Concrete examples are mutual informa-
tion (Guestrin et al., 2005), entropy (Ko et al., 1995), area coverage (Stranders
et al., 2010b), and probability of capturing a non-strategic target (Stranders
et al., 2010a), all of which are a measure of the quality of the picture of their en-
vironment compiled by the agents, subject to the properties of the environment
mentioned in the first item.

We will see concrete instances of observation value functions in Example 1 and
Section 7.

Now, there are a number of properties which many observation value functions
have in common, which are exploited by our solution. These properties are:

Property 1 (Non-decreasing). Observation value functions are non-decreasing: ∀A,B
such that A ⊆ B ⊆ O, f(A) ≤ f(B). Thus, acquiring more observations never ‘hurts’.

Property 2 (Submodularity). Observation value functions are submodular: ∀A,B
such that A ⊆ B ⊆ O and ∀o ∈ O:

f(A ∪ {o})− f(A) ≥ f(B ∪ {o})− f(B)

13

This property encodes the diminishing returns of observations, i.e. making an addi-
tional observation is more valuable if the agents have only made a few prior observa-
tions, than if they have made many.

Many aforementioned observation value functions exhibit the submodularity prop-
erty in the context of information gathering, such as entropy, mutual information, area
coverage and target capture probability.

Locality and temporality are two additional properties of observation value func-
tions that formalise the (in)dependency of observations taken at two (possibly differ-
ent) points in time and space:

Property 3 (Locality). Observations taken sufficiently far apart in space are (almost)
independent (cf. Krause et al. (2006)). That is, there exists a distance δ ≥ 0, and a
ρ ≥ 0, such that for any two sets of observations A and B, if mina∈A,b∈B d(a, b) ≥ δ,
then:

f(A ∪B) ≥ f(A) + f(B)− ρ

Thus, the smaller δ, the less information an observation at a given spatial coordinate
provides about a different spatial coordinate.

We assume the locality parameters ρ and δ do not change over time. This is
because these values encode knowledge about the environment that is known a priori.
This does not mean that the (future) measurements of the phenomena within the
environment are known a priori, but it does imply that their dynamics do not change
over time.

Property 4 (Temporality). Observations taken sufficiently far apart in time are (al-
most) independent. Formally, let σt(·) be a function that selects only those observations
made at or after t:

σt(A) := {(v, t
′) ∈ A | t′ ≥ t}

Then, there exists a τ ≥ 0, such that for all A ⊆ O, ǫ ≥ 0:

f(σt−τ (A)) ≥ f(A)− ǫ

Thus, the smaller τ , the more dynamic the environment.

Note that if δ = τ = ∞, all observations are dependent. In such cases, we can no
longer speak of locality or temporality. Thus, unlike Properties 1 and 2, an observation
value function can exhibit locality and temporality in degrees and need not have these
properties at all.

Given the formalisation above, we can now express the team’s goal of maximising
situational awareness (captured by observation value function f). To do this, we first
need the concept of a patrolling policy:

Definition 11 (Patrolling Policy). A patrolling policy π : 2O → 2O specifies which
observations Ot

A ⊂ O should be made at time step t, given that observations Ot−1
A ⊂ O

were made at the time steps before t, subject to movement and observation constraints
imposed by layout graph G (Definition 6) and the agents’ sensors (Definition 8). Put
differently, π(Ot−1

A) = Ot
A.

The team’s goal can now be expressed formally in terms of the optimal policy π∗.
We will use st = Ot−1

A and at = Ot
A for sake of simplicity.

14

Definition 12 (The Agents’ Objective). The agents’ objective is to maximise the
expected value5 of using a policy π of the discounted incremental observation value
over time:

max
π

Eπ

[

∑

t∈T

γtr(st, at) | π(st) = at

]

(1)

where 0 ≤ γ ≤ 1 is the discount factor that determines how much observations made in
the near future are worth compared to those made in the further future. The instanta-
neous reward r(st, at) = f(st∪at)−f(st), i.e. the so-called “incremental value” of the
observations at = Ot

A made by all agents at time t, given that observations st = Ot−1
A

were already made at or before time t− 1.

Finding the optimal patrolling policy π∗ calls for quantifying the quality of any
policy π, this can be computed using a recursive definition known as the Bellman
(1957) equations for computing the state value function for policy π:

Definition 13 (Value Function). A value function V π computes the discounted future
incremental observation value that is received by following policy π from a given state
(i.e. a set of collected observations Ot

A):

V π(st) := r(st, at) + γV π(at ∪ st) (2)

Using Definitions 11 and 13, we can now define the optimal patrolling policy that
maximises Equation 1:

Definition 14 (Optimal Patrolling Policy). The optimal patrolling policy maximises
the discounted incremental observation value and is defined as,

π∗(st) := argmax
at

(

r(st, at) + γV π∗

(at ∪ st)
)

(3)

where at = Ot+1
A is a set of observations that can be collected by the agents at time

step t+ 1, subject to movement and observation constraints and st = Ot
A.

Proposition 1. The optimal patrolling policy is the solution to the teams’ objective.

Proof. Recall Equation (3), let st+1 = at ∪ st and note that,

r(st, at) + γV π∗

(st+1)

= r(st, at) + γ
(

r(st+1, at+1) + γV π∗

(st+2)
)

= r(st, at) + γ
(

r(st+1, at+1) + γ
(

r(st+2, at+2) + γV π∗

(st+3)
))

...

=
∑

t∈T

γtr(st, at)

then, π∗(st) = argmaxat

∑

t∈T γtr(st+1, at+1), which is equivalent to Equation 1.

5Note that while the policy defined in Definition 11 is deterministic, we will treat π as non-
deterministic, since this results in more familiar notation.

15

Note that policy π∗ (or indeed any other policy satisfying Definition 11) is defined
over the set of all possible observation histories Ot

A. The size of this set is exponential
in the number of time steps t that have elapsed and the number of agents M . As
a result, computing the optimal policy is computationally intractable for all but the
smallest of problems.6 The algorithms we develop in the next section avoid this prob-
lem by exploiting the properties of observation function f mentioned above, making a
significant compression of the observation history possible. By doing so, we obtain ef-
ficient algorithms that, instead of the optimal solution, compute bounded approximate
policies, i.e. policies that are guaranteed to be within a (small) factor of the optimal
one.

We conclude this section with the following example, which illustrates the model
formulated in this section.

Example 1. Figure 1 shows four discrete time steps of a team of four agents patrolling
a small graph. For illustration purposes, γ = 1 and observation value function f
assigns a value to observation at vertex v that is equal to the number of time steps
that have elapsed since v was last observed, with a maximum of 4. This models an
environment in which observations become stale after τ = 4. Moreover, agents can
only observe the vertex at which they are currently positioned.

The size of the vertices in Figure 1 are proportional to the observation value that can
be received at their coordinates in the next time step. Thus, the amount of observation
value that the agents receive as a team in each of these four time steps is 4, 12, 16 and
13 respectively. Note that the decision by agent 3 to go back to its previous position at
t = 4 (Figure 1(d)) results in a suboptimal observation value (at least, over these four
time steps).

4. Near-Optimal Non-Myopic Patrolling

Given the model formulated in the previous section, we first develop an approximate
non-myopic algorithm for the single-agent case (Section 4.1), which is later used as a
building block for the computing multi-agent policies (Section 4.2). For the purpose of
clarity, we only discuss the algorithmic steps in this section — the theoretical analysis
of these algorithms is deferred to Section 5.

Before continuing, we formally define a number of the most important concepts
used in the formalisation of the single and multi-agent algorithms:

Definition 15 (Cluster). A cluster C = (VC , EC) is a connected subgraph of layout
graph G.

Definition 16 (Atomic Cluster). An atomic cluster is a cluster with a diameter less
or equal to D and is not subdivided into smaller clusters.

Definition 17 (Transit Node). A transit node is a maximal connected subgraph of
layout graph G whose vertices lie on the boundary between one or more clusters. More

6For example, consider the scenario from Example 1. The vertices in the layout graph G have an
average degree of 4.2 (33 vertices and 70 edges). Therefore, after only 10 time steps with 4 agents,
there are (4.210)4 ≈ 8 · 1024 different paths the agents could have jointly taken, with an even greater
number of possible observation histories.

16

⌀

⌀

(a) t = 1

⌀

(b) t = 2

⌀

(c) t = 3 (d) t = 4

Figure 1: Four discrete time steps of a team of agents A = {1, 2, 3, 4} moving in an environment
whose layout is defined by a graph G = (V,E). The diameter of the vertices (indicated by the �

symbol) is proportional to the observation value that is received by moving there in the next time
step.

17

formally, if T = (VT , ET) is a transit node, (v, v′) ∈ ET iff v ∈ VC and v′ ∈ VC′ ,
where C = (VC , EC) and C ′ = (VC′ , EC′) are distinct clusters.

Definition 18 (Cluster graph). A cluster graph G[C] = ((C ∪ T), EC) is a bipartite
graph of transit nodes and clusters. An edge exists between a transit node T and a
cluster C iff at least one vertex in T is adjacent to C in layout graph G.

Definition 19 (Subpatrol). A subpatrol (T,C, T ′) is a path from a transit node T ,
through a cluster C to a transit node T ′ (it is possible that T = T ′). A subpatrol
originates at a vertex v ∈ VT ∩ VC and terminates at a vertex v′ ∈ VT ′ ∩ VC .

Definition 20 (Patrol). A patrol is an infinitely long path through layout graph G
obtained by concatenating subpatrols (T (1), C(1), T (2)), (T (2), C(2), T (3)),

4.1. The Single-Agent Algorithm

The prime objective of the single-agent algorithm is to compute a patrol along which
a large amount of observation value can be collected (we will shortly quantify “large
amount”) in a computationally efficient way. It does so through employing a divide
and conquer strategy: recursively dividing the layout graph into smaller and smaller
components (clusters), until the patrolling problem within those clusters can be effi-
ciently solved. As a result, the exponentially large set of possible observation histories
Ot

A in Equation 3 is compressed into a more manageably sized set of world states, such
that it becomes computationally feasible to conduct searches over the space of patrols.
This compression comes at a cost, as the resulting patrol is not optimal. However, as
we will show in Section 5, it is possible to derive theoretical guarantees on its quality.

The single-agent algorithm exploits the following properties of the problem defined
in Section 3:

1. We exploit the locality property of an observation value function f (Property
3), by partitioning graph G into a set of clusters C = {C1, . . . , C|C|} (Definition
15), such that observations taken in different clusters are independent. The
problem of maximising observation value can then be solved independently for
each cluster. This property is exploited in a similar way by (Singh et al., 2009).

2. We exploit the temporality property of f (Property 4) by discarding observations
older than τ . These observations are independent of observations taken now or
in the future, and can thus safely be ignored.

3. Just as space is divided in clusters, time is divided into non-overlapping intervals
of length B ∈ N. During each interval, an agent enters a cluster, patrols it, and
moves on to the next. The path taken within a cluster is called a subpatrol (Def-
inition 19). Parameter B is chosen such that the agent can collect a reasonable
amount of observation value within the cluster.

By exploiting these properties, we can define a divide and conquer algorithm, which
is defined by the following three operations (see Figure 2 for a visual overview):

Divide Exploit the locality property by recursively subdividing the problem into more
manageable subproblems. This is done by dividing a (sub)problem with layout
graph G into a set of clusters C = {C1, . . . , C|C|} such that the distance be-
tween them is sufficient to ensure observations taken in different clusters are
independent (cf. Singh et al. (2009)).

18

Figure 2: An overview of the single-agent algorithm.

19

By dividing the layout graph, we have transformed the problem from one in
which the agents move from vertex to vertex (of which there are many), into one
where agents move from cluster to cluster (of which there are few). The graph
that captures these new topological relations is a bipartite graph G[C] called a
cluster graph (Definition 18).

Conquer When a cluster obtained in the previous step is small enough, the patrolling
problem within that cluster can be solved. Here “small enough” means that the
diameter, diam(C), of a cluster C is sufficiently small to allow an agent to collect
a large amount of observation value within B time steps. In Section 5 we will
quantify the relation between diam(C) and B that achieves this.

By solving the patrolling problem for the atomic clusters, we obtain a set of
subpatrols (Definition 19) within those clusters. A subpatrol is a path within an
atomic cluster of length B or less. Each subpatrol corresponds to a movement
allowed within the cluster graph G[C] obtained from the Divide operation.

Merge The Merge operation reverses the recursion by concatenating the subpatrols
of subproblems into a (sub)patrol of a higher level (sub)problem. It does so by
constructing a Markov Decision Process (MDP) in which states represent the
position of the agent and the time λC each cluster C was last visited. A solution
to this MDP is a policy that instructs the agent which cluster to patrol next,
given its current position and the last time the clusters were visited. When
the Merge operation arrives at the root of the tree, which corresponds to the
patrolling problem in the original layout graph, it yields the final output of the
algorithm: a patrol for a single agent.

Video 1. A video demonstrating each operation, as well as the complete algorithm
can be found at http://player.vimeo.com/video/20220136.

In what follows, we first provide detailed algorithms for each operation and then
construct the complete algorithm in Section 4.1.4. As will prove in Section 5.2, our
algorithm provides a good trade-off between computation and solution quality, while
simultaneously providing performance guarantees. However, we wish to note that
different algorithms may be used in the Divide and Conquer operations to yield
subpatrols that strike a different balance between computation and quality. We will
discuss a (non-exhaustive) set of alternatives where appropriate.

4.1.1. Divide: Partition the Layout Graph

The objective of the Divide operation of the algorithm can be defined as:

Objective 1. Partition graph G into a set of clusters C = {C1, . . . , C|C|} (|C| ≤
Cmax), while minimising the maximum diameter across all clusters. If diam(G) ≤ D,
graph G is not further subdivided as it is small enough such that a path of length B
can visit at least k vertices (k ≪ |VC |). Furthermore, ensure that vertices in different
clusters are at least a distance of δ apart.

The reason for imposing the constraints on the diameter of atomic clusters is that it
allows us to later derive theoretical guarantees on the quality of the computed solution,
as will become clear in Section 5. Parameter Cmax determines how many subprob-
lems may be created until further subdivision is needed. The resulting partitions are

20

Algorithm 1 The Divide algorithm for clustering layout graph G into cluster graph
G[C].

