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Abstract

We extend the well-known fictitious play (FP) algorithm to compute pure-strategy Bayesian-
Nash equilibria in private-value games of incomplete information with finite actions and con-
tinuous types (G-FACTs). We prove that, if the frequency distribution of actions (fictitious
play beliefs) converges, then there exists a pure-strategy equilibrium strategy that is con-
sistent with it. We furthermore develop an algorithm to convert the converged distribution
of actions into an equilibrium strategy for a wide class of games where utility functions are
linear in type. This algorithm can also be used to compute pure ε-Nash equilibria when
distributions are not fully converged. We then apply our algorithm to find equilibria in
an important and previously unsolved game: simultaneous sealed-bid, second-price auctions
where various types of items (e.g., substitutes or complements) are sold. Finally, we provide
an analytical characterization of equilibria in games with linear utilities. Specifically, we
show how equilibria can be found by solving a system of polynomial equations. For a special
case of simultaneous auctions, we also solve the equations confirming the results obtained
numerically.

Keywords: Algorithmic Game Theory, Bayes-Nash Equilibrium, epsilon-Nash
Equilibrium, Fictitious Play, Simultaneous Auctions

1. Introduction

We study the problem of finding a symmetric pure Bayesian-Nash equilibrium in static games
(i.e., where decisions are made simultaneously by all players) of incomplete information with
independent private values (where the utility of a player depends only on the actions per-
formed by others and not on their type), continuous type spaces and finite action spaces.
Existing analytical results for such games mostly focus on auctions, a special case of incom-
plete information games. However, despite extensive research in this area, the developed
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theory has little to offer in terms of equilibrium derivation beyond the simplest models such
as a single auction selling one or multiple homogeneous items (for an overview of the results,
see [1]). On the computational side, solvers have been designed primarily for games of com-
plete information (e.g., [2, 3, 4]), and can be applied to games of incomplete information
with only a small number of actions and types. The main contribution of this paper is an
algorithmic technique for computing Bayesian-Nash equilibria in games of incomplete infor-
mation. We show its efficacy in simultaneous auctions, an important game of which only
special cases were solved before. On the analytical side, we provide a novel characterisation
of equilibria in a large class of games. This characterisation allows us to derive all equilibria
for small simultaneous auction games confirming computational findings.

In more detail, our computational technique is an extension of the fictitious play (FP)
algorithm [5, 6] to games of incomplete information with continuous types. Fictitious play
was initially proposed as an iterative method for computing equilibria in zero-sum games
of complete information. In each iteration, the algorithm chooses a best response to the
frequency distribution of actions from previous iterations. If this frequency distribution,
known as FP beliefs, converges, the converged distribution yields a mixed strategy Nash
equilibrium of the game (see, e.g., [7]). Building on this, we develop an algorithm that
generalises fictitious play to a wide class of games of incomplete information. Unlike regular
fictitious play, if our algorithm converges, a pure-strategy equilibrium is produced.

Following much of the game-theoretic literature (see, e.g., [1, 8]), we focus on symmetric
games (where all players have the same type-dependent utility function, action space, type
space, and type distribution) with single-dimensional types.1 Our goal is to find a pure
symmetric equilibrium, which is known to exist in this class of games under very mild
assumptions (see Section 3 for details). The class of games we consider includes a wide range
of commonly studied static games of incomplete information. Examples include single-sided
auctions, double auctions, Cournot/Bertrand duopoly with asymmetric information and
negotiation with incomplete information. Whereas we assume a continuous type space, our
algorithm requires the space of actions to be finite. In fact, in many cases, such as auctions
with discrete bids (consider the auctioneer stepping up the price in an English auction),
finite action spaces are inherent to the problem, yet more difficult to analyse theoretically.
Furthermore, the combination of finite actions and continuous type distributions guarantees
(see Section 3) existence of a pure equilibrium, and also simplifies the representation of
distributions over actions, i.e. FP beliefs.

While the steps of the fictitious play algorithm are the same in games of complete and
incomplete information, novel challenges, such as recovering a pure equilibrium strategy from
the converged beliefs, and computing a best-response action distribution, arise in the latter
class of games. Unlike games of complete information, the converged frequency distribution

1In Appendix A.1 we relax the symmetry assumption. The assumption of single-dimensional types is
further discussed in Appendix A.2.
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in incomplete information games does not correspond to a single mixed strategy.2 Moreover,
it is not very useful to study mixed equilibria (as opposed to pure ones) for the types of
games we consider. This is because, in games of incomplete information with continuous
types, if a mixed equilibrium exists and under mild conditions on the type distributions,
there always exists a corresponding pure-strategy equilibrium (resulting in the same action
distribution), the latter being a more practical and desirable solution concept.3

To this end, we start by proving that, for converged FP beliefs, there exists a pure-strategy
equilibrium generating that distribution. This theoretical result applies to converged beliefs
which may only be observed asymptotically. In practice, we can only run a finite number
of iterations of a FP procedure, never reaching an exact convergence. Therefore, we need
a way to compute equilibria from FP beliefs that have not completely converged. In this
case, we turn to approximate equilibria: after each iteration of our algorithm, we check
whether we can produce an ε-equilibrium strategy from current beliefs. For this, we need
an algorithm that converts FP beliefs into a strategy, such that the action distribution
resulting from this strategy is the same as the beliefs. We design such an algorithm, which
we call BeliefsToStrategy, for games where the agent’s utility is linear in single-dimensional
type (see Section 3 for formal definitions). Linearity in type is a standard assumption in
most commonly studied single-parameter games including all forms of single-item auctions
where an agent’s type denotes the value for receiving the item (Appendix A discusses
how our technique can be applied to domains with multi-dimensional types such as multi-
unit or combinatorial auctions). When applied to converged beliefs, BeliefsToStrategy
produces a pure-strategy equilibrium. Furthermore, if a sequence of beliefs is converging,
BeliefsToStrategy yields an ε-equilibrium for any ε after a finite number of iterations.