Require: G = (V,E): the layout graph
Require: D: the maximum diameter of an atomic cluster
Require: Cmax: the maximum number of clusters G is divided into
Ensure: Cluster graph G[C] = ((C ∪T), EC), such that:

• C = {C1, . . . , C|C|} is a set of clusters;

• T = {T1, . . . , T|T|} is a set of transit nodes;

• ∀v ∈ Ci, ∀v
′ ∈ Cj , i 6= j : d(v, v′) ≥ δ, i.e. vertices within a cluster are at least a

distance δ away from vertices in other clusters;

• |C| ≤ Cmax

1: procedure Divide(G,D,Cmax)
2: if diam(G) ≤ D then

3: return G[C] = ({G}, ∅) ⊲ Lowest level of division has been reached
4: end if

� Step 1: Partition graph G:

5: C← Cluster(G,D,Cmax) ⊲ Cluster G in at most Cmax clusters
� Step 2: Identify transit nodes T by detecting vertices VB that lie on the boundary

between two clusters:

6: VB ←
⋃

C∈C

{v ∈ C | ∃v′ ∈ V : (v, v′) ∈ E}

7: T← ConnectedComponents(G[VB])
� Compute edges EC of graph G[C] that encode connections between clusters and transit

nodes:

8: EC ← {(C, T) | C ∈ C, T ∈ T, ∃v ∈ C, ∃v′ ∈ T : (v, v′) ∈ E}
� Step 3: Strip away vertices less than 1

2
δ away from vertices in different clusters:

9: Vδ ← ∅

10: Vδ =
⋃

C∈C

{v ∈ C | ∃v′ ∈ V \ C : d(v, v′) ≤
1

2
δ}

11: for C ∈ C do

12: C ← C \ Vδ

13: end for

14: return G[C] = ((C ∪T), EC)
15: end procedure

transformed into a cluster graph G[C] that encodes how agents can move between
clusters.

In terms of alternative algorithms, any (recursive) decomposition of the graph in
principle reduces the complexity of the problem that needs to be solved by opera-
tions Divide and Conquer. However, the quality of the solution and the theoretical
guarantees on the solution depend on the decomposition of the graph, which in turn
depends on the type of graph and the graph clustering algorithm used. Fortunately,
the literature on graph clustering is abundant. As a result, our algorithm can be ap-
plied to a wide spectrum of graphs by selecting an appropriate clustering algorithm
that satisfies the properties mentioned in Objective 1.

Algorithm 1 performs the necessary steps. First, it checks whether the graph is
sufficiently small and does not need further subdivision (line 2). If this is not the case,
it partitions the graph into a set of clusters C = {C1, . . . , C|C|} (line 5). There are

21

many different ways of doing this, however, we are interested in obtaining a minimum
number of atomic clusters that satisfy the maximum diameter requirement. With this
in mind, we use the algorithm proposed by Edachery et al. (1999) as a subroutine,
which we will refer to as Cluster(G,D,Cmax).

As we will discuss in further detail in Section 5.2, this algorithm is approximate.
It satisfies the minimum diameter requirement of each cluster, but requires more than
the minimum (optimal) number of clusters to do so. We choose this algorithm for
its computational efficiency. However, depending on the type of graph, there might
be other algorithms worth investigating. For an overview of different approaches, we
refer the reader to Schaeffer (2007). In addition, this algorithm is only applicable to
undirected graphs. This is the reason for focusing exclusively on undirected graph in
this paper (see Section 3.1). To the best of our knowledge, there are no graph clustering
algorithms for directed graphs that provide a bound on the diameter of the resulting
clusters. There are, however, several algorithms for clustering directed graphs without
these guarantees (e.g. Meila and Pentney (2007); Satuluri and Parthasarathy (2011)).
As a result, these algorithms may be used the Divide operation of our algorithm, but
lead to the loss of the performance guarantees described in Section 5.2.

Now, the Cluster(G,D,Cmax) algorithm takes as input a graph G, maximum
diameter D and the maximum number of clusters Cmax and returns a set of clusters
C, such that |C| ≤ Cmax while attempting to reduce the maximum diameter of these
clusters to D. In more detail, Cluster solves a slight variation of the pairwise cluster-
ing problem. The pairwise clustering problem involves finding the smallest n-clustering
of G, such that each of the n clusters has a diameter smaller than D.

In the second step (lines 6–7), Algorithm 1 identifies the transit nodes T between
clusters C. These transit nodes are connected components of graph G that lie on the
boundary of the clusters. To compute these, the algorithm identifies the boundary
vertices VB of the clusters, i.e. those vertices that have at least one adjacent vertex in
a different cluster. G[VB] is the subgraph induced by VB , so the set of transit nodes
T = {T1, . . . , T|T|} corresponds to the set of connected components in G[VB].

The third step (lines 9–13) of the algorithm ensures independence of observations
made in different clusters, by removing all vertices that are less than 1/2δ away from
vertices in other clusters (Property 3).

The resulting clusters, transit nodes and their connections are represented as a
bipartite graph G[C] = ((C ∪ T), EC). The set of edges EC of G[C] contains an edge
(C, T) between a cluster C ∈ C and a transit node T ∈ T if and only if the original
graph G contains an edge e that has endpoints in both C and T (line 6). This graph
represents valid high-level movements between clusters, and is used in the Merge

operation to define the actions of the agent within the MDP.
The following example illustrates the operation of Divide:

Example 2. Figure 3 shows a single-level clustering (i.e. non-recursive) of the layout
graph G of the Agents, Interaction and Complexity (AIC) lab at the University of
Southampton with δ = 0 (i.e. observations made at different spatial coordinates are
independent) and D = 25. This results in six clusters and seven transit nodes. Figure
4 depicts the cluster graph G[C] representing the interconnections between the clusters
and transit nodes in Figure 3.

22

Figure 3: The clusters and transit nodes obtained by applying the Divide operation on the layout
graph of the AIC lab with Cmax = 6 and D = 25. The dotted lines indicate the boundaries of the
clusters C and the solid lines outline the seven transit nodes T that connect the clusters. The original
layout graph has 350 vertices and 529 edges.

23

Figure 4: The cluster graph G[C] that represents the topological relations between the clusters
(coloured circles) and transit nodes (white squares) in Figure 3.

Figure 5: Example 4: A patrol within cluster C6 from transit node T7 to T6 for an information
gathering agent with an observation radius of 1.5m. The arrow indicates a redundant move of the
agent, i.e. one that, when omitted, yields the same amount of observation value.

24

4.1.2. Conquer: Compute Subpatrols in Atomic Clusters

By recursively clustering the layout graph, we have now decomposed the problem of
finding a path of high value through the original (large) graph to a set of easier inde-
pendent subproblems that involve finding subpatrols within the small atomic clusters.
Recall that these subproblems were made independent by ensuring that observations
made in different clusters are independent and by limiting the time available to patrol
an atomic cluster to B. Based on this, we can now state the objective of the Conquer

operation of the algorithm:

Objective 2. For each atomic cluster, compute subpatrols of length of at most B
between each pair of the cluster’s adjacent transit nodes.

The reason for this objective is that the agent’s high-level movement is constrained
by graph G[C], in which agents enter and exit clusters through the clusters’ adjacent
transit nodes. A subpatrol is the path in layout graph G that corresponds to such a
movement.

Example 3. For cluster C6 in Figure 4 there are four possible subpatrols: (T6, C6, T6),
(T6, C6, T7), (T7, C6, T6), (T7, C6, T7)

In more detail, the problem is now to find a sequence of vertices within an atomic
cluster that maximises the value of observations, subject to a finite time budget B.
Since this problem is NP-complete (Karp, 1982),7 solving this problem optimally is
computationally intractable for arbitrary clusters. Therefore, instead, the patrolling
subroutine is chosen to be approximate. That is, it computes subpatrols of near-
optimal value that are shorter than B. This subroutine is based on the near-optimal
sensor placement algorithm of Krause et al. (2006) (which was also used in Singh et al.
(2009)).

Algorithm 2 shows the necessary steps for computing these subpatrols. For each
cluster, this algorithm is used to compute subpatrols between each pair of the cluster’s
adjacent transit nodes.

In more detail, for a given cluster C, entry T and exit T ′, Algorithm 2 proceeds in
two steps. First (lines 2–6), it orders the vertices of C by their incremental value — the
value obtained by greedily adding the observations Ov made at v to the already selected
set O, such that the incremental value f(O ∪Ov)− f(O) of observations collected at
v is maximised. This results in a sequence of vertices sG = (v(1), . . . , v(|VC |)). In the
second step (lines 7–14), it seeks to find a subpatrol PT,C,T ′ from T to T ′ with a length
of at most B and maximises the length n of the prefix of sG (i.e. its first n elements)
that is visited along the path. This problem can be encoded as an instance of the TSP
where we seek to find a minimum cost (in terms of time) cycle (T, v(1), . . . , v(n), T ′, T).
Here, the time of moving between two vertices vi and vj equals the length of the
shortest path between them, and the time taken by moving between T and T ′ equals
0. Since solving the TSP itself is NP-complete (Karp, 1982), we use the heuristic
algorithm by Christofides (1976), which has the best known performance guarantee
(32) of any approximate algorithm for the TSP (Gross and Yellen, 1999).

Example 4. Consider an agent (the white circle in Figure 5) that is capable of perfectly
observing all vertices within a sensing radius of 1.5m (the dashed circle) and let value

7It is easy to see that the decision variant of the TSP can be reduced to this problem.

25

Algorithm 2 The Conquer algorithm for computing a subpatrol of atomic cluster
C from entry T to exit T ′.

Require: C = (VC , EC): a cluster
Require: f : the observation value function
Require: T : the entry transit node
Require: T ′: the exit transit node
Require: B: the budget
Ensure: PT,C,T ′ : a subpatrol in C from T to T ′ taking c(PT,C,T ′) ≤ B time steps.
1: procedure Conquer(C, f, T, T ′, B)

� Step 1: Sort vertices by their incremental observation value:

2: sG ← ()
3: while VC \ sG 6= ∅ do
4: Let Ov be the observations made at v, and O←

⋃

v∈sG
Ov.

5: sG ← sG|| argmax
v∈C\sG

f(O ∪Ov)− f(O)

6: end while

� Step 2: Find the maximum n such that the time taken by traversing the subpatrol that

visits the first n elements of sG does not exceed B:

7: n← 0
8: P ′ ← (T, T ′)
9: repeat

10: n← n+ 1
11: PT,C,T ′ ← P ′

12: snG ← prefix(sG, n) ⊲ Select first n elements of sG
13: P ′ ← TSP (T, snG, T

′)
14: until c(P ′) > B

15: return PT,C,T ′

16: end procedure

function f be defined in terms of the number of vertices that are observed. Figure 5
shows the subpatrol PT7,C6,T6

through C6 in the graph in 3 computed by Algorithm 2
with B = 50.

Note that this patrol is not optimal, in the sense that the same number of vertices
(i.e. all of them) could have been observed within 44 time steps (instead of 46) by
removing the path element indicated by an arrow.

4.1.3. Merge: Concatenate Subpatrols

The third and final operation of the algorithm achieves the following objective:

Objective 3. For a given (sub)problem identified by Divide, compute a patrol (see
Definition 20) by concatenating the subpatrols in lower level clusters such that the
observation value received along that patrol is maximised (subject to the computed sub-
patrols).

Thus, using Merge we start at the level of atomic clusters by concatenating subpa-
trols computed by Conquer and move up to higher level clusters until the patrolling
problem involving the entire layout graph (i.e. root-level cluster) has been solved.

To achieve this objective, Merge (Algorithm 3) solves a MDP over the patrolling
problem in clustered graphG[C]. This (deterministic) MDP is a 4-tuple (S,A, δ(·, ·), R(·, ·))
where:

26

Algorithm 3 The Merge algorithm for solving the patrolling problem within a non-
atomic cluster.
Require: G[C]: a cluster graph of graph G
Require: subpatrols: the set of all subpatrols for all clusters in G[C]
Require: BG: the budgeted time for patrolling G
Require: entry: the vertex where the agent enters G
Require: exit: the vertex where the agent should exit G within BG time steps or ∅

if BG =∞
Ensure: A (sub)patrol for G of length no greater than BG starting at entry and

terminating at exit
1: procedure Merge(G[C], subpatrols, BG, entry, exit)
2: return The patrol obtained by concatenating subpatrols using the MDP for

G[C] defined in this section with parameters γ, BG, entry, and exit.
3: end procedure

• S is a set of states encoding the current position of the agent and the time each
cluster was last visited.

• A is a set of actions. In this context, each action in this set corresponds to fol-
lowing a subpatrol (computed by Conquer) that start from the agent’s current
position, a transit node, through a cluster to another transit node.

• s′ = δ(s, a) is the state obtained from following subpatrol a in state s. Thus, δ
is a deterministic transition function.

• R(s, a) is the observation value received by following subpatrol a in state s.

In what follows, we discuss each item in more detail.

State Space. The state space S consists of patrolling states :

Definition 21 (Patrolling State). A patrolling state is a triple (T,λ, Br) where:

1. T ∈ T is the agent’s position, which is one of the transit nodes.

2. λ = [λC1
, . . . , λC|C|

] is a vector in which each element is the number of time
steps since each cluster was last patrolled.

3. Br ∈ N
+ is the remaining budget for patrolling the graph.

By exploiting the temporality property (Property 4), we know that observations
made longer than τ time steps ago are independent of new observations. Therefore,
the entries of λ never exceed τ .

Furthermore, keeping track of the exact number of time steps since a cluster was last
visited yields τ |C| distinct possible states, causing the problem to become intractable
for even a very small number of clusters or a small value of τ . However, by exploiting
the knowledge that an agent takes B time steps to patrol an atomic cluster, and if we
furthermore choose B to be a divisor of τ , we can ensure that λC ∈ {0, B, 2B, . . . , τ}.
This drastically reduces the number of distinct possible visit states of a single cluster
from τ +1 to τ

B
+1. Thus, combining this result with the number of possible positions

for the agent |T|, the state space for a single agent consists of |T|(τ
B

+ 1)|C| states.
We discuss the effect of this on computational complexity in Section 5.2.

27

Action Space. The action space of the MDP consists of patrolling actions which are
defined as follows:

Definition 22 (Patrolling Action). A patrolling action is a sequence (T,C, T ′) where
C ∈ C is a cluster and (T, T ′) ∈ T2 are transit nodes. A patrolling action corresponds
to a subpatrol starting from T which moves through C and terminates at T ′.

The set of valid actions A(s) for state s is defined as:

Definition 23 (Valid Patrolling Action). Let s be the state (T,λ, Br). The set of
valid patrolling actions A(s) for s is:

A(s) = {(T,C, T ′) | c(PT,C,T ′) ≤ Br ∧ C ∈ adjG[C](T) ∧ T ′ ∈ adjGC}

Thus, the set of available actions contains all subpatrols starting at T for which
the agent has sufficient remaining budget.

Example 5. The valid patrolling actions in the cluster graph shown in Figure 4 for
state s = (T1, ·,∞) are A(s) = {(T1, C1, T1), (T1, C1, T3), (T1, C1, T4),
(T1, C2, T1), (T1, C2, T2), (T1, C2, T4), (T1, C2, T6)}.

Transition Function. The transition function formalises how the state of the MDP
transitions under a given action a, and is defined as:

Definition 24 (Patrolling Transition Function). The patrolling transition function is
a deterministic function δ(s, a) = s′ which formalises the transition from state s =
(T, [λC1

, . . . , λC|C|
], Br) under valid action (see Definition 23) a = (T,Ci, T

′) ∈ A(s):

δ(s, a) = (T ′, [λ̂C1
, . . . , λ̂Ci−1

, 0, λ̂Ci+1
, . . . , λ̂C|C|

], Br − c(PT,Ci,T ′))

where λ̂Cj
= min(λCj

+ c(PT,Ci,T ′), τ).

Thus, the patrolling transition function states that when an agent patrols a cluster
Ci by performing action a = (T,C, T ′), the process transitions to state s′, in which
the agent is positioned at T ′ and the visitation time of the cluster λC is reset to 0.
Furthermore, since the agent takes a number of time steps equal to the length of the
subpatrol to visit a cluster, the visitation times of clusters Cj (j 6= i) are incremented
by the length of the patrol c(PT,Ci,T ′), if not already equal to τ , and the remaining
budget is decreased by c(PT,Ci,T ′).

This transition function enables us to further reduce the size of the state space
defined earlier, by only considering the states Sr(s) that are reachable from the initial
state s = (entry, [τ, . . . , τ]) in which none of the states have been visited yet and the
agent is at the entry transition node (see Algorithm 3). As an example of a state
that cannot be reached in the setting of Figure 3, consider (T1, [τ, τ, 0, τ, τ, τ], ·) which
encodes that cluster C3 was just patrolled by the agent and then moved to a transit
node that is inaccessible from C3. The set of states Sr(s) reachable from a state s is
defined as:

Sr(s) = {s} ∪
⋃

a∈A(s)

Sr(δ(s, a)) (4)

28

Reward Function. The reward function of the MDP is defined as follows:

Definition 25 (Patrolling Reward Function). The reward R(s, a) received for per-
forming patrolling action (T,C, T ′) in state s = (T, [λC1

, . . . , λC|C|
], Br) is given by:

R
(

(T, [λC1
, . . . , λC|C|

], Br), PT,C,T ′

)

=










I(C, λC , T, T
′) if Br ≤ c(PT,C,T ′)

0 if A(δ(s, a)) = ∅ ∧ T ′ = exit

−∞ otherwise

(5)

where I(C, λC , T, T
′) is the value of the observations made along subpatrol PT,C,T ′ ,

given that cluster C was visited λC time steps ago and is given by:

I(C, λC , T, T
′) ≡

n
∑

i=1

γ
ti ·

[

f

(

Ov(i) ∪
i−1
⋃

j=1

Ov(j) ∪O
−λC
C

)

− f

(

i−1
⋃

j=1

Ov(j) ∪O
−λC
C

)]

(6)

Here, O−λC

C denotes the set of observations made λC time steps ago at each vertex
of C, the set Ov denotes the observations made at v (as before), and ti is the time
at which v(i) is visited, which is the time it takes to arrive at v(i) traversing subpatrol
PT,C,T ′ :8

ti =

i−1
∑

j=1

dG

(

v(j), v(j+1)
)

A couple of important points need to be made about this reward function. First, it
is unknown which subpatrol was previously used to visit C, we assume that all vertices
of C were visited simultaneously λC time steps ago, at which point a set of observations
was made, which we denote as O−λC

C . Thus, the incremental value of the observations

made along PT,C,T ′ with respect to O−λC

C yields a conservative estimate (i.e. lower
bound) on the true reward for action (T,C, T ′), since observation value function f is
strictly decreasing with the time elapsed since observations were made.

Second, note that the reward R(s, a) of performing a = (T,C, T ′) in state s =
(T, [λC1

, . . . , λC|C|
]) is the sum of incremental values of observations made along sub-

patrol PT,C,T ′ = (T, v(1), . . . , v(n), T ′). Thus, R(s, a) depends exclusively on the vis-
itation state λCi

of cluster C and the entry T and exit T ′ of the subpatrol used to
visit C; the visitation states of the clusters other than C are irrelevant for computing
the action’s reward. Therefore, we defined an auxiliary function I(C, λC , T, T

′) that
computes the value of a subpatrol with only the relevant parameters.

Third, the reward function ensures that the agent arrives at the exit transit node
(see Algorithm 3) before the remaining budget Br has been exhausted. This is done
by assigning the value −∞ to transitions to states in which this constraint is not met.

Solving the MDP. A solution of the MDP (S,A, δ(·, ·), R(·, ·)) defined above is a policy
of the form π(s) = a that, for every possible state s ∈ Sr(s0) reachable from initial

8Recall that dG(v, v′) is the length of the shortest path in G from v to v′.

29

state s0, yields action a that maximises the expected discounted reward. This policy
is characterised by the following equations:

π(s) = argmax
a
{R(s, a) + γ̂V π(δ(s, a))} (7)

V π(s) = R(s, π(s)) + γ̂V π(δ(s, π(s))) (8)

Here, V π(s) is referred to as the state value of s under policy π, which equals the
discounted sum of rewards to be received by following policy π from state s. Many
algorithms can be used to compute policy π, such as policy iteration (Howard, 1960),
modified policy iteration (Puterman and Shin, 1978), and prioritised sweeping (Moore
and Atkeson, 1993). However, one of the simplest is value iteration (Puterman, 1994).
This algorithm repeatedly applies the following update rule:

V (s) = max
a

{

R(s, a) + γ̂V (δ(s, a))
}

(9)

until the maximum difference between any two successive state values falls below a
predefined threshold ǫ > 0. After termination, the value of each state under policy π
is within ǫ of the optimal value. This policy is returned by the Merge operation (see
Algorithm 3). When executed, it yields the desired (sub)patrol for the given graph.

4.1.4. Putting it all together: The complete algorithm

Now that we have defined all three necessary operations, we can now construct the
single-agent patrolling algorithm (Algorithm 4). This algorithm calls the compute-

SubpatrolDnC as subroutine with an infinite budget, since we require a continuous
patrol from entry at the transit node at which the agent is located.9 Algorithm 5
shows the operation of the recursive computeSubpatrolDnC which performs the
actual computation.

First, it checks whether the graph is small enough for solving the problem outright
with Conquer (lines 2–4). If not, it Divides the problem into smaller clusters. Then,
using a recursive call to itself, computeSubpatrolDnC computes subpatrols in each
of the identified clusters. The allocated budget of these subpatrols is computed using
the computeBudget subroutine in Algorithm 6, which ensures that clusters on the
same level are given equal budget. Finally, the subpatrols for clusters C are Merged
into a subpatrol for graph G (line 14).

When the call to computeSubpatrolDnC in Algorithm 4 returns, it has com-
puted a patrolling policy (Definition 11), which, when executed, yields the desired
patrol in the full layout graph G.

Consider the following example which explains the operation of the complete algo-
rithm.

Example 6. Consider the layout graph in Figure 6. This graph is obtained by con-
necting nine copies of the AIC lab (Figure 3) in a three by three grid. Using Divide

with D = 20, the graph is first divided into six top-level clusters. Each of these top-
level clusters are then Divided again into six second-level clusters. Finally, some of

9If the agent is not located at a transit node, we compute the value of starting at all transit nodes
and discount this value with the length of the shortest path from the agent’s starting location to each
of these nodes. We then choose the best starting transit node.

30

Algorithm 4 The single-agent algorithm for computing a patrol of graph G in a divide
and conquer fashion.

Require: G = (V,E): a layout graph
Require: f : the observation value function
Require: γ ∈ [0, 1〉: the discount factor
Require: B ∈ N: the maximum time that may be spent in an atomic cluster.
Require: D ∈ N: the maximum diameter of an atomic cluster.
Require: entry ∈ V : the starting location of the agent
Require: Cmax: the maximum number of clusters in which G may be divided.
Ensure: a patrol for graph G
1: procedure computePatrolDnC(G, f, γ,B,D, entry,Cmax)
2: return computeSubpatrolDnC(G, f, γ,B,D,∞, entry, ∅,Cmax)
3: ⊲ Algorithm 5
4: end procedure

Algorithm 5 A divide and conquer (DnC) algorithm for computing a subpatrol in a
(subgraph of a) layout graph.

Require: G = (V,E): a layout graph
Require: γ ∈ [0, 1〉: the discount factor
Require: f : the observation value function
Require: B ∈ N: the maximum time that may be spent in an atomic cluster
Require: BG ∈ N: the maximum time that may be spent in G
Require: D ∈ N: the maximum diameter of an atomic cluster.
Require: entry ∈ V : the vertex from which the layout graph is entered
Require: exit ∈ V : the vertex from which the layout graph should be exited.
Require: Cmax: the maximum number of clusters in which G may be divided.
Ensure: Pentry,G,exit: a (sub)patrol for graph G starting at entry and terminating at

exit of length no greater than budget
1: procedure computeSubpatrolDnC(G, f, γ,B,BG, D, entry, exit,Cmax)
2: if diam(G) ≤ D then ⊲ The graph is small enough: conquer
3: return Conquer(G, f, entry, exit, B) ⊲ Algorithm 2
4: else ⊲ The graph is too big: divide
5: G[C] = (C ∪T, EC)← Divide(G,D,Cmax) ⊲ Algorithm 1
6: subpatrols← {}
7: for C ∈ C do ⊲ Compute subpatrols for each cluster
8: BC ← computeBudget(C,B,D,Cmax) ⊲ Algorithm 6
9: for T ∈ adjGC, T ′ ∈ adjGC do

10: PT,C,T ′ ← computeSubpatrolDnC(C, f, γ,B,BC , D, T, T ′,Cmax)
11: subpatrols← subpatrols ∪ {PT,C,T ′}
12: end for

13: end for

14: return Merge(G[C], subpatrols, γBG , BG, entry, exit) ⊲ Algorithm 3
15: end if

16: end procedure

31

Algorithm 6 An algorithm for computing the time that may be spent in a cluster C.

Require: C: a cluster
Require: B ∈ N: the maximum time that may be spent in an atomic cluster
Require: D ∈ N: the maximum diameter of an atomic cluster.
Require: Cmax: the maximum number of clusters in which C may be divided
1: procedure computeBudget(C,B,D,Cmax)
2: if diam(C) ≤ D then

3: return B
4: else

5: G[C] = (C ∪T, EC)← Divide(G,D,Cmax)
6: return |C| ×maxC′∈C computeBudget(C ′, B,D,Cmax)
7: end if

8: end procedure

the 36 second-level clusters are Divided one more time resulting in 64 atomic clusters.
Figure 7 shows a tree which represents the recursive division of the clusters. In this
tree the root represents the complete layout graph, and the leafs the atomic clusters.

Each of the atomic clusters (coloured nodes in Figure 7) are solved using Conquer.
Going up the tree, we find the non-atomic clusters. Each of these was clustered to
obtain a cluster graph (line 5 in Algorithm 4). For example, the cluster graph of the root
graph is shown in Figure 8(a). Similarly, the cluster graph of the top-level cluster in the
bottom right of Figure 6 is shown in 8(b). The left two columns of Figure 7 shows the
maximum budget (computed using Algorithm 6) and discount factor used as parameters
to the Merge operation for solving patrolling problems on the corresponding levels of
the tree.

4.1.5. Determining Parameters

Algorithm 4 takes three parameters: D, B and Cmax, all of which affect the algo-
rithm’s performance. Here we briefly discuss their effect and describe a methodology
of selecting appropriate values:

• An increase in D yields an increase in the number of atomic clusters, but a
reduction in their size. Smaller clusters are easier to solve by Conquer, but
they increase the amount work performed by Merge by increasing the recursion
depth of Algorithm 4. Unfortunately, it is not possible to make general state-
ments about the optimal value of D for arbitrary graphs and observation value
functions. As a rule of thumb, we chose the size of the clusters such that an agent
is capable of visiting at least k = 10 of the greedily selected vertices in Algorithm
2. Furthermore, metrics such as the number of edge cuts and the variance in
diameter indicate the quality of the clustering for a given graph. These metrics
depend highly on the type of graph and the type of graph clustering algorithm
used. We refer the reader to Schaeffer (2007) for an overview of these algorithms.

• B determines the trade-off between intra and inter cluster patrolling. As B is
increased, agents spend more time patrolling atomic clusters before moving on
to the next. At a certain point, the additional value obtained within clusters no
longer compensates for the decrease in discount factor γB . Given this, a good

32

Figure 6: Nine copies of the layout graph in Figure 3 laid out in a three by three grid. The graph has
been recursively clustered on three levels. The six top-level clusters are demarcated with bold lines
and the six second-level with dashed lines. The 64 atomic clusters are distinguishable by the colour
of their vertices.

Figure 7: The relations between top-level, second-level and atomic clusters in Figure 6 represented as
a tree. Children of a cluster are shown in order of their clock-wise appearance in Figure 6.

33

(a) The cluster graph of the root graph in Figure 7. Squares
represent transit nodes, circles represent clusters.

(b) The cluster graph of the bottom right top-level cluster in
Figure 7. White squares represent transit nodes between clus-
ters, black squares represent the transit nodes to other top-level
clusters.

Figure 8: Cluster graphs representing the topological relations between child-clusters of two clusters
in Figure 7.

34

heuristic is to find the value of B∗ which maximises the average discounted value
of all subpatrols computed by Conquer:

B∗ = max
B∈[D,|VC |]

∑

PT,C,T ′

γBI(C, 0, T, T ′)

As this value depends on observation value function f , it is problem dependent.
However, it can be efficiently computed using a simple hill climbing algorithm.

• Cmax is a parameter that determines the trade-off between computation and
solution quality. The larger Cmax, the larger the set of subpatrols that can
be concatenated, which generally results in higher solution quality. However,
the empirical results in Section 7 show that the increase in solution quality
diminishes fairly quickly as Cmax is increased. Thus, as a rule of thumb, Cmax

should be increased until the available computing capabilities or time constraints
no longer warrant the increase in solution quality (both of which are application
dependent).

This concludes the description of the single-agent algorithm. Using this algorithm
as a building block, we can now derive the multi-agent algorithm, which is described
next.

4.2. The Multi-Agent Algorithm

Now that we have defined the single-agent algorithm, we can extend it to compute
policies for the multi-agent problem. A straightforward, but somewhat näıve, way
of doing this is to extend the MDP constructed in the Merge operation to multiple
agents. The state space of this multi-agent MDP contains the position of each agent,
and its action space is defined as the Cartesian product of the action spaces of the single
agents. However, in so doing, the size of the state and action space grow exponentially
with the number of agents M , allowing only the smallest of problem instances to be
solved.10

The key property of our multi-agent algorithm is that it avoids this problem by
sequentially computing policies for single agents, instead of computing a joint policy
for the team. More specifically, our approach computes a nearly optimal policy for a
team of agents (we prove this in the next section), by greedily computing single-agent
policies for each agent i, conditioned on the previously computed policies of agents
A−i = {1, . . . , i− 1}.

This greedy method is similar to the sequential allocation of multiple agents pro-
posed by Singh et al. (2007). However, the problem they address is to compute finitely
long paths for each agent, instead of policies. This makes a straightforward application
of their sequential allocation method impossible.