We illustrate the power of our approach by finding equilibria in an important and previ-
ously unsolved problem: simultaneous sealed-bid auctions. In particular, we study a com-
plete spectrum of combinatorial preferences, from perfect substitutes to perfect complements.
We choose simultaneous auctions as it is a well-known fundamental model that has received
attention in the literature before. However, previously both analytical and numerical results
were obtained only for special cases [10, 11].

Finally, in order to benchmark our numerical results, we provide an analytical charac-
terisation of the equilibrium for games with linear utility functions in terms of a system
of polynomial equations. Using this characterisation, we show how, for the simultaneous
auctions setting with two players, two bids, and two auctions, the system can be solved
analytically, providing exact equilibrium and uniqueness results. We then show that this
derived equilibrium matches the results obtained numerically.

Against this background, our contributions to the state-of-the-art are as follows.

• We extend fictitious play to games of incomplete information with finite actions and

2This is because, in the case of incomplete information, a strategy is a mapping from type to actions, and
there is a continuum of mappings that result in the same distribution of actions.

3Pure equilibrium is a preferred solution concept as it is conceptually simpler and it does not rely on the
ability of a player to randomize (see, e.g., discussion on mixed equilibria implementation in [9]).
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single-dimensional continuous types. We prove that, whenever fictitious play beliefs
converge, there exists a pure-strategy Bayesian-Nash equilibrium consistent with the
converged beliefs.

• We provide an algorithm that converts converged beliefs into a pure equilibrium strat-
egy for games with linear utility functions. We also show that, using this algorithm,
if beliefs converge asymptotically, we can obtain an ε-equilibrium for any ε > 0 within
finite time.

• We find equilibria in a prominent, yet previously unsolved, auction game — simulta-
neous auctions for items ranging from perfect substitutes to perfect complements.

• We show that an equilibrium in a wide class of games with finite actions and con-
tinuous types can be found by solving a system of polynomial equations. Using this
characterisation, we derive an equilibrium for a special case of simultaneous auctions.

The remainder of the paper is structured as follows. We begin with a review of related
work in Section 2. Our model of games of incomplete information is formally stated in
Section 3. A generalized fictitious play algorithm for these games is presented in Section 4.
In Section 5 we provide a best-response algorithm and a procedure for converting FP beliefs
to a strategy for games with utility functions linear in type. Section 6 applies our approach
to a simultaneous auctions model. Finally, an analytical characterisation along with an exact
derivation for the special case of two auctions, two players, and two bid levels appears in
Section 7. Section 8 concludes.

2. Related Work

This section provides an overview of fictitious play literature as well as other methods for
finding Nash equilibria. The key distinction between ours and extant work is that our
technique applies to games of incomplete information with continuous types. Note that
games of incomplete information with discrete types can be viewed as games of complete
information with a separate player for each possible type (see, e.g., Definition 26.1 in [12]).
However, this representation is exponential in the number of types, making techniques for
complete information games applicable to only very small game instances. A few techniques,
which we review below, have been developed specifically for incomplete information games
with discrete types. However, they also become intractable as the number of types increases.

In more detail, fictitious play was initially proposed as an iterative method for computing
equilibria in static zero-sum games of complete information. It was subsequently shown to
converge in several restricted classes of games, such as potential games [13] and bi-matrix
2×N games [14]. For instance, the work of Monderer and Shapley [15] shows FP convergence
in a restricted class of complete information games (specifically, games that are response
equivalent to identical payoff games). A related method is no-regret learning (or regret
matching) where a player compares actions based on their average performance in the past
(see, e.g., [16, 17]). This method has been shown to converge to a Nash equilibrium in the

4



same restricted class of games where FP converges (see, e.g., [18]). However, in general, the
frequency distribution of actions produced by this method converges to the set of correlated
equilibria, which is a weaker solution concept than Nash.

The literature mentioned above applies to settings with complete information. This
setting is well studied, and a number of other general-purpose solvers exist for computing
Nash and correlated equilibria [2, 3, 4, 19, 20, 21]). In contrast, there are many fewer solution
algorithms for incomplete information games, though some (e.g. [22, 23, 24]) can handle (or
be adapted to) incomplete information games with discrete finite type sets at the expense of
computational feasibility. Notice, however, that they are still inapplicable to the setting of
our paper, since we focus on games with continuous types.

To address the issue of scalability, compact representations such as tree games [25] (where
the utility structure induces a set of dependencies between players that form a tree), Bayesian
Action-Graph Games (BAGGs) [26], and Multi-Agent Influence Diagrams (MAIDs) [27] have
been developed to exploit the game structure: e.g., independence of type distributions and
symmetry. An additional feature of the latter two approaches is their ability to make the
game structure available to general-purpose solution algorithms. In particular, Jiang et
al. [26] show how two different algorithms, the global Newton method [28] and the simplicial
subdivision method [29], can be used with BAGGs, and demonstrate experimentally that
these algorithms can result in exponential speedup. However, both BAGGs and MAIDs rely
on the fact that the type spaces of the game they encode are discrete and finite.

Furthermore, unlike the case of BAGGs and MAIDs, most representations and solution
algorithms impose strong restrictions on each other, which consequently limits the class of
games they can be efficiently (if at all) applied to. For example, Koller et al. [24] had to
convert an extensive form game into a sequence form 4 in order to supply a payoff matrix
to the underlying Lemke’s algorithm. While linear in the size of the extensive form’s tree,
the number of action sequences in Koller’s conversion can be exponential in the number
of information sets of the game, which significantly impacts the scalability of the overall
algorithm. In normal form games with infinite strategy spaces, Stein et al. [30] had to either
limit the scope to just two players or approximate the solution by discretising the strategy
space. Reeves and Wellman [31] restrict attention to games with two players and piecewise-
uniform type distribution and apply an iterated best response to search for Bayesian-Nash
equilibrium.

Another related area of research has resulted from the international poker competi-
tion [32], which has inspired a number of generally applicable algorithms for solving games
of incomplete information. For instance, the counterfactual regret algorithm was devel-
oped by Zinkevich et al. [33], and a method combining fictitious play with value iteration
was proposed by Ganzfried and Sandholm [34]. Furthermore, Hawkin et al. [35] focus on
transforming a game with a continuum of actions into a smaller game, and develop a new
regret-minimisation algorithm to solve this game which builds on the counterfactual regret

4Sequence form is a game description similar to normal form, where action sequences replace pure strate-
gies. For typed games it assumes discrete and finite type space, hence is inapplicable to our domain.

5



algorithm from [33]. These papers differ from our approach in that they view poker as a
game with a finite discrete type space, and their algorithms rely on this property. Another
approach is by Ganzfried and Sandholm [36], who formulate the problem as a mixed integer
linear feasibility program. Their algorithm requires the set of types to be finite (and the
number of constraints increases linearly with the number of types), but the authors then
discuss how the approach can be extended to deal with continuous types. However, this
extension requires the type distributions to be piecewise linear, and additional constraints
are needed for each segment. By contrast, our algorithm is specifically designed for settings
with continuous type spaces, and does not rely on assumptions about the shape of the dis-
tribution. Furthermore, different from our approach, their obtained equilibrium is a mixed
one (whereas our algorithm always produces a pure-strategy equilibrium). In addition, their
approach relies on having a qualitative model of the domain, which means that the number
of intervals that divide the type space, as well as the actions associated with each of these
intervals, are known. In contrast, our algorithm assumes no such knowledge.

Closer to the settings considered in this work, Gerding et al. [11] applied a variant of fic-
titious play called smoothed fictitious play to find mixed strategy equilibria in simultaneous
auctions selling perfect substitutes when the number of bidder types is small. By contrast,
here we consider continuous types and show that FP can be used to find pure equilibria.
The FP algorithm for finding pure equilibria in games with incomplete information was first
introduced in our previous work where the algorithm was applied to simultaneous auctions
with perfect substitutes [37]. The current paper builds on [37] and significantly extends that
paper. In particular, we introduce, for the first time, the BeliefsToStrategy algorithm
to recover the pure strategy from the beliefs; we formally prove several properties of this
algorithm; we extend the analysis of single-sided simultaneous auctions to a range of combi-
natorial preferences, from perfect substitutes to perfect complements; finally, we provide an
analytical characterisation of the equilibrium strategy for small settings.

Our work also contributes to the literature on analytical derivations of equilibrium bid-
ding strategies in the domain of simultaneous single-sided auctions, and auctions with dis-
crete bids. Simultaneous Vickrey auctions selling complementary goods are studied in [10].
There, a distinction is made between local bidders, who only participate in one given auction,
and global bidders who can participate in all auctions. The equilibrium and resultant market
efficiency are derived for a model where each auction contains both global and local bidders.
The model studied in [10] is further extended to the case of common values in [38]. The
model we consider is more general in that it also applies to games other than auctions, and we
obtain solutions for a variety of preferences, from perfect complements to perfect substitutes.
The case with substitutable goods is studied by [39] in a setting restricted to three sellers
and two global bidders and with each bidder having the same value (and thereby knowing
the value of other bidders). The space of symmetric mixed equilibrium strategies is derived
for this special case. Another setting where bidders face multiple simultaneous sealed-bid
auctions is studied in e.g. [40, 41, 42]. These papers assume that bidders bid in only a single
auction and choose this auction with some probability (where this probability depends on
the reserve prices of the auctions). In [43], however, it was shown that choosing a single
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auction is not optimal. Specifically, if all other bidders choose only one auction, and when
their types are sampled from distributions with non-decreasing hazard rates (which includes
a wide range of common distribution functions including uniform, normal and exponential),
the best response is always to place non-zero bids in all auctions. Our paper differs from [43]
since we consider equilibrium behaviour, whereas the analysis in [43] is decision theoretic.
Moreover, the analysis is limited to perfect substitutes and empirical evaluation, and relies
on discretising the type space. In [44] the authors attempt to find the equilibrium strategies
for this setting using iterative best response, but they show that, in fact, the strategies never
converge.