In more detail, under the assumption of Singh et. al., it is possible to define a new
observation value function f ′ that computes the marginal value of observations Oi

10While testing this näıve approach on the setting in Experiment 1 in Section 7 with only 2 agents,
it consistently ran out of memory on a machine with 12GB of RAM after expending ≫ 2 hours of
computation.

35

made by agent i conditioned on observations made by agents A−i, i.e.:

f ′(Oi) = f



Oi ∪
i−1
⋃

j=1

Oj



− f





i−1
⋃

j=1

Oj





However, this implicitly assumes there exists an order in which the agents make obser-
vations; agent 1 traverses the environment first, agent 2 second, etc. Clearly, no such
ordering is possible with paths of infinite length (i.e. the policies computed by the
single-agent algorithm). Thus, we need to fundamentally redesign the reward func-
tion used in the single-agent algorithm developed in the previous section in order to
correctly allocate rewards to agents, and thus be able to perform sequential allocation.

To be able to incrementally compute the team policy, we modify the single-agent
MDP defined in Section 4.1.3 such that the goal of agent i becomes to maximise the
received marginal reward, or equivalently, to collect the observation value left behind
by agents A−i. Put differently, agent i operates on a modified MDP that changes
according to the policies of A−i. To accomplish this, we make the transition function
of agent i reflect the effect of the policies of agents A−i, while agents A−i are unaware
of the existence of agent i.

The MDP that captures this process can be obtained from the single-agent MDP
discussed in the previous section by making the following modifications:

State Space Agent i now takes into account the positions and states of agents A−i

(but not vice versa) in order to determine how the world will change under their
policies. States thus become composite (or recursive).

Transition Function The transition function now reflects the effect of agent i’s ac-
tions, as well as the policies executed by agents A−i.

Reward Function The reward function now rewards agent i only for the received
marginal observation value, i.e. the observation value left behind by agents A−i.

The relations between states, policies and transition functions in this modified
MDP are shown in Figure 9. In the remainder of this section we shall discuss each
modification in more detail.

State Space. The new MDP takes into account the effect of agent i’s actions, as well
as those of agents A−i who are executing their policies beyond agent i’s control. In
order to determine these actions, the MDP needs to include knowledge of the policies
of agents A−i, as well as their current states.

Thus, we define composite states, which combine the atomic state — the states of
the single-agent MDP defined in Section 4.1.3 — of agent i with the composite state
of agent j:

Definition 26 (Multi-Agent Patrolling State). Let s̃ denote the atomic states of the
form (T,λ) as in Definition 21. The multi-agent state for agent i is given by the
following recursive relation:

s1 = s̃1

s2 = (s̃2, s1)

...

si = (s̃i, si−1) (10)

36

Figure 9: The recursive state space of agent i.

Transition Function. To determine the successor state s′i obtained by applying action
ai of agent i, the multi-agent transition function first determines the state s′i−1 that
results from the actions of agents A−i. State s′i is then obtained by applying action
ai to s′i−1.

With this in mind, we define the multi-agent transition functions as follows:

Definition 27 (Multi-Agent Patrolling Transition Function). The multi-agent pa-
trolling transition function δi for agent i is recursively defined as:

s′1 = δ1(s1, a1)

s′2 = δ2(δ1(s1, π1(s1)), a2)

...

s′i = δi(δi−1(si−1, πi−1(si−1)), ai)

where δ1 is equal to the patrolling transition function for single agents as in Definition
24.

The following example demonstrates the multi-agent state space and transition
function.

Example 7. Consider the environment in Figure 3 and bipartite graph G[C] in Fig-
ure 4 with two agents. At time step t, the atomic states s̃ of these agents are s̃1 =
(T7, [τ, τ, τ, τ, τ, 0], ·) and s̃2 = (T6, [τ, τ, 0, τ, τ, 0], ·) (and the composite state of agent
2 is s2 = (s̃2, s1)). Thus, agent 1 has just patrolled cluster C6 and is now positioned
at T7. Similarly, agent 2 has just patrolled cluster C3 and is now positioned at T6.
Note that agent 2 is aware of the fact that agent 1 patrolled C6, but agent 1 — being
unaware of the existence of agent 2 — does not know about the new state of cluster
C7.

37

Reward Function. To ensure the reward function only takes into account marginal
observation value, we need to exclude double counting. There are two types of double
counting. First, synchronous double counting, which occurs when two agents patrol
the same cluster within the same time step. In this case the reward for patrolling the
cluster is received twice. Second, asynchronous double counting, which is a little more
subtle. For ease of exposition, we will illustrate this with an example.

Example 8. (Continued from Example 7) At time step t, agent 1 patrols C3 by choos-
ing action (T7, C3, T2) and transitions to (T3, [τ, τ, 0, τ, τ, 0]). The reward for this tran-
sition is equal to the observation value obtained from patrolling cluster C3 in state τ .
In reality, however, much less value is obtained, since agent 2 patrolled C3, and reset
its visitation time λ3 to 0. Put differently, agent 2 “stole” the reward of agent 1 for
patrolling C3.

Thus, asynchronous double counting occurs whenever an agent i patrols a cluster
C before agent j (j < i), such that j’s belief of λC is less than its true value.

To prevent double counting — both synchronous and asynchronous — we introduce
a penalty P for agent i that compensates for the reduction of reward of the agent j
(j < i) that patrols C next, as follows:

Ri(s, (T,C, T
′)) = R(s, (T,C, T ′))− P (11)

Here, R(·, ·) is the reward function defined in Section 4.1.3, and P is the loss
incurred by agent j (j < i) that will patrol cluster C next. This is the (discounted)
difference between the expected reward (which agent j would have received in the
absence of agent i) and its actual reward, discounted by the number of time steps tn
that will elapse before agent j patrols C:

P = γtn(Rexpected −Ractual) (12)

The rewards Rexpected and Ractual are defined as:

Rexpected = I(C,min(τ, λ̂C + tn), T̂start, T̂end) (13)

Ractual = I(C, tn −B, T̂start, T̂end) (14)

where I(C, λC , T, T
′) is the value of a subpatrol (Equation 6), λ̂C is the last visitation

time of cluster C in agent j’s current state; T̂start and T̂end are the entry and exit
transit nodes chosen by agent j for its next visit to C.

The following example illustrates the behaviour of the new reward function.

Example 9. Consider a scenario with two agents and a single cluster C. Agent 1
patrols this cluster at t = 0 and t = 6, and agent 2 at t = 3. Furthermore, suppose that
the maximum reward for patrolling C is 1, that τ = 6 and that the reward increases 0.2
every time step the cluster is not patrolled. Figure 10 shows the function of potential
reward as a function of time for this scenario, which is realised only when the cluster
is patrolled. The two lines in Figure 10 represent the beliefs agents 1 and 2 have of
this reward.

The rewards received by the agents are as follows (see Table 3). First, agent 1
patrols C at t = 0 and receives a reward of 1. Second, agent 2 patrols the cluster at
t = 3 and receives a reward of 0.4. At this point, the beliefs of the agents diverge,

38

Time step Actual Reward Marginal Reward

Agent 1 Agent 2 Agent 1 Agent 2

t0 1 1
t3 0.4γ3 0.4γ3− 0.6γ6

t6 0.4γ6 γ6

Total 1 + 0.4γ3 + 0.4γ6 1 + 0.4γ3 + 0.4γ6

Table 3: The actual and marginal rewards received by the agents in Example 9.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

P
ot

en
tia

l P
at

ro
lli

ng
 R

ew
ar

d

Time

Agent 1 patrols Agent 2 patrols Agent 1 patrols

Loss agent 1
caused by
agent 2

Reward agent 1

Reward
agent 2

Reward agent 1

Belief agent 1

Belief agent 2

Figure 10: The potential reward for patrolling cluster C in the scenario of Example 9.

because agent 1 is not aware of agent 2’s actions. Finally, agent 1 patrols the cluster
at t = 6. Contrary to its beliefs, it receives a reward of 0.4 instead of 1. In total the
team receives a (discounted) reward of 1 + 0.4γ3 + 0.4γ6.

Now, consider the marginal rewards of the agents, i.e. the additional observation
value received by adding an extra agent. To compute these rewards for agent 1, we
need only consider the beliefs of agent 1, because it believes it is alone. It patrols the
cluster twice when the reward equals 1 (at time step 0 and 6), so its reward is 1 + γ6.
For agent 2, we need to consider its reward for patrolling the cluster at time step 3, but
also the loss of reward of agent 1 at time step 6 for which it is responsible. This loss is
0.6γ6, which makes its marginal reward 0.4γ3 − 0.6γ6. To see that these penalties are
correct, note that the sum of marginal rewards is equal to the sum of actual rewards,
as desired.

This concludes the definition of the MDP for multiple agents. Using value iteration
to solve this MDP as before, we obtain a policy for each individual agent, which,
when combined, form a policy for the entire team. This team policy is not optimal,
since the policy for agent i is computed greedily with respect to the policies of agents
A−i. Despite this, we can still derive performance guarantees on the observation value
obtained by the team, as we show in the next section.

39

5. Theoretical Analysis

As mentioned in the introduction, performance guarantees are important in critical
domains such as space exploration and security, since the existence of pathological
behaviour should be ruled out. In this section, we will therefore derive performance
guarantees on the solution quality achieved by the algorithm presented in the previous
section, as well as bounds on its computation overhead.

5.1. Solution Quality

We will first derive a lower bound on the solution quality of the single-agent algorithm,
by proving the following lemma:

Lemma 1. If diam(C) ≤ D = 2
3B

(

√

πk
2 +O(1)

)−1

, Algorithm 2 computes a subpa-

trol PT,C,T ′ with an observation value I(C, λC , T, T
′) of at least

γB

(

1−

(

k − 1

k

)k
)

f(O∗)

Here, f(O∗) is the value of the optimal set of observations made at k vertices of C,
ignoring the movement constraints of G.

Proof. The proof consists of two steps. In the first, we use a result by Moran (1984)
to prove that any TSP in a graph with k vertices with diameter D has a cost less than
B. Moran (1984) proved a bound on the length L of the TSP of an arbitrary graph
with k vertices. Specifically, for a graph G embedded in two-dimensional Euclidean
space, the following relation holds:

L ≤

(
√

πk

2
+O(1)

)

diam(G)

By applying this relation to line 11 of Algorithm 2, we know that n ≥ k holds when
this algorithm terminates. The extra cost of including T and T ′ (which are contained
in C) into the TSP is compensated by the fact that we set the cost of moving between
T and T ′ to 0 (since we require a path from T to T ′, not a cycle). As mentioned earlier,
instead of solving the TSP optimally (which is an NP-complete problem), we use the
approximation algorithm by Christofides (1976). This algorithm has an approximation
ratio of 3

2 , which accounts for the factor of 2
3 on bound of the diam(C).

In the second step of this proof, we apply the following theorem by Nemhauser
and Wolsey (1978) for obtaining a bound on the value of the greedily selected vertices
(lines 2–5 of Algorithm 2):

Theorem 1. Let f : 2E → R be a non-decreasing submodular set function. The greedy
algorithm that iteratively selects the element e ∈ E that has the highest incremental
value with respect to the previously chosen elements I ⊂ E:

e = argmax
e∈E\I

f(e ∪ I)− f(I)

until the resulting set I has the desired cardinality k, has an approximation bound
f(IG)
f(I∗) of at least 1−

(

k−1
k

)k
, where I∗ ⊂ E is the optimal subset of cardinality k that

maximises f .

40

This theorem states that the ratio between the value of the first k greedily selected

elements and the value of the optimal k elements is at least 1−
(

k−1
k

)k
. The factor of

γB stems from the fact that it is unknown in which order these k elements are visited
by the TSP. However, it is known that these elements are visited within B time steps.
Thus, we obtain a lower bound by discounting the incremental values obtained at these
k elements by B time steps, which completes the proof.

The Merge operation of the algorithm (Section 4.1.3) uses these subpatrols and
concatenates them into a single overarching patrol. The problem of finding an optimal
sequence of subpatrols is represented as an MDP, which is optimally solved by value
iteration. Consequently, the following holds for the value of the initial state s, which
is equal to the discounted observation value received by the agent by following policy
π (Equation 8):

V π(s) ≥
γB

1− γB

(

1−

(

k − 1

k

)k
)

fmin(O
∗) (15)

where fmin(O
∗) is the minimum value of fmin(O

∗) over all clusters C.
To prove a bound on the solution quality of the multi-agent algorithm, we prove

that the observation value of a set of policies is submodular. To do this, we define
a set function g over a set of single-agent policies [π1, . . . , πM], that computes the
discounted observation value of a set of policies:

g(π1, . . . , πM) =
M
∑

i=1

V π̂i(si)

Here, π̂i is a policy for agent i of the form discussed in Section 4.2, which behaves
identically in the presence of agents 1, . . . , i − 1 as policy πi does in isolation. Thus,
policy π̂i visits the same clusters as πi, and in the same order. Since the discounted
marginal observation value of a single policy π̂i received from initial state s is equal
to V π̂i(s), function g computes the discounted observation value of a team of agents
1, . . . ,M .

We can now state the following result:

Lemma 2. Function g is a non-decreasing submodular set function.

Proof. The non-decreasing property follows trivially from the fact that adding more
agents never reduces the observation value they receive as a team (since existing agents
do not change their policies). To prove submodularity, we need to show that, for every
set of policies π′ ⊆ π and policy π 6∈ π

′ the following holds:

g({π} ∪ π
′)− g(π′) ≥ g({π} ∪ π)− g(π)

To prove that this holds, we just need to prove that adding a policy π to a set of policies
π instead of π′ ⊆ π reduces reward and increases penalty (Equation 11). To prove
the former, observe that agent i’s belief of the last visitation time λi

C of cluster C is
non-increasing in i, and Equation 6 is non-increasing in λi

C . Thus, adding predecessors
to agent i reduces its reward for any subpatrol in any cluster. To prove the latter,
observe that, with additional predecessors, the number of time steps tn before any
predecessor visits the same cluster C decreases or remains unchanged. Since penalty
P is a strictly increasing function of tn (see Equations 12, 13, and 14), adding π to π

instead of π′ ⊆ π indeed increases the penalty.

41

1 2 3 4 5 6 7 8 9 10
60

65

70

75

80

85

90

95

100

S
ol

ut
io

n
Q

ua
lit

y
(%

 o
f O

pt
im

al
)

Number of Agents

Figure 11: The worst-case bound on the approximation ratio of the multi-agent algorithm proved in
Corollary 1 as a function of the number of agents M .

Since the multi-agent algorithm maximises the incremental value of g by greedily
computing a policy of agent i with respect to the policies of agents 1, . . . , i−1, Theorem
1 by Nemhauser and Wolsey (1978) can be directly applied to obtain the following
result:

Corollary 1. For M agents, the policies computed by the multi-agent algorithm are

at least
(

1−
(

M−1
M

)M
)

as valuable as the optimal M policies of the type computed by

the single-agent algorithm.