Finally, a number of researchers have investigated auctions with discrete bid levels. A
first-price auction for a single item is considered in [45]. There, equilibrium is characterised,
and revenues are compared for different increments, defining sets of evenly spaced discrete
bids. Discrete bids that are not necessarily uniformly spaced are studied in [46] in the
context of a second-price auction for a single item. A special case of our characterisation
of the best-response for linear utilities appears there for a single action/item case. Our
analytical characterization goes beyond the case of single-item auctions, allowing derivation
of equilibria in previously unsolved problems such as simultaneous auctions (see Section 7).

3. Games with Finite Actions and Continuous Types

We consider symmetric games of incomplete information with a finite number of actions and
players with single-dimensional types, where types are sampled from a continuous type space.
A game consists of n players, and the set of players is denoted by N . Each player draws
his type θ ∈ Θ ⊂ R independently from a commonly known continuous distribution over Θ
with density f , and a corresponding cumulative distribution F . Without loss of generality,
we take the type space to be Θ = [0, 1]. The same finite set of actions A = {a1, . . . , am} is
available to each player. We adopt a standard independent private value model where the
utility of a player is independent of the types of other players, and of the identity of the
player performing an action (only the action matters, not who executed it). Therefore, the
utility of a player is a function that depends on his type, his action, and the actions of the
other players, u : Θ× An → R. For our theoretical results, we furthermore require that the
utility is continuous in θ. The tuple Γ = 〈N,A, u(·),Θ, F (·)〉 then defines a Bayesian game.5

In the following, we refer to this setting as Games with Finite Actions and Continuous
Types (G-FACTs). Our algorithm works in the context of G-FACTS as described here, but
note that some of these assumptions can be relaxed. In particular, we discuss extensions
to asymmetric games and multi-dimensional types in Appendix A. The assumptions of
independent private values and finite actions are inherent to the algorithm.

As is common in literature on Bayesian games, we study symmetric Bayesian-Nash equi-
libria: i.e., equilibria where all players follow the same strategy (see, e.g., chapters 2,3,6,7

5Our notation for agents’ utility and type exploits the fact that the game is symmetric: i.e., each agent
has the same type and action spaces and the utility of each agent is independent of his identity. Specifically,
each agent’s utility is given by the same function u, which is not indexed by i.

7



in [1]). A pure strategy s : Θ → A is a function that specifies an action for each player type.
We denote by S the set of all strategies s : Θ → A. Letting X = (X1, . . . , Xn−1) ∈ Θn−1

denote the random variables representing the types of the other n− 1 players, the expected
utility of a player of type θ playing action ai when all other players follow the strategy s is
E{Xj∼F}n−1

j=1

[u(θ, ai, (s(X1), . . . , s(Xn−1)))].

Instead of expressing the expected utility in terms of the strategies of other players, it is
more convenient to use an equivalent representation in terms of the distribution of actions of
the other players. The latter representation allows us to take advantage of the finiteness of the
action space enabling an efficient best response calculation. The action distribution resulting
from a strategy is derived as follows. Let s−1(ai) ⊆ Θ denote the set of all types playing
action ai. The probability that an agent’s type is from this set is hs(ai) =

∫
s−1(ai)

f(x)dx,

and hs ∈ ∆(A) is the distribution of actions resulting from an agent playing s. When all
other agents follow the same strategy s, the expected utility of an agent of type θ playing
action ai can be written as:

û(θ, ai, hs) = E{Yj∼hs}
n−1

j=1

[u(θ, ai, (Y1, . . . , Yn−1))] (1)

The expected utility from playing a strategy s′(·) when everyone else plays a strategy s(·) is
ũ(s′, hs) = Eθ[û(θ, s

′(θ), hs)].

Example 1. To illustrate the notation, and to give an example of a game from the G-FACT
class, consider a simple, single-item first-price auction with n bidders, each bidder’s value
uniformly distributed in Θ = [0, 1] (F = U(0, 1)), and 4 discrete bids from 0 to 3 dollars
(A = {0, 1, 2, 3}). Furthermore, the strategy is given by:

s(θ) =





a1 = 0 if 0 ≤ θ < 0.2

a2 = 1 if 0.2 ≤ θ < 0.3

a3 = 2 if 0.3 ≤ θ < 0.65

a4 = 3 if 0.65 ≤ θ ≤ 1

Given that θ is uniformly distributed, the action distributions are as follows: hs(a1) = 0.2,
hs(a2) = 0.1, hs(a3) = 0.35, and hs(a4) = 0.35. Suppose that a player with type θ derives
a utility of (3θ − ai) if she wins the item, and 0 otherwise. Furthermore, considering a fair
tie breaking rule, the probability of winning when the agent ties with j other agents is 1

j+1
.

Note that a player wins the auction if either all other bids are lower (and thus, j = 0), or
if n − j − 1 bids are lower and the remaining j (excluding his own) bids are equal and she
wins the tie. Furthermore, there are

(
n−1
j

)
ways to choose j bidders to tie with. Each such

tie occurs with probability (hs(ai))
j
(∑

ak<ai
hs(ak)

)n−j−1
, where the first term ensures that

there are j bids equal to the agent’s bid, and the second term ensures that all other bids are
lower. Then the expected utility of a player with type θ when playing action ai, given n− 1
other bidders is:

û(θ, ai, hs) = (3θ − ai)
n−1∑

j=0

(
n− 1

j

)
1

j + 1
(hs(ai))

j

(
∑

ak<ai

hs(ak)

)n−j−1

(2)
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For example, the probability of winning the auction when placing action a1 is equal to
1
n
hs(a1)

n−1. Note that, due to the tie breaking rule, we need to sum over all possible val-
ues of 1 ≤ j ≤ n, and multiply this by the number of possible occurrences using the binomial
coefficient. This calculation becomes more onerous when we consider multiple simultaneous
auctions in Section 6.

Now, as mentioned earlier, we are interested in finding equilibrium strategies. We define
the necessary terms in the following.

Definition 1. A strategy s : Θ → A is a symmetric pure-strategy equilibrium of a game Γ
if:

ũ(s, hs) ≥ ũ(s′, hs) ∀ s′ ∈ S.

Some of our results do not produce an exact equilibrium. In those cases, we use an
approximate equilibrium defined below.

Definition 2. A strategy s : Θ → A is a symmetric pure-strategy ε-equilibrium of a game Γ
if:

ũ(s, hs) + ε ≥ ũ(s′, hs) ∀ s′ ∈ S.

It will sometimes be convenient to state this definition in terms of deviations in actions for
each type rather than deviations in strategies. Definition 1 can be re-stated using deviations
in actions (see Definition 8.E.1 and Proposition 8.E.1 in [8]).

Definition 3. A strategy s : Θ → A is a symmetric pure-strategy equilibrium of a game Γ
if for almost 6 every θ ∈ Θ (w.r.t. F ):

û(θ, s(θ), hs) ≥ û(θ, ai, hs) ∀ai ∈ A.

We note that limiting our analysis to symmetric pure-strategy equilibria does not impact
the space of games we can solve.

Proposition 1 (from [49, 50]). Every G-FACT has a symmetric pure-strategy equilibrium.

Proof. G-FACTs belong to a larger class of games where a pure-strategy symmetric equi-
librium is known to exist, if two conditions hold [49, 50]: a) the distribution of types is
continuous; b) û(θ, s(θ), hs) is continuous in type θ and in distribution of actions hs. The
first condition holds for G-FACT by definition. The second also follows from the assumption
that the utilities u(θ, a1, ..., an) are continuous in θ, and in addition from the fact that û is
an expectation of such functions and the corresponding space of events (i.e. the probability
that certain combinations of actions are played) is finite. In more detail, û is a (finite) linear

6“Almost” in this context means that the probability of all types for which the strategy s does not
prescribe an optimal action is zero. [47, 48]
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combination of continuous functions u(θ, ...), therefore û is itself continuous in θ. Further-
more, because hs dictates the coefficients of the linear combination that defines û, û is also
continuous in hs. As a result, a G-FACT can always be solved in terms of a pure-strategy
symmetric equilibrium.

In addition, any mixed equilibrium in such games can be converted into a pure-strategy
equilibrium using a purification procedure [50]. Intuitively, since a strategy is a mapping
from types to actions, such a purification involves finding a pure-strategy mapping which
results in the same action distribution as the original mixed strategy.

4. Fictitious Play for G-FACTs

In this section we extend fictitious play, which finds mixed equilibria in some complete
information games, to search for pure strategy equilibria in G-FACTS. Before doing so,
we consider the basic FP algorithm as it is applies to normal form games with complete
information.

In detail, at each iteration t, the FP algorithm consists of the following two steps:

• Compute best response: given the belief that the mixed strategy of the opponent is s′t,
calculate a best response st.

• Update beliefs: merge s′t and st into a new mixed strategy s′t+1.

These steps are then repeated until some convergence criterion is satisfied. A standard way
to perform the merge in the second step is by averaging all best responses observed thus
far. As a result, the influence of any subsequent best-response strategy diminishes with
time. However, other approaches are suggested, e.g. using a weighted average, where higher
weights are assigned to more recent strategies, or using a sliding window average, where only
a small list of recent best responses is kept (see [51] for a discussion on these variations).

The algorithm in Figure 1 generalises the two steps described above to symmetric games of
incomplete information with finite actions and continuous types. An input to the algorithm
is initial beliefs, h0, about the action distribution. At each iteration t, the best-response
strategy is computed (line 3) with respect to the beliefs about the action distribution of an
opponent, ht (since we search for symmetric equilibria, each opponent draws his action from
the same distribution). The algorithm for computing a best-response strategy is referred to
as BestResponse, and the details of the algorithm depend on the specific domain (since the
types are continuous and we cannot simply enumerate all possible strategies as with discrete
type spaces). In Section 5.1 (see Figure 4) we provide an instantiation of the algorithm for
efficiently computing the best response for the setting with linear utility functions. Formally,
s is a best-response strategy (or simply a “best response”) to an action distribution h if:

s(θ) ∈ argmax
ai∈A

û(θ, ai, h) ∀θ. (3)

Once the best response, s, is obtained, its corresponding action distribution, hs, is cal-
culated (line 4), and the beliefs of the next iteration, ht+1, are generated using an update