See Figure 11 for an illustration of the bound as a function of the number of agents
M . Thus, for M →∞, the multi-agent policy yields at least ≈ 63% observation value
as the best policy obtained by searching the joint policy space for M agents. Note that
the latter policy is not optimal, because the single agent algorithm from Section 4.1
is not optimal. However, by sacrificing at most ≈ 37% observation value, a significant
amount of computation can be saved by computing the multi-agent policy sequentially,
instead of searching the joint policy space.

5.2. Computational Complexity

The computational complexity of Algorithm 5 can be decomposed into the complexity
of its three operations:

• The complexity ofDivide is determined by subroutineCluster(G,D,Cmax). It
solves the problem of finding a clustering that minimises the maximum diameter
of the (at most) Cmax clusters, which is known to be NP-hard (Schaeffer, 2007).
To ensure computational efficiency, we choose an approximation algorithm that
requires more than the optimum number of clusters to satisfy the maximum
diameter requirement. In particular, as mentioned in Section 4.1.1, we select the
algorithm proposed Edachery et al. (1999), which finds a partitioning in time
O(|V |3).

42

• The majority of the computation required by Conquer is attributable to com-
puting the TSP in line 13 in Algorithm 2. As mentioned earlier, the complexity
of computing an optimal TSP is exponential in |V | (assuming P 6= NP). How-
ever, if we use the heuristic proposed by Christofides (1976), which has the most
competitive performance bounds, this is reduced to O(|V |3).

• Lastly, the complexity of Merge is determined by value iteration to solve the
MDP. Value iteration requires a number of iterations that is polynomial in 1/(1−
γ), 1/ǫ, and the magnitude of the largest reward (Littman et al., 1995). Moreover,
a single iteration of value iteration (Equation 9) can be performed in O(|A||S|)
steps.11

For the single-agent case:

|S| = |T|
(τ

B
+ 1
)|Cmax|

= O

(

|Cmax|
2
(τ

B
+ 1
)|Cmax|

)

The size of the action space |A| depends on the connectedness of the bipartite
graph G[C], but is O(|C2

max|) in the worst case.

Thus, the Merge operation dominates the complexity of Algorithm 5; its com-
putational complexity is exponential in parameter Cmax. This leads to the following
theorem:

Theorem 2. The computational complexity of the single-agent algorithm (Algorithm
4) is:

O
(

|V ||Cmax|
3(

τ

B
+ 1)|Cmax|

)

Proof. Let T (|V |) be the work required by Algorithm 5 for graph G(V,E). T (|V |) is
given by the following recursive relation:

T (|V |) = O
(

|Cmax|
3(

τ

B
+ 1)|Cmax|

)

+Cmax · T

(

|V |

Cmax

)

(16)

This is because the algorithm involves one call to Merge (line 14) and Cmax recursive
calls on each of the Cmax subproblems of about equal size (line 10). The application
of the master theorem (Cormen et al., 2009, p. 97) completes the proof.

Theorem 2 states that the complexity of the single-agent algorithm is exponential
in Cmax. More importantly, however, it states that it is linear in the size of the graph.
Hence, the algorithm scales well with the size of the graph.

A similar result can be obtained for the multi-agent algorithm:

Corollary 2. The computational complexity of the multi-agent algorithm with M
agents is:

O
(

|V ||Cmax|
(|M |+2)(

τ

B
+ 1)|Cmax|

)

11This is because our transition function is deterministic. For non-deterministic transition func-
tions, value iteration needs O(|A||S|2) steps.

43

Proof. This follows directly from Theorem 2 and the fact that a state in the multi-agent
MDP keeps track of the position of the M agents.

Thus, the complexity of the multi-agent algorithm is also linear in the size of the
graph, but exponential in the number of agents. It is important to note that this ex-
ponential growth applies to the full set of states, many of which are not reachable from
the initial state of the environment (Equation 4). For this reason, we will empirically
quantify the considerable savings that result from disregarding unreachable states in
Section 7.

6. Further Extensions

In this section we discuss several extensions to extend the applicability and improve
the robustness of the single and multi-agent algorithms in real-life applications. These
two requirements were identified in the introduction to allow agents to operate in
life-critical and hostile environments.

6.1. Dealing with Limited Mission Time

Often, in real-life applications, the mission time of information gathering agents is
limited. For example, UAVs carry limited fuel and ground robots have a limited
battery life. Similarly, a cleaning robot has limited capacity for carrying collected
dirt. In these cases, the agents either have to be taken out of commission after their
power source has been depleted or have to be recharged. Both cases can be handled
by extending the MDP used in the Merge operation of the single-agent algorithm:

No Recharging If no possibility of recharging exists, agents with depleted energy
sources have to return to a base station. This is easily enforced by replacing the
call to computeSubpatrolDnC in Algorithm 4 with:

computeSubpatrolDnC(G, f, γ,B,D,E0/REC , entry, base,Cmax)

where E0 is the energy capacity at the start of the mission, REC is the energy
consumption per time step and base is the location of the base station.

Possibility of Recharging If recharging/refuelling stations are present, agents have
to arrive at those stations before their energy source is depleted. Therefore, han-
dling this case is therefore similar to the previous one, except that the transition
function δ in Definition 24 is replaced by δ′:

δ′((T, [λC1
, . . . , λC|C|

], Br), a) =
{

δ(s, a) if a = (T,Ci, T
′)

(

T, [λC1
, . . . , λC|C|

], Br +RT ·BG

)

if a = CHARGE

where CHARGE is a (new) action of staying put while charging, RT is the
recharging rate for the recharging station at T (which is 0 if T does not have a
recharging station), and BG = computeBudget(G,B,D,Cmax) is the budget
for top-level clusters as computed by Algorithm 6. Note that this change applies
only to the top-level call to computeSubpatrolDnC in Algorithm 4 which
solves the patrolling problem in the full layout graph, not to subsequent recursive
calls.

44

6.2. Repairing Patrols in Case of Component Failure

As mentioned in the introduction, the fact that the agents are operating in potentially
hostile environments (space, severe weather conditions, or battlefields) makes them
vulnerable to component failure. As shown in the previous section, the multi-agent
policy that results from sequentially allocating agents is near-optimal. However, since
it is computed at deployment, it is not inherently capable of responding to a priori
unexpected events, such as the failure of one or more agents. Put differently, they are
not robust against failure.

Thus, with the multi-agent algorithm in its current form, if agent i fails, it leaves a
“gap” between agents i−1 and i+1, which can lead to a severe performance degradation
depending on the value of i (with i = 1 being the worst-case scenario). In what follows
next, we develop an algorithm for repairing patrols when one or more agents fail to close
this gap. This algorithm relies on the recursive nature of the sequentially computed
policies, i.e. the fact that agent i knows the policies of A−i. Thus, by adopting the
policies of their predecessors, agents are capable of filling the gap left behind by a
malfunctioning agent. After the repairing algorithm has completed, the agents end up
with policies that are identical to those obtained from the multi-agent algorithm when
computing policies from scratch. Moreover, the repairing algorithm is guaranteed to
reduce the number of states that need to be searched as compared to computing from
scratch, since it reuses the value function for the states that were searched previously.

In more detail, let agent i be the failed agent. In response to discovering that agent
i has failed, each agent j (j > i) performs three operations:

• It adopts patrolling policy πj−1. This policy is known by agent j, since it was
required to compute πj (see Section 4.2).

• It removes the atomic state (see Equation 10) of agent i from its recursive state:

sj = (s̃j , (. . . , (s̃i+1, (s̃i−1, (. . .)))))

• It updates policy πj−1 for states Sr(sj) \Sr(sj−1), which were unreachable from
the initial state sj−1 of agent j − 1. This policy update can be efficiently per-
formed by running value iteration on Sr(sj) \ Sr(sj−1) only ; the values of states
Sr(sj−1) remain unchanged (Levin et al., 2009, Chapter 1). This is because the
value of a state depends on values of its successors only (Equation 8), and states
Sr(sj−1) are not successors of states Sr(sj) \ Sr(sj−1) by definition. Thus, by
updating policy πj−1 for the newly discovered states, instead of recomputing it
from scratch, significant savings can be made. In the next section, we show that
these savings typically amount to a 50% reduction in the number of states that
need to be searched.

It is important to note that in the case of multiple failing agents, this algorithm
has to be invoked for each failed agent. For instance, if all but one agents fail, the
algorithm is executed M(M − 1)/2 times, and the multi-agent team degenerates to
the single agent case.

Figure 12 shows an example of the effect of repairing policies in a scenario with
two agents. Here, agent 1 fails after 500 time steps. At this point, the agents’ perfor-
mance drops significantly; depending on the dynamism of the environment expressed
by parameter τ , the average time between visiting vertices in graph G increases by

45

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time step

A
ve

ra
ge

 in
tr

a−
vi

si
t t

im
e

Agent 1
fails

Agent 2 detects
failure and replans

τ = 100
τ = 200
τ = 300

Figure 12: An example of repairing policies with two agents for different values of τ . Agent 1 fails
after 500 time steps. Agent 2 replans at time step 1050.

50%–130%. Failure of agent 1 is detected by agent 2 at time step 1050,12 after which
it adopts agent 1’s policy and replans for its own current state.

Note that in the discussion above, we did not mention the method whereby agents
detect failure of their peers. This was done deliberately, because failure detection
depends on the type and communication capabilities of the agents. For instance, if
the agents are always in communication range of each other, or if a central commu-
nication hub exists, failure can be assumed after a prolonged time of radio silence.
In the absence of centralised communication, agents can keep track of the last “signs
of life” of each agent, and exchange this information with others using a multi-hop
wireless communication network or a “graffiti-style” method communication involving
RFID tags dropped in the environment (Tammet et al., 2008). Due to the implemen-
tation dependent nature of failure detection, and the general nature of our model and
algorithms, we consider further discussion of this issue beyond the scope of this paper.

The next section deals with repairing patrols in response to the changes in the
layout of the environment.

6.3. Repairing Patrols in Case of Changes in Environmental Layout

Besides unexpected failure of agents, changes in the layout graph are another source of
a priori unknown events that can have a detrimental effect on the agents’ performance.
In this section, we provide an algorithm for repairing patrols in response to such events.

The recursive nature of Algorithm 4 allows for a natural way of repairing patrols.
Algorithm 7 shows the procedure for repairing a patrol when vertex vr is removed
from the graph.13 First, it recursively searches for the affected component of the
graph. When found, there exist several possibilities:

12This number is chosen for illustration purposes only. In practice, it is highly dependent on the
communication capabilities of the agents, their communication range and communication protocols.

13For the purpose of clarity, we only consider the removal of a single vertex. The necessary modi-
fications to deal with the removal of edges or multiple vertices are trivial.

46

1. The patrol does not move through vr. No recomputation necessary.

2. Vertex vr is contained in an atomic cluster C. Recompute the subpatrol through
C using Conquer.

3. The removal of vertex vr disconnects the containing cluster C, causing it to fall
apart in multiple components. To repair the patrol, the patrols for the parent
cluster of C are recomputed from scratch using Algorithm 5. A special case
is if C is the root cluster (i.e. the layout graph of C). In this case multiple
independent problems are obtained corresponding to each component with an
agent in it.

4. Vertex vr is contained in a transit node T , which, in turn, is contained in non-
atomic cluster C. Two possibilities exist:

a Transit node T does not lose connectivity to adjacent clusters. For each sub-
patrol that traverses T , compute the new shortest path through T between
adjacent clusters. No further recomputation is necessary since the patrol is
not blocked.

b T becomes disconnected, but C remains connected. Recompute each subpatrol
through C using Merge.

If recomputation is deemed necessary, the algorithm propagates back up the hierar-
chy until one of two conditions is met. Either it arrives at the root, or it is terminated
at an intermediate stage to save computation. The latter happens as soon as the loss
due to the removal of vr falls below a user-set percentage. This is not shown to pre-
serve readability of Algorithm 7, but a check can be inserted before line 35 to compare
the original and new values of the repaired subpatrols.

Unfortunately, it is not possible to make general statements about the incurred loss
(except for trivial cases 1 and 4a). In cases 2, 3 and 4b, the loss of a vertex can cut
off important paths, causing the agent to take radically different paths (for example,
consider the effect of removing one of the vertices in T7 in Figure 3). However, in case
2, the loss is likely to be at most f ((vr, t)), which is the observation value if only vr is
observed at current time t (so no discount is incurred). In practice, this value is likely
to be much less, since f is submodular and the loss of not observing vr is compensated
by observing the vertices around it. In case 3, the use of Algorithm 5 means the
performance guarantees from Section 5 apply for the newly obtained problem.

This concludes the discussion of the extensions for improving robustness. In the
next section, we empirically evaluate both the single and multi-agent algorithms.

7. Empirical Evaluation

Having presented the offline multi-agent algorithm for computing multi-agent patrols
in Section 4, we now demonstrate that our approach outperforms the state of the art
in the area of continuous multi-agent patrolling.

The reasons for performing empirical evaluation, in addition to having proved theo-
retical bounds on computation and solution quality in Section 5.1, are threefold. First,
to ascertain how the algorithm performs in real-life inspired application settings, and
how this relates to the theoretical bounds. These may differ (significantly), since the
bounds from Section 5.1 are pessimistic, and relate to the worst possible scenario.

47

Algorithm 7 An algorithm for repairing a patrol in the event of a vertex becoming
inaccessible.
Require: Pentry,C,exit: the previously computed subpatrol through C

Require: vr: the vertex that has been removed
Ensure: P ′

entry,C,exit: the repaired subpatrol through C

1: procedure repairSubpatrol(Pentry,C,exit, vr)
2: if vr 6∈ Pentry,C,exit then ⊲ Case 1
3: return Pentry,C,exit

4: end if

5: if diam(C) ≤ D then ⊲ Case 2
6: return Conquer(C[VC \ {vr}], f, entry, exit, B)
7: else

8: G[C] = (C ∪T, EC)← Divide(C,D,Cmax)
9: ⊲ Reused from Line 5 in Algorithm 5

10: if ∃Tr ∈ T : vr ∈ VTr then ⊲ Case 4
11: T ′

r ← Tr[VTr \ {vr}] ⊲ Compute subgraph of T induced by removing vr
12: if adjGC (Tr) = adjGC (T

′
r) then ⊲ Case 4a

13: return Pentry,C,exit with vr removed and replaced by shortest path
14: between vertices before and after vr in Pentry,C,exit

15: else ⊲ Case 4b
16: G′[C] =← Divide(C \ {vr}, D,Cmax)
17: return Merge(G′[C], subpatrols, γBC , BC , entry, exit)
18: ⊲ subpatrols reused from Line 11 in Algorithm 5
19: end if

20: else

21: let Cr ∈ C be the cluster s.t. vr ∈ VCr

22: subpatrolsToRepair ← {PT,C,T ′ | PT,C,T ′ ∈ subpatrols ∧ C = Cr}
23: ⊲ subpatrols reused from Line 11 in Algorithm 5
24: repairedSubpatrols← {}
25: for PT,Cr,T ′ ∈ subpatrolsToRepair do

26: if Cr[VCr \ {vr}] is connected then

27: P ′
T,Cr,T ′ ← repairSubpatrol(PT,Cr,T ′ , vr) ⊲ Recurse

28: else ⊲ Case 3
29: P ′

T,Cr,T ′ ← computeSubpatrolDnC(Cr[VCr \ {vr}],
30: f, γ,B,BC , T, T

′,Cmax)
31: end if

32: repairedSubpatrols← repairedSubpatrols ∪ {P ′
T,C,T ′}

33: end for

34: subpatrols′ ← subpatrols \ subpatrolsToRepair ∪ repairedSubpatrols

35: return Merge(G[C], subpatrols′, γBC , BC , entry, exit)
36: ⊲ BC reused from line 8 Algorithm 5
37: end if

38: end if

39: end procedure

48

Second, to ascertain how the computational cost of the algorithm scales with the num-
ber of agents and the dynamism of the environment, as compared to the theoretical
complexity results from Section 5.2. Third, since the overlap between the state spaces
of the broken and repaired policies are a priori unknown, we need to determine the
performance of the repairing algorithm from Section 6.2 as a means of improving the
robustness of offline computed policies.