10



Algorithm FictitiousPlay

Input: game Γ = 〈N,A, u(·),Θ, F (·)〉, initial beliefs h0, update rule κ
Output: if converges, equilibrium strategy

1: set iteration count t = 0
2: repeat

3: strategy s = BestResponse(Γ, ht)
4: compute the corresponding action distribution:

∀ai ∈ A : hs(ai) =
∫
s−1(ai)

f(x)dx

5: update beliefs:
∀ai ∈ A : ht+1(ai) = κ(t)ht(ai) + (1− κ(t))hs(ai)

6: set t = t+ 1
7: until converged

8: return BeliefsToStrategy(ht+1)

Figure 1: Fictitious play algorithm for symmetric games of incomplete information.

rule (e.g., a standard update rule, κ(t) = t
t+1

). If beliefs converge (line 7), a pure-strategy
equilibrium can be obtained from these beliefs (line 8) as we prove in Theorem 1. We provide
an algorithm termed BeliefsToStrategy for recovering an equilibrium strategy for the case
of linear utilities in Figure 5.

Convergence in fictitious play occurs if ht → h∗ as t → ∞. This asymptotic convergence
is called convergence in beliefs (see, e.g., [7]). In games of complete information, h∗ is both
the frequency distribution of actions and an equilibrium mixed strategy. In the incomplete
information games studied here, h∗ is just the frequency distribution of actions, and does
not explicitly correspond to an equilibrium strategy (we demonstrate this in Section 6.2.3).
Nevertheless, a pure-strategy equilibrium can be recovered from the converged beliefs h∗ by
taking the best response to it as stated below.

Theorem 1. If fictitious play beliefs converge ht → h∗ as t → ∞, then there is a strategy s∗

that is a best response to the converged beliefs h∗ and that induces h∗ as its action distribution
hs∗ = h∗; i.e., s∗ is an equilibrium strategy.

Proof. To prove the theorem, we first consider the mapping from an action distribution, h,
to the set of action distributions produced by all best-response functions to h. This step is
also used in Theorem 2 of [49] to prove existence of an equilibrium distribution of actions,
i.e. hs∗ . We then proceed by assuming the converse: h∗ is not a member of distributions
produced by best-response strategies to h∗. We show that it contradicts convergence of ht

to h∗. Details of the proof follow.
Given that the action space A = {a1, ..., am} is finite, all distributions over A form a

simplex ∆(A). Denote for 1 ≤ i ≤ m, ei ∈ ∆(A) ⊂ m a vector with i’th element set to
one, eii = 1, and all others to zero, eji = 0, ∀i 6= j. Let E = {ei}mi=1. Then for any type θ,
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and a distribution of opponent actions h, the set of (pure) best responses can be described
in terms of the following correspondence:

Φ(θ, h) = {ei ∈ E|u(θ, ai, h) ≥ u(θ, aj , h) ∀aj ∈ A}.

Φ is non-empty and closed-valued, and upper hemicontinuous. By integrating over θ
we can obtain the set of all action distributions produced by best responses to h. Let
Ψ(h) =

∫
Φ(θ, h)f(θ)dθ, i.e. the set of action distributions generated by different best-

response strategies, where:

∫
Φ(θ, h)f(θ)dθ =

{∫
φ(θ, h)f(θ)dθ | φ : Θ×∆(A) → E, φ(θ, h) ∈ Φ(θ, h)

}
.

Since f is continuous, Ψ is non-empty, compact and convex-valued, and upper hemicontin-
uous.7

Now, assume that h∗ 6∈ Ψ(h∗), in other words no best-response strategy to h∗ has the ac-
tion distribution h∗. In this case, since Ψ is compact and convex-valued, h∗ can be separated
from Ψ(h∗). Intuitively, it means that the distance from h∗ to any distribution generated by
a best response to h∗, although small, is not negligible. More formally, there exist two open
neighbourhoods, U1 of h∗ and U2 of Ψ(h∗), so that the following holds:

h∗ ∈ U1, Ψ(h∗) ⊂ U2, U1 ∩ U2 = ∅.

Furthermore, these neighbourhoods can be chosen so that there exists ε > 0 such that U1

is an open ball of radius ε, U1 = Bε(h
∗), and the distance between U1 and U2, d(U1, U2), is

at least ε. In addition, since Ψ is upper hemicontinuous, we can reduce ε to guarantee that
∀h ∈ U1,Ψ(h) ⊂ U2. In other words, best responses to distributions close to h∗ have action
distributions that are very close to those generated by best responses to h∗ itself.