Before detailing the experimental setup, we first summarise our key findings:

• Our algorithm outperforms a wide range of benchmark algorithms, of which the
decentralised receding horizon control (RHC) algorithm developed by Stranders
et al. (2010a) is the strongest competitor. We demonstrate that our multi-
agent algorithm typically performs 35% better in terms of the average quality of
situational awareness, and 33% better in terms of minimum quality.

• The algorithm searches a sub-exponential number of states as the number of
agents increases, in contrast to what the theoretical results suggest. For 6 agents,
for example, it typically searches less than 1 in 104 to 1 in 106 of the theoretically
possible states (depending on the level of dynamism of the environment).

• The multi-agent patrols can only be marginally improved (up to 9%) using a
thorough search of the state space (requiring 10–100 times more states to be
searched). We consider this evidence for the near optimality of the multi-agent
algorithm.

• The algorithm for repairing multi-agent patrols in the event of a failed agent
(Section 6.2) reuses a significant amount of computation from the offline stage
(typically in excess of 50%), making it an efficient method for coping with agent
failure.

In what follows, we first describe the experimental setup. Then, we discuss the
results for both experiments in detail.

7.1. Experimental Setup

To demonstrate the algorithm’s versatility and the expressiveness of the model pre-
sented in Section 3, we present three sets of experiments in different topologies and
application domains:

• In the first, the agents’ goal is to patrol an environment uniformly, by minimising
the time between observing each vertex of layout graph G. This corresponds to a
generic patrolling task, where the agents need to periodically and homogeneously
observe all locations in their environment. In fact, if “observe” is substituted
by “clean”, this scenario can also represent a continuous maintenance task for
mobile cleaning robots in an environment where dirt accumulates at a constant
rate.

• The second is similar to the first, except that we significantly scale up the size
of the environment to ascertain the scalability of our algorithms.

• In the third, we change the environment entirely to demonstrate the generality
of our algorithm, and task the agents tasked with monitoring an environmental

49

phenomenon, such as temperature or gas concentration. This setting models
a disaster response scenario, in which agents are deployed to keep track of the
quickly changing environmental conditions, and supply commanders with up to
date situational awareness.

In both domains, we derive an appropriate observation value function f , and use
the following two metrics, which are based on this function, to assess the algorithm’s
performance:

• Average uncollected observation value over all locations of the layout graph G,
averaged over all time steps T :

favg =
1

|V ||T |

∑

t∈T

f

(

⋃

v∈V

ov,t \O
t
A

)

(17)

For the first and second experiment, this represents the average time between
two visits. For the third, it is the average root mean square error (RMSE) of the
agents’ estimation of the environmental phenomenon. This metric captures the
average quality of the provided situational awareness over the entire space.

• Maximum uncollected observation value over all locations of the layout graph G,
averaged over all time steps T :

fmax =
1

|T |

∑

t∈T

max
v

f
(

{ov,t} \O
t
A

)

(18)

For the first and second experiment, this is the maximum time between visits
averaged over time. For the third, it is the maximum RMSE averaged over
time. This metric is of key importance in safety-critical applications commonly
found in disaster management and security domains, since it is a measure of
the maximum risk involved in relying on the situational awareness the agents
provide.

In both cases, the lower the metric, the better the algorithm performs.
Finally, we benchmarked the following algorithms each with different properties

and characteristics:

GG Global Greedy, a state of the art algorithm, proposed for pursuit-evasion by Vidal
et al. (2001). Global Greedy is an algorithm which moves the agents towards
the vertex where the most observation value can be obtained. This algorithm
exemplifies an uncoordinated approach which requires no communication and
is included in our benchmark to ascertain the value coordination at the cost of
increased complexity.

TSP An algorithm proposed by Sak et al. (2008), which computes the shortest closed
walk that visits all vertices (similar to the TSP14). Agents are spaced equidis-
tant from each other on the closed walk to minimise redundant coverage. This
algorithm is included in our benchmark for the same reasons as GG.

14To compute the TSP cycle of the graph, we used Concorde. (http://www.tsp.gatech.edu/
concorde.html).

50

RHC The receding horizon control algorithm proposed by Stranders et al. (2010a),
which uses the max-sum message passing algorithm for decentralised coordi-
nation to maximise the observation value received as a team over a finite (and
receding) planning horizon. Replanning occurs every 15 time steps (as per Stran-
ders et al. (2010a)). The RHC algorithm is included to ascertain the value of
planning ahead further than a finite time horizon.

NM-γ Our non-myopic multi-agent algorithm with discounting factor γ. We configure
our approach with different values of γ to determine its effect on the favg and
fmax metrics.

7.2. A Note on Statistical Significance

In the plots that follow, we use two different measures for determining statistical
significance of our results. Which measure is used depends on the type of question
that we attempt to answer:

1. Is algorithm A better than algorithm B? When comparing the performance of
two or more algorithms we present the 95% confidence intervals as determined
by a paired Welch’s t-test. This allows us to determine whether the performance
of one algorithm is significantly (in the statistical sense of the word) better than
another algorithm by determining whether their confidence intervals overlap. If
they do not, we can state that the difference is significant (p = 0.05).

2. What is the magnitude of a performance metric? When determining the value
of a specific performance metric (e.g. the number of states searched), we use the
standard error of the mean. This is the standard deviation of the sample means,
which gives us a good indication of the average performance of an algorithm.

We will clearly indicate which measure is used in the captions of the plots.

7.3. Experiment 1: Minimising Intra-Visit Time

The first experiment is set in the AIC lab from Figure 3. We consider a scenario in
which the value of observing a vertex is equal to the number of time steps that have
elapsed since it has last been observed, with a maximum of τ (clearly, this makes ob-
servations older than τ independent from observations made at the current time step).
Thus, the agent’s goal is to minimise the time between two successive observations of
each vertex in graph G. All agents have a circular observation area with a diameter
of 1.5m.15

We set Cmax = 6 and D = 25, which results in a single-level clustering with the six
clusters shown in Figure 3. We applied the methodology from Section 4.1.5 and found
that a budget B of 50 leads to a partitioning of the graph in six clusters, such that
agents are capable of observing all vertices within the allotted time. We then applied
the algorithms listed in the previous section with a varying number of agents.

15Since the graph consists of lattice graphs in which the distance between adjacent vertices is 1m
(Figure 5), an agent is capable of observing around 9 vertices simultaneously.

51

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Agents

A
ve

ra
ge

 in
tr

a−
vi

si
t t

im
e

NM-0.9

NM-0.5

NM-0.0

RHC

TSP

GG

(a) favg , τ = 50

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Agents

M
ax

im
um

 in
tr

a−
vi

si
t t

im
e

NM-0.9

NM-0.5

NM-0.0

RHC

TSP

GG

(b) fmax, τ = 50

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Agents

A
ve

ra
ge

 in
tr

a−
vi

si
t t

im
e

NM-0.9

NM-0.5

NM-0.0

RHC

TSP

GG

(c) favg , τ = 200

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Agents

M
ax

im
um

 in
tr

a−
vi

si
t t

im
e

NM-0.9

NM-0.5

NM-0.0

RHC

TSP

GG

(d) fmax, τ = 200

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Agents

A
ve

ra
ge

 in
tr

a−
vi

si
t t

im
e

NM-0.9

NM-0.5

NM-0.0

RHC

TSP

GG

(e) favg , τ = 300

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Agents

M
ax

im
um

 in
tr

a−
vi

si
t t

im
e

NM-0.9

NM-0.5

NM-0.0

RHC

TSP

GG

(f) fmax, τ = 300

Figure 13: Experiment 1: the agents’ performance as a team in terms of favg (Equation 17) and fmax

(Equation 18). Visit times are normalised to 1. Error bars indicate the 95% confidence intervals.

52

1 2 3 4 5 6
10

1

10
2

10
3

10
4

10
5

Number of Agents

S
ta

te
s

S
ea

rc
he

d

τ = 50
τ = 100
τ = 200
τ = 300

(a) Total number of states searched by the team
of agents.

1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

10
0

Number of Agents

F
ra

ct
io

n
of

 S
ta

te
s

S
ea

rc
he

d

τ = 50
τ = 100
τ = 200
τ = 300

(b) Reachable states as a fraction of all states.

Figure 14: The number of reachable states searched by the non-myopic algorithm. Error bars indicate
the standard error of the mean.

7.3.1. Solution Quality

First, we analysed solution quality in terms of the average and maximum intra-visit
time over 1000 time steps. To this end, we varied the temporal parameter τ ; the
smaller this parameter, the more dynamic the environment, the greater the need for
an increased number of agents to accurately monitor the faster changing environment.
Results are shown in Figure 13. From Figures 13(a), 13(c), and 13(e), we can conclude
that the favg achieved by our algorithm with 6 agents is at least 33% (for τ = 50)
and at most τ = 37% (for τ = 300) lower than that RHC, the closest competitor. By
inspecting the 95% confidence intervals, we can state that these results are statistically
significant (p = 0.05). Furthermore, we can observe that the performance of our NM-γ
algorithm with γ = 0.5 and γ = 0.9 is statistically indistinguishable in terms of favg,
indicating that a long look-ahead is unnecessary in this domain.

However, Figures 13(b), 13(d), and 13(f), support a different conclusion in terms
of fmax. Particularly for smaller number of agents and τ = 300, NM-0.9 clearly
outperforms NM-0.5. Moreover, the purely greedy approaches (NM-0.0 and GG) are
unsuitable for minimising the maximum uncollected observation value. With a notable
exception of τ = 50, NM-0.9 again outperforms RHC (achieving 33% lower fmax). This
is due to NM patrolling the graph in a more regular fashion, such that all clusters (and
therefore all vertices) are visited in fixed intervals. In contrast, the RHC algorithm
tends to move to a different area immediately after the majority (but not all) of value
has been obtained. For τ = 50, all algorithms except RHC (and 6 agents) yield
fmax = 1. The reason for this is that, in order to reduce fmax, agents need to revisit
locations within 50 time steps. Using the NM algorithm, agents spend B = 50 time
steps in each cluster. Thus, with six agents and six clusters, fmax cannot drop below
1 (normalised).

Finally, as expected, Figure 13 shows that the less dynamic the environment, the
better all algorithms perform.

7.3.2. Computational Overhead

Second, we considered the computational overhead of our algorithm. Figure 14(a)
shows the number of states that were searched. This number is proportional to the

53

1 2 3 4 5 6
0

500

1000

1500

2000

R
ew

ar
d

Number of Agents

bound
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

(a) Marginal Reward

1 2 3 4 5 6
0

500

1000

1500

2000

R
ew

ar
d

Number of Agents

bound
Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

(b) Actual Reward

Figure 15: Marginal and actual observation value received by individual agents for a single typical
run of NM-0.9.

running time of the value iteration algorithm (see Section 4.1.3), which represents
the bulk of the total running time of our algorithm.16 This figure confirms that the
number of states grows exponentially with τ , as indicated by the complexity results
from Section 5. However, in contrast to what these results suggest, we found that the
number of states is roughly linear in the number of agents, indicating that only a very
small fraction of the exponentially large state space is reachable from the initial state.
This is confirmed by Figure 14(b), which shows the size of the reachable state space
Sr(s) as a fraction of the |T|M (τ

B
+ 1)|C| states (see Section 5.2). For 6 agents only 1

in 104 (τ = 50) or 1 in 106 (τ = 300) states is reachable, and needs to be searched.

7.3.3. Marginal vs. Actual Observation Value

Third, we analysed the effect of adding additional agents on the amount of observation
value received by the team. Figure 15(a) shows the marginal reward for a typical run
of the algorithm. Recall from Section 4.2 that the marginal reward is equal to the
observation value collected by an agent, minus the penalty incurred by reducing the
observation value of other agents. From this figure, it can be seen that marginal values
are roughly but not strictly decreasing. This is due to the fact that some agents benefit
more from their (randomly chosen) starting position than others.

Figure 15(b) shows the observation value that is actually received by the individual
agents (i.e. by ignoring the penalty). Clearly, the way the penalty is defined allows for
an efficient and relatively equal reallocation of reward.

Finally, both panels of Figure 15 show the theoretical bound of Corollary 1 on the
observation value of the optimal policy, given the observation value obtained in this
particular problem instance. For example, for 6 agents, the optimal reward is at most
50.4% higher than the reward obtained by the multi-agent algorithm. In the next
section, we show that the optimal might in fact be much closer than this.

54

2 3 4 5 6

0

2

4

6

8

10

Number of Agents

R
ew

ar
d

In
cr

ea
se

 (
%

)

τ = 100
τ = 200
τ = 300

(a) Increase in Observation Value. Error bars in-
dicate the 95% confidence intervals.

2 3 4 5 6
0

0.5

1

1.5

2
x 10

5

Number of Agents

A
dd

iti
on

al
 S

ta
te

s
S

ea
rc

he
d

τ = 100
τ = 200
τ = 300

(b) Additional states searched. Error bars indi-
cate standard error of the mean.

Figure 16: Attempting to improve policies using DSA.

7.3.4. Improving the Multi-Agent Policy

To ascertain how tight these bounds are, we attempted to find the optimal policies
by searching the full joint action space, instead of sequentially computing single-agent
policies. However, since not only does the state space grow exponentially with the
number of agents (Section 5.2), so does the action space. This means we were unable
to compute the optimal policies even for two agents. As mentioned in Section 4.2, our
attempts resulted in our simulations running out of memory.

Instead, we attempted to improve the computed policies by finding joint deviations
to the policies that yield higher reward. By comparing the extra effort involved in terms
of the number of additional states that needs to be searched with the improvement
in solution quality, we can estimate the distance between the performance of our
algorithm and the (unknown) optimal.