Notice that since Ψ is compact and convex-valued, there is a constant c > 0 such that for
any h ∈ U1, h

′ ∈ Ψ(h) ⊂ U2, and 0 < λ < 1 it holds that d(h, U2) > d((1−λ)h+λh′, U2)+cλ.
Now, let T be such that d(hT , h∗) < ε; i.e., hT ∈ Bε(h

∗). During a FP update, s(hT ) is a
best response to hT , and hT+1 = T

T+1
hT + 1

T+1
hs, where hs(ai) =

∫
(s(θ) = ai)f(θ)dθ. By

definition hs ∈ Ψ(hT ) and Ψ(hT ) ⊂ U2, thus hs ∈ U2. As argued above d(hT+1, U2)+ c 1
T+1

<

d(hT , U2). Since
∑

t
1
t
= ∞ and in each FP iteration the distance between hT and U2

decreases by c 1
T+1

, there exists t > T so that ht 6∈ Bε(h
∗). This contradicts convergence of

ht to h∗. Therefore, h∗ ∈ Ψ(h∗).
Since h∗ ∈ Ψ(h∗), there exists a selection function s∗ : Θ → A, so that almost everywhere

u(θ, s∗(θ), h∗) > u(θ, aj, h
∗) ∀aj ∈ A, and h∗(ai) = hs∗(ai) =

∫
(s(θ) = ai)f(θ)dθ. In other

words s∗ is the best-response strategy to the action distribution it produces, and hence an
equilibrium.

Corollary 1. If the best response s∗ to h∗ is unique, then it is an equilibrium strategy.

7Relevant theorems, their origin and application to equilibria analysis can be found in the book by
Hildenbrand [48]. Specifically, see Theorem 4 on p.64 and Proposition 7 on p.73.

12



Equilibrium properties of fictitious play apply only to asymptotically converged beliefs.
In numerical simulations, we are limited to a finite number of iterations and have to deal with
approximate convergence. Consider a natural measure to establish convergence, which occurs
once the (Euclidean) distance between ht and ht+1 falls below some convergence error. This,
however, is not a reliable convergence measure, as there is no guarantee that the distance in
beliefs does not exceed the convergence error in later iterations.

To avoid the problem with identifying convergence in beliefs in a finite number of iter-
ations, we can instead check at each iteration if an ε-equilibrium has been reached.8 This
is done by constructing a strategy from the beliefs and checking if that strategy is an ε-
equilibrium strategy. We provide a procedure for converting beliefs to strategy in the next
section for the case of linear utilities.

5. Applying FP to G-FACTs with Linear Utilities

In this section we instantiate the BestResponse and BeliefsToStrategy algorithms for a
particular setting where a player’s expected utility, û(θ, s(θ), hs), is linear in his type, θ. Note
that our FictitiousPlay algorithm from Figure 1 does not rely on linearity, and other
procedures can be developed for non-linear settings. However, linearity is actually common
in many games: in particular, it is inherent in all single-parameter models where the type
of an agent denotes the value an agent receives in a “winning set of outcomes” (e.g., when
the agent wins the item in an auction or when a public project is undertaken).9 This can
be seen in Example 1 from Section 3 (see Equation 2), where the expected utility is linear
in θ. This includes not only all one-shot single-item auctions (e.g., first-price, second-price,
all-pay, see [1]), but also the simultaneous auctions studied in Section 6.

In the following, we start by making a few observations about the structure of a best
response when utilities are linear and provide an algorithm for finding it. We then use these
results to construct an algorithm for converting converged beliefs to a pure-strategy equilib-
rium. Together with a convergence metric described below, these algorithms instantiate our
FictitiousPlay algorithm for games with linear utilities.

5.1. Best Response

When (expected) utilities are linear in θ for a given ai and h, we refer to the expected utility
functions û(·, ai, h) as utility lines, and these functions are of the form:

û(θ, ai, hs) = θ · slope(ai, hs) + intercept(ai, hs), (4)

where the slope and y-intercept are constant for a given action ai and action distribution
hs. In the following, let L = {û(θ, ai, hs)}ai∈A denote the set of all utility lines. Each
utility line can be represented by its slope and intercept, and so we will sometimes use
L = {σi, ιi}i∈{1,...,m}, where σi and ιi are the slope and intercept associated with action ai.

8We discuss the appropriateness of this measure of convergence in Section 6.2.2.
9Note that, since the expected utility (see Equation 1) is a linear combination of the individual utilities

u(θ, a), the expected utility û(θ, s(θ), hs) is linear in θ if the individual utilities are linear. Therefore, when
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Figure 2: Utility lines for actions A = {a1, a2, a3, a4} given action distribution h. The bold intervals are the
best-response (A′, c): A′ = {a1, a3, a4}, c = (c1, c2).

Now, in general, we can see that the best response corresponds to the actions associated
with the upper envelope of the utility functions in L. Formally, an upper envelope is given
by u∗(θ) = maxai∈A û(θ, ai, h). In the case of linear utility functions, this upper envelope
consists of a piecewise linear function, where each line segment corresponds to a particular
utility line (and each utility line corresponds to a particular action). Furthermore, the upper
envelope is always convex (to see this, note that, for any two crossing lines, their upper
envelope is convex).

Observation 1. In the case of linear utility functions, the upper envelope is piece-wise linear
and convex.

An example of a best response is shown in Figure 2. More formally, the upper envelope can
be represented as a partition of the type space [0, 1] into intervals, each labelled with its utility
line and corresponding action. Let c ∈ [0, 1]m

′−1 | 0 < c1 < c2 < · · · < cm′−1 < 1 denote a
partition into m′ intervals [0, c1], [c1, c2], [c2, c3], . . . , [cm′−1, 1] and let A′ denote the set of
actions {a′1, . . . , a′m′} ⊆ A, where a′j ∈ A is the best-response action on the interval [cj−1, cj].
Note that each action a′j ∈ A′ maps to an action ai ∈ A, but the indexing is different.
Similarly, let L′ = {û(θ, a′i, hs)}a′i∈A′ = {σ′

i, ι
′
i}i∈{1,...,m′} ⊆ L denote the corresponding utility

lines. Due to Observation 1, note that σ′
i ≥ σ′

j whenever i > j. In Figure 2, the upper
envelope is given by the triple (L′, A′, c) where A′ = {a′1, a′2, a′3} = {a1, a3, a4} and c = (c1, c2).
Then, the pair (A′, c) describes the corresponding best response.