In more detail, while being in states s1, . . . , sM the agents try to find a joint
action a = [a1, . . . , aM] that yields a higher discounted reward than following policies
π1, . . . , πM , such that the following inequality holds:

M
∑

i=1

R(si, ai) + γBV πi(δ(si, a1, . . . , ai)) >

M
∑

i=1

R(si, π(si)) + γBV πi(δ(si, π1(s1), . . . , πi(si))) (19)

Computing a joint action that satisfies this equation raises two challenges. Firstly,
the value functions V πi have been computed only for those states Sr(s) that are
reachable from the initial state s (Equation 4), given that policies of agents A−i are
fixed. Thus, joint action a that deviates from these policies is likely to cause several
agents (with the notable exception of agent 1) to end up in a state ŝ 6∈ Sr(s). Secondly,

16A fair comparison with RHC in terms of computational overhead is difficult, because it needs to
replan every few time steps. In contrast, NM plans only once, and planning time is amortised over
the mission time of the agents.

55

100 200 300 100 200 300
0

5000

10000

15000

τ

N
um

be
r

of
 S

ta
te

s
S

ea
rc

he
d

Before
replanning

After
replanning

Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

Figure 17: Impact of replanning after failure of agent 1 on number of states searched (γ = 0.9).

finding an action a that satisfies Equation 19 requires the evaluation of possibly many
joint actions. As a result, evaluating Equation 19 for each of these actions can be very
expensive.

Therefore, we applied the distributed stochastic algorithm (DSA) (Fitzpatrick and
Meertens, 2003); an approximate decentralised coordination algorithm. While this
algorithm does not necessarily yield the optimal solution, it does provide a good trade-
off between computation and solution quality, and is thus a good algorithm to avoid the
two problems mentioned above. Using DSA, agents iteratively take turns and choose
the action conditioned on the actions chosen by others. This process is guaranteed to
converge, at which point none of the agents can deviate to improve the reward received
as a team.

Figure 16(a) shows that DSA is moderately effective in improving the received ob-
servation value. The improvement is statistically significant for > 4 agents (p = 0.05),
and yields an improvement in observation value of up to 8.5%. Compare this to the
bounds in Figure 15 and Corollary 1, which indicate a theoretical 50% room of im-
provement for 6 agents. From this, we conclude that it is likely that our algorithm
performs much closer to the optimal than Corollary 1 suggests. This is largely as we
expected, since it states the theoretical lower bound on achievable performance. More-
over, in order to achieve this improvement using DSA, a significantly larger portion
of the state space needs to be searched. For τ = 100 it searches ≈ 100 times and
for τ = 300 it searches ≈ 10 times more states than the multi-agent algorithm (cf.
Figure 14(a)). We consider the relative lack of effectiveness of DSA as evidence for
the efficiency and effectiveness of our algorithm.

7.3.5. Replanning after Agent Failure

Finally, we determined the efficiency of the replanning algorithm described in Section
6.2. We do not report the effect of repairing on the solution quality, as it critically
depends on the time between failure and detection by the other agents. This is mainly
determined by implementation issues, such as the communication range and protocols.
However, since a team of n agents operates as a team of size n − 1 after plan repair,
the effect of agent failure in the long run can be seen in Figure 13 by comparing the
performance of n agents with that of n− 1 agents.

56

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Maximum Number of Clusters per (Sub)problem

N
um

be
r

of
 (

S
ub

)p
ro

bl
em

s

1 × 1
2 × 2
3 × 3
4 × 4

(a) The number of subproblems

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Maximum Number of Clusters per Subproblem

R
ec

ur
si

on
 D

ep
th

1x1
2 x 2
3 x 3
4 x 4

(b) The height of the tree (recursion depth of the
algorithm)

Figure 18: The number of subproblems and the recursion depth for solving patrolling problems in the
n× n graphs.

Now, Figure 17 shows the number of states searched before and after replanning
in response of the failure of agent 1, averaged over 100 runs. From this figure, we can
conclude that replanning requires between 67% (for τ = 300) and 91% (for τ = 200)
additional states to be searched. Conversely, this means that between 52% (for τ =
200) and 59% (for τ = 300) of the computation needed for computing the policies from
scratch could be avoided, making it an efficient method of improving the robustness
of the offline computed policies.

7.4. Experiment 2: Scaling Up

In the previous experiment, we used the single-level clustering of Figure 4. In this
experiment, we significantly increase the size of the environment to ascertain the scal-
ability of our full divide and conquer algorithm. To do this, we use graphs similar to
Figure 6, which consists of multiple copies of the AIC lab in Figure 4 laid out in a
square grid.

First, we study the effect of varying parameter Cmax (the maximum number of
clusters identified by Divide) on the number of subproblems and the height of the
resulting tree (cf. Figure 7). For D = 20, this relation is shown in Figures 18(a) and
18(b). The former corresponds to the number of calls to Algorithm 5)), while the
latter is a measure of the depth of the recursion required to solve the problem. As
expected, the figures show that both the number of subproblems and the height of the
tree decrease with the Cmax. However, since an increase in Cmax causes a worst-case
exponential increase in computation (Section 5.2), further empirical study is required
to ascertain the effect of this on computation, as well as on the solution quality.

7.4.1. A Single Agent

To do this, we applied the single-agent algorithm to the graphs of 1 × 1, 2 × 2, 3 × 3
and 4 × 4 copies of the AIC lab with τ = 200 and γ = 0.9 (given the good results
obtained for this value in Experiment 1). Figure 19(a) shows the relation between the
total number of (reachable) states in the MDP created by the Merge operation. We
report results Cmax ∈ [2, 6]. Beyond this interval, our implementation of the algorithm

57

2 3 4 5 6
0

5

10

15
x 10

5

Maximum Number of Clusters per (Sub)problem

T
ot

al
 N

um
be

r
of

 S
ta

te
s

1 × 1
2 × 2
3 × 3
4 × 4

(a) Total number of states

2 3 4 5 6
120

125

130

135

140

145

150

Maximum Number of Clusters per (Sub)problem

O
bs

er
va

tio
n

V
al

ue

1 × 1
2 × 2
3 × 3
4 × 4

(b) The observation value collected by a single
sensor

Figure 19: Computation vs. solution quality as a function of Cmax for the n× n graphs.

ran out of memory due to the large number of states. As expected, the number of
states increases exponentially with parameter Cmax. However, it is very important
to note that the number of states does not grow exponentially with the size of the
environment, but rather linearly (division by n2 yields a number of states that is
statistically indistinguishable across the size of the graphs). The explanation for this
can be found in Figure 18(a): the increase in the number of subproblems is roughly
polynomial in n for the n× n graphs. From this we can conclude that our algorithm
scales poorly in Cmax, but well in the size of the layout graph of the problem.

The main question is now: what is the effect of Cmax on solution quality? Figure
19(b) shows the observation value collected by the single agent.17 As can be observed
in this figure, the observation value collected by the agent increases monotonically
with Cmax. The probable explanation for this is that as Cmax increases, the number
of movements of the agent within the graph increases. As a result, increasing Cmax

means that the solution space is more thoroughly searched, leading to better solutions.
However, it is important to note that this increase seems to level off. Thus, increas-
ing Cmax yields an exponential increase in computation, but a decrease in marginal
solution quality.

7.4.2. Multiple Agents

We also studied the performance of the multi-agent algorithm on these large problem
instances. We set Cmax = 6, which is the maximum value before the experiments ran
out of memory. The results in terms of favg and fmax are shown in Figures 20(a) and
20(b).

These results largely conform the results of Experiment 1. In addition, we now see
that in larger graphs, there is a more constant decrease of favg as the number of agents
is increased compared to smaller graphs. For example, in the 1 × 1 graph, favg no

17We do not report metrics favg or fmax here because a single agent is not able to patrol these
large environment by itself. As a result, a single agent performs much better in terms of these metrics
in smaller graphs than in larger ones. As a result, unlike the amount of observation value collected
by the agent, favg and fmax are not comparable.

58

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Number of Agents

A
ve

ra
ge

 in
tr

a−
vi

si
t t

im
e

1 × 1
2 × 2
3 × 3
4 × 4

(a) favg

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Number of Agents

M
ax

im
um

 in
tr

a−
vi

si
t t

im
e

1 × 1
2 × 2
3 × 3
4 × 4

(b) fmax

Figure 20: Experiment 2: the agents’ performance as a team in terms of favg and fmax in n × n

graphs.

Figure 21: The ship layout graph used in Experiment 3.

longer decreases after 7 agents have been deployed, while favg keeps decreasing in the
2× 2 graph. The explanation for this is that agents are less likely to overlap in larger
graphs, and therefore contribute more. Furthermore, we see that a limited number
of agents with limited sensing range are increasingly less capable of reducing fmax,
indicating that the large 4× 4 graphs need a considerable number of agents to patrol
effectively. Unfortunately, for these instances we were unable to add more agents,
because of limited memory on the machine used for these experiments. However, it is
worth noting that our algorithm was typically capable of solving the hardest problem
within two hours.

7.5. Experiment 3: Monitoring Environmental Phenomena

In third experiment, we study the performance of the algorithm in a different layout
graph with a different observation value function. In more detail, the agents are tasked
to patrol a ship (Figure 21) while monitoring an environmental phenomena that is rep-
resented by a real valued field that varies over space and time (such as temperature,
radiation, pressure and gas concentration). The key challenge in monitoring such phe-
nomena is to predict its value at unobserved coordinates (in both time and space)
based on a limited number of observations. Recent work has addressed this challenge
by modelling the spatial and temporal dynamics of the phenomena using Gaussian
processes (GPs) (Rasmussen and Williams, 2006). GPs are a powerful Bayesian ap-
proach for inference about functions, and have been shown to be an effective tool for
capturing the dynamics of spatial phenomena (Cressie, 1993). In this experiment, we

59

use a GP to model the environmental phenomenon, and obtain a principled measure
of observation value.18

In more detail, let X denote the matrix with the coordinates at which observation
were made, and vector y the observed value of field F at those coordinates. Then, the
predictive distribution of the observation at coordinates x∗ is Gaussian with mean µ
and variance σ2 is given by:

µ = K(x∗,X)K(X,X)−1y (20)

σ2 = K(x∗,x∗)−K(x∗,X)K(X,X)−1K(X,x∗) (21)

where K(X,X′) denotes the covariance matrix for all pairs of rows in X and X′.
This matrix is obtained by evaluating a function k(x,x′), called a covariance function,
which encodes the spatial and temporal correlations of the pair (x,x′). Generally,
covariance is a non-increasing function of the distance in space and time. A typical
choice for modelling smooth phenomena is the squared exponential function where the
covariance decreases exponentially with this distance:

k(x,x′) = σ2
f exp

(

− 1
2 |x− x′|2/l2

)

(22)

where σf and l are called hyperparameters that model the signal variance and the
length-scale of the phenomenon respectively. The latter determines how quickly the
phenomenon varies over time and space.19

One of the features of the GP is that the posterior variance in Equation 21 is
independent of actual measurements y. This allows the sensors to determine the
variance reduction that results from collecting samples along a certain path without the
need of actually collecting them. By exploiting this feature, we define the value f(O) to
be the reduction in entropy that results from making observations O. The magnitude
of this entropy reduction is a function20 of the variance computed in Equation 21.

For this experiment, we simulated an environmental phenomenon with a spatial
length-scale of 5 and a temporal length-scale of 50. This corresponds to ρ = 10
(with ǫ < 0.01) and τ = 100 (with δ < 0.01). These parameters were chosen during
initial calibration to generate difficult problem instances. If, for example, the temporal
length-scale is very short, the phenomena changes so rapidly that each time step
presents a new and independent problem from the last, for which the trivial solution
is to ensure the agents are spread out sufficiently to minimise redundant coverage. In
such settings, our algorithm assigns the first agent to repeatedly patrol the biggest
cluster. The second agent is assigned to repeatedly patrol the second biggest cluster,
etc. Agents never leave their assigned cluster, because after every sweep through a
cluster all previously made observations within that cluster have become stale, and the
next sweep again results in maximum observation value. If, in contrast, the temporal
length-scale is very long, the phenomenon is almost static, in which case a single
traversal of the environment suffices. In such settings, our algorithm computes a patrol

18While GPs are flexible and powerful tools for performing inference over a large class of functions,
it should be noted that our choice for this experiment is by no means central to our work, and other
approaches could equally well be applied.

19A slightly modified version of Equation 22 allows for different length-scales for the spatial and
temporal dimensions of the process.

20The entropy of a normal distribution with variance σ2 is 1
2
ln(2πeσ2)

60

1 2 3 4 5 6

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Agents

A
ve

ra
ge

 R
M

S
E

NM γ = 0.9
RHC

(a) fmin

1 2 3 4 5 6
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Number of Agents

M
ax

im
um

 R
M

S
E

NM γ = 0.9
RHC

(b) fmax

Figure 22: Experiment 3: the agents’ performance as a team in terms of favg (Equation 17) and
fmax (Equation 18). RMSE is normalised to 1. Error bars indicate the 95% confidence intervals.

in which the agents visit each cluster once as soon as possible, while simultaneously
attempting to prioritise the bigger clusters (due to discount factor γ). After each
cluster has been visited, no more observation value can be obtained, and the agents
“aimlessly wander” around the graph.

For the more challenging problem instances we consider here, however, the envi-
ronmental phenomenon has a strong correlation along the temporal dimension (i.e. it
varies slowly over time), and relatively weak correlations along the spatial dimension
(i.e. it varies quickly in space). As a result, the agents’ goal is a mix between the
two extreme settings described earlier (i.e. with a very long or a very short temporal
length-scale). As a result, the agents’ priority is to visit each cluster as quickly as pos-
sible while prioritising more valuable clusters, before settling into a patrolling routine
that revisits clusters regularly.

The results in terms of favg and fmax are shown in Figure 22. We benchmarked
the best NM configuration (γ = 0.9) from Experiment 1 with its closest competitor,
RHC, in 100 simulations.21 The pattern observed here is similar to that in the first ex-
periment, in that NM outperforms the RHC algorithm in terms of both favg and fmax.
More specifically, NM reduces average RMSE by approximately 14% and maximum
RMSE by 10% for 6 agents compared to the RHC algorithm (results are statistically
significant with p = 0.05). Moreover, while the marginal performance increase exhib-
ited by the non-myopic algorithm is guaranteed to be positive (adding agents never
hurts), the performance of the RHC algorithm starts to decline after adding the fourth
agent.22

In summary, the empirical results presented in this section show that our algorithm
outperforms the RHC algorithm (Stranders et al., 2010a) (which does not give per-
formance guarantees) in most cases, both in terms of average performance, as well as

21The results for the TSP and GG algorithms were similar to Experiment 1 and are omitted.
22This is caused by the max-sum algorithm that lies at the foundation of the RHC algorithm;

as the coordination graph between the agents becomes denser (i.e. agents need to coordinate with
increasingly many neighbours), the factor graph contains more cycles causing max-sum to output
increasingly less optimal solutions (Rogers et al., 2011).

61

worst-case performance. Furthermore, to test the tightness of the theoretical bound
on the optimal multi-agent patrol, we attempted to improve the policies using a de-
centralised coordination algorithm. We found that the room for improvement is much
smaller than the theory suggests, indicating that the multi-agent policies are closer to
the optimal than the bound indicates. In terms of efficiency, the results showed that
the approach of sequential allocation empirically results in a sub-exponential increase
of the number of states searched, in contrast to the computational complexity results.
Finally, the results show that the repair algorithm is efficient, reducing computation
by more than half compared to computing policies from scratch.

8. Conclusions and Future Work

In this paper, we developed an approximate non-myopic algorithm for continuous
patrolling with multiple information gathering agents. Unlike previous work, this
algorithm is geared towards environments that exhibit the property of temporality,
which models very dynamic situations. As a consequence, agents must periodically
(and infinitely often) revisit locations to provide up-to-date situational awareness. This
algorithm gives strong performance guarantees, making it suitable for deployment in
security and life-critical domains.

In more detail, the single-agent algorithm uses a divide and conquer strategy and,
as such, follows a three-step computation: (i) decompose the environment into clusters,
(ii) compute subpatrols within each cluster, and (iii) concatenate these subpatrols to
form the desired patrol. The multi-agent algorithm computes a near-optimal multi-
agent patrol by iteratively computing single-agent patrols that maximise their marginal
contribution to the team. To do this, we modified the reward structure of single agents
to incentivise agents to the reward left behind by their predecessors. The novelty of
this algorithm is the application of sequential allocation for the computation of a joint
policy, which allows the algorithm to (empirically) scale much better than an algorithm
that searches the entire joint policy space.

We also developed two repairs algorithm to improve the robustness of the multi-
agent patrols in the event of failure of one or more agents or changes in the graph. Using
the former algorithm, the remaining functioning agents compensate for the loss of
possibly multiple malfunctioning agents by adopting the patrols of their predecessors.
Once repaired, the agents’ patrols are identical to those obtained through recomputing
them from scratch using the multi-agent algorithm. We show that significant parts of
the previously computed patrols can be reused (typically in excess of 50%), making
it an efficient method for coping with system failure. The latter algorithm exploits
the recursive nature of the divide and conquer algorithm to repair the portion of the
patrol that was affected by the removal of a vertex in the graph. In so doing, it reuses
as much computation as possible from the single-agent algorithm.

Our algorithms can be applied in a wide range of domains which exhibit the gen-
eral properties of submodularity, temporality and locality. We demonstrated this by
benchmarking their performance in two distinct domains, in which the agents’ goal
was to minimise the time between visiting locations, and to monitor a continuously
changing environmental phenomenon. Compared to the closest competitor (RHC), our
algorithm typically performs 35% better in terms of the average quality of situational
awareness, and 33% better in terms of minimum quality. Crucially, unlike the RHC
algorithm, our algorithm provides strong performance guarantees, which are essential

62

in safety critical domains where a lower bound is often required on the worst-case
behaviour.

Future work will focus on extending our algorithm to settings with strategic op-
ponents. In this paper, we have considered environments that are non-strategic, i.e.
these environments do not behave so as to further their interest, since they simply had
none, or were assumed to have none. However, some scenarios are clearly intrinsically
strategic. An example of this is the pursuit evasion domain, in which the agents’
objective is to capture a moving target, whose goal is to prevent itself from being
captured. Moreover, assuming the environment behaves strategically — even when it
does not — is equivalent to being fully risk averse, in the sense that good solutions
to this problem seek to minimise the maximum risk the agents (and their owners) are
exposed to. In safety-critical and hostile scenarios, this is often a desirable trait.

The main challenge in extending our work to strategic patrolling is the need for
radically different techniques. In particular, as discussed in Section 2, the strategic
nature of the opponent requires game theoretic concepts and algorithms to address
this challenge. For instance, a common assumption in strategic patrolling is that the
attacker has full knowledge of the agents’ strategy. This is often modelled using the
game theoretic solution concept of a Stackelberg equilibrium. This solution concept is
characterised as a two phase game: the agents choose their patrols first, after which the
attacker chooses the attack location that maximises its expected payoff in response to
these patrols. Solving a Stackelberg equilibrium involves solving a partially observable
stochastic game (POSG), which, in turn, is often solved using mathematical (integer)
programming (Basilico et al., 2009). Future work will focus on investigating whether
a POSG can replace the MDP used in the Merge operation, while using Divide and
Conquer in their current form. In addition, since the divide and conquer strategy
of our algorithm results in approximate solutions, the solution obtained by a strategic
version of it is highly likely to be approximate as well. It will be particularly interesting
to bound the quality of the solution, for example by determining whether an algorithm
can be developed that computes an ǫ-Stackelberg equilibrium, i.e. one that is at most
ǫ away from the true Stackelberg equilibrium.

A different way of extending our work to strategic patrolling is through the use
automated abstractions (Sandholm and Singh, 2012; Basilico and Gatti, 2011), a tech-
nique for reducing the state and action space of a stochastic game by combining atomic
actions (e.g. moves) into short patrols. Similar to our method of recursively subdivid-
ing the physical environment, automated abstractions yield theoretical guarantees on
the (suboptimal) solution, while ensuring scalability of the algorithms on large prob-
lem instances. An interesting direction of future research would be to augment our
divide and conquer strategy with this technique to solve adversarial patrolling games.

Acknowledgements

The work in this paper was done as part of the ORCHID project (www.orchid.ac.uk).

References

Agmon, N., Kraus, S., Kaminka, G. A., 2008. Multi-robot perimeter patrol in adver-
sarial settings. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). pp. 2339–2345.

63

Ahmadi, M., Stone, P., 2006. A multi-robot system for continuous area sweeping tasks.
In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). pp. 1724–1729.

Basilico, N., Gatti, N., 2011. Automated abstractions for patrolling security games.
In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. pp.
1096–1101.

Basilico, N., Gatti, N., Amigoni, F., 2009. Leader-follower strategies for robotic pa-
trolling in environments with arbitrary topologies. In: Proceedings of the Eighth
International Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS). Budapest, Hungary, pp. 57–64.

Bellman, R., 1957. Dynamic programming. Princeton University Press.

Christofides, N., 1976. Worst-case analysis of a new heuristic for the travelling sales-
man problem. Tech. rep., Carnegie Mellon University, Graduate School of Industrial
Administration.

Cormen, T. H., Stein, C., Rivest, R. L., Leiserson, C. E., 2009. Introduction to Algo-
rithms, 3rd Edition. McGraw-Hill Higher Education.

Cressie, N., 1993. Statistics for Spatial Data. Wiley-Interscience.

Delle Fave, F. M., Rogers, A., Xu, Z., Sukkarieh, S., Jennings, N. R., 2012. Deploying
the max-sum algorithm for coordination and task allocation of unmanned aerial
vehicles for live aerial imagery collection. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp. 469–476.

Edachery, J., Sen, A., Brandenburg, F., 1999. Graph clustering using distance-k
cliques. In: Kratochvyl, J. (Ed.), Graph Drawing. Vol. 1731 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, pp. 98–106.

Elmaliach, Y., Agmon, N., Kaminka, G. A., 2009. Multi-robot area patrol under fre-
quency constraints. Annals of Math and Articial Intelligence journal (AMAI) 57,
293–320.

Fiorelli, E., Leonard, N., Bhatta, P., Paley, D., Bachmayer, R., Fratantoni, D.,
2006. Multi-AUV control and adaptive sampling in Monterey Bay. IEEE Journal
of Oceanic Engineering 31 (4), 935 – 48.

Fitzpatrick, P., 2009. Unmanned aircraft hurricane reconnaissance. In: Proceedings of
the Twenty-Fifth Gulf of Mexico Information Transfer Meeting. pp. 47–48.

Fitzpatrick, S., Meertens, L., 2003. Distributed coordination through anarchic opti-
mization. In: Lesser, V., Ortiz, Jr., C. L., Tambe, M. (Eds.), Distributed Sensor
Networks. Kluwer Academic Publishers, Ch. 11, pp. 257–295.

Grocholsky, B., 2002. Information-theoretic control of multiple sensor platforms. Ph.D.
thesis, University of Sydney.

Gross, J., Yellen, J., 1999. Graph theory and its applications. CRC Press, Inc., Boca
Raton, Florida, USA.

64

Guestrin, C., Krause, A., Singh, A. P., 2005. Near-optimal sensor placements in gaus-
sian processes. In: Proceedings of the Twenty-Second International Conference on
Machine Learning (ICML). pp. 265–272.

Howard, R. A., 1960. Dynamic Programming and Markov Processes. The MIT Press,
Cambridge, Massachusetts, USA.

Karp, R. M., 1982. Dynamic programming meets the principle of inclusion and exclu-
sion. Operations Research Letters 1 (2), 49 – 51.

Ko, C. W., Lee, J., Queyranne, M., 1995. An exact algorithm for maximum entropy
sampling. Operations Research 43 (4), 684–691.

Krause, A., Guestrin, C., Gupta, A., Kleinberg, J., 2006. Near-optimal sensor place-
ments: Maximizing information while minimizing communication cost. In: Pro-
ceedings of the Fifth International Conference on Information Processing in Sensor
Networks (IPSN). ACM Press, New York, NY, USA, pp. 2–10.

Levin, D. A., Peres, Y., Wilmer, E. L., 2009. Markov Chains and Mixing Times.
American Mathematical Society.

Littman, M. L., Dean, T. L., Kaelbling, L. P., 1995. On the complexity of solving
Markov Decision Problems. In: Proceedings of the Eleventh International Confer-
ence on Uncertainty in Artificial Intelligence (UAI). Montreal, Quebec, Canada, pp.
394–402.

Martinez-Cantin, R., de Freitas, N., Doucet, A., Castellanos, J. A., 2007. Active policy
learning for robot planning and exploration under uncertainty. In: Proceedings of
Robotics: Science and Systems.

Maza, J. I., Caballero, F., Capitan, J., Martinez de Dios, J. R., Ollero, A., 2011.
Experimental results in multi-uav coordination for disaster management and civil
security applications. Journal of Intelligent and Robotic Systems 61 (1-4), 563–585.

Meila, M., Pentney, W., 2007. Clustering by weighted cuts in directed graphs. In:
Proceedings of the Seventh SIAM International Conference on Data Mining.

Meliou, A., Krause, A., Guestrin, C., Hellerstein, J. M., 2007. Nonmyopic informative
path planning in spatio-temporal models. In: Proceedings of the Twenty-Second
National Conference on Artificial Intelligence (AAAI). Vancouver, British Columbia,
Canada, pp. 602–607.

Moore, A. W., Atkeson, C. G., 1993. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine Learning 13 (1), 103–130.

Moran, S., 1984. On the length of optimal TSP circuits in sets of bounded diameter.
Journal of Combinatorial Theory, Series B 37 (2), 113 – 141.

Nemhauser, G. L., Wolsey, L. A., 1978. An analysis of approximations for maximising
submodular set functions—I. Mathematical Programming 14 (1), 265—294.

Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. V., 2007. Algorithmic Game
Theory. The MIT Press.

65

Paruchuri, P., Pearce, J., Tambe, M., Ordonez, F., Kraus, S., 2007. An efficient heuris-
tic approach for security against multiple adversaries. In: Proceedings of the Sixth
International Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS). Honolulu, Hawaii, USA, pp. 1–8.

Puterman, M. L., 1994. Markov Decision Processes—Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, New York, USA.

Puterman, M. L., Shin, M. C., 1978. Modified policy iteration algorithms for dis-
counted markov decision problems. Management Science 24 (11), 1127–1137.

Rasmussen, C. E., Williams, C. K. I., 2006. Gaussian Processes for Machine Learning.
The MIT Press.

Rogers, A., Farinelli, A., Stranders, R., Jennings, N. R., 2011. Bounded approximate
decentralised coordination via the max-sum algorithm. Artificial Intelligence 175 (2).

Sak, T., Wainer, J., Goldenstein, S. K., 2008. Probabilistic multiagent patrolling. In:
Proceedings of the Brazilian Symposium on Artificial Intelligence (SBIA). pp. 124–
133.

Sandholm, T., Singh, S., 2012. Lossy stochastic game abstraction with bounds. In:
Proceedings of the Thirteenth ACM Conference on Electronic Commerce. ACM,
pp. 880–897.

Satuluri, V., Parthasarathy, S., 2011. Symmetrizations for clustering directed graphs.
In: Proceedings of the 14th International Conference on Extending Database Tech-
nology. pp. 343–354.

Schaeffer, S. E., 2007. Graph clustering. Computer Science Review 1 (1), 27–64.

Singh, A., Krause, A., Guestrin, C., Kaiser, W., 2009. Efficient informative sensing
using multiple robots. Journal of Artificial Intelligence Research (JAIR) 34, 707–755.

Singh, A., Krause, A., Guestrin, C., Kaiser, W. J., Batalin, M. A., 2007. Efficient
planning of informative paths for multiple robots. In: Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI). Hyderabad, India,
pp. 2204–2211.

Stranders, R., Delle Fave, F. M., Rogers, A., Jennings, N. R., 2010a. A decentralised
coordination algorithm for mobile sensors. In: Proceedings of the Twenty-Fourth
National Conference on Artificial Intelligence (AAAI). Atlanta, Georgia, USA, pp.
874–880.

Stranders, R., Farinelli, A., Rogers, A., Jennings, N. R., 2009. Decentralised coordina-
tion of mobile sensors using the max-sum algorithm. In: Proceedings of the Twenty-
First International Joint Conference on Artificial Intelligence (IJCAI). Pasadena,
California, USA, pp. 299–304.

Stranders, R., Rogers, A., Jennings, N. R., 2010b. A decentralised coordination algo-
rithm for maximising sensor coverage in large sensor networks. In: Proceedings of the
Ninth International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). Toronto, Canada, pp. 1165–1172.

66

Tammet, T., Vain, J., Puusepp, A., Reilent, E., Kuusik, A., 2008. RFID-based com-
munications for a self-organising robot swarm. In: Proceedings of the 2008 Second
IEEE International Conference on Self-Adaptive and Self-Organizing Systems. pp.
45–54.

Thrun, S., Burgard, W., Fox, D., 2005. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press.

Tsai, J., Yin, Z., Kwak, J., Kempe, D., Kiekintveld, C., Tambe, M., 2010. Urban
security: Game-theoretic resource allocation in networked domains. In: Proceedings
of the Twenty-Fifth National Conference on Artificial Intelligence (AAAI). Atlanta,
Georgia, USA, pp. 881–886.

Vidal, R., Rashid, S., Sharp, C., Jin, S., Sastry, S., 2001. Pursuit-evasion games with
unmanned ground and aerial vehicles. In: Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA). pp. 2948–2955.

67