We are now ready to introduce the algorithms needed to compute the best response.
The first step is to compute the utility lines, which depends on the rules of the game Γ =

we say that utilities are linear, this also means that the expected utility is linear.
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〈N,A, u(·),Θ, F (·)〉. We assume an algorithm for doing this is available (see Figure 3), but
cannot provide a specific algorithm since this depends on the details of the problem domain.
We will, however, instantiate the algorithm for the simultaneous auctions setting in Section 6
(in which case the expected utility is given by Equation 5).

Algorithm UtilityLines

Input: game Γ = 〈N,A, u(·),Θ, F (·)〉, distribution of actions h
Output: utility lines L = {σi, ιi}i∈{1,...,m}

1: for i = 1 to m
2: Given game Γ, calculate the slope and intercept:

σi = slope(ai, h)
ιi = inter(ai, h)

3: return {σi, ιi}i∈{1,...,m}

Figure 3: Generating utility lines for a game Γ given a distribution of actions h, where a utility line is defined
by its slope and intercept.

Given an algorithm for computing the utility lines, Figure 4 presents an algorithm for
computing the best response, which proceeds as follows. First, we generate a utility line for
each action a ∈ A. Then, all lines are sorted according to their slope (line 2). For ease of
exposition, we slightly abuse notation and refer to σ1 as the lowest slope, followed by σ2,
etc. Similarly, the action with the lowest corresponding slope is referred to as a1 followed
by a2, etc. The best response at θ = 0 is selected in line 3. Note that this simply requires
finding the utility line with the highest intercept (since û(0, ai, h) = ιi). This utility line
forms the initial upper envelope (L′, A′, c). Now, due to the convexity of the upper envelope
(Observation 1), line segments at θ > 0 need to have slopes of at least σi, which means that
we can disregard any utility lines j < i. Hence, the for loop at line 5 starts with j = i+1. In
each iteration of the main loop (line 5), we consider whether to include the jth utility line in
the current envelope (L′, A′, c) possibly replacing one or more previously added lines. Now,
since the lines are considered in the order of their slope, there are only two possible cases: it
can either lie entirely below the current envelope, in which case it has no effect on the upper
envelope and can be disregarded; or, it intersects the envelope at a unique point x ∈ (0, 1).
Note that it cannot lie entirely above the envelope, since it has to be below the envelope at
point θ = 0 (otherwise, this would mean that ιj > ιi which contradicts the maximisation in
line 3) and that it cannot cross the envelope (L′, A′, c) at more than one point (its slope is
higher than the slopes of L′, and, therefore, once it crosses (L′, A′, c), it increases faster than
any of the lines L′ and does not cross them).

Whenever the jth utility line crosses the current envelope, this envelope is updated as
follows. First of all, due to Observation 1, and since we know that σj is higher than any
existing slope in L′, the line segment necessarily needs to appear at the end of the envelope.
Therefore, since the intersection point is x, we can remove any utility lines in the current
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envelope which appear after x. These are the lines z > k, and they are removed in line 5.1.
Then, a new line segment is added to the envelope which intersects with the kth line at point
x, and provides the best response for θ ∈ [x, 1] (i.e., the new utility line is appended at the
end). Note that, since the utility lines are considered in the order of their slope, and new
lines are always appended at the end, the resulting upper envelope is convex (as it should
be).

Algorithm BestResponse

Input: game Γ = 〈N,A, u(·),Θ, F (·)〉
distribution of actions h

Output: best response s : Θ → A represented by (A′, c)

1: generate utility lines L = {σi, ιi}i∈{1,...,m} = UtilityLines(Γ, h)
2: sort the utility lines in increasing order of slope

let ai denote the action with the ith lowest slope: σ1 ≤ σ2 ≤ . . .
3: find the index of the utility line that maximises utility at θ = 0:

i = argmaxj∈{1,...,m} û(0, aj, hs) = argmaxj∈{1,...,m} ιj
4: let σ′

1 = σi, ι
′
1 = ιi, and a′1 = ai and define the initial envelope as:

L′ = {σ′
1, ι

′
1}, A′ = {a′1} and c = ()

5: for j = i+ 1 to m
if û(θ, aj , hs) = θσj + ιj intersects the envelope (L′, A′, c) at x ∈ Θ

let k ∈ {1, . . . , |A′|} denote the index of the intersected utility line in L′:
i.e., where x ∈ [ck−1, ck], with c0 = 0 and c|A′| = 1
update the envelope (L′, A′, c) as follows:

5.1: remove all utility lines with index z > k from (L′, A′, c)
5.2: append utility line with index j at position k + 1,

i.e. σ′
k+1 = σj, ι

′
k+1 = ιj, a

′
k+1 = aj, and ck = x

6: return (A′, c)

Figure 4: An algorithm for computing best response when agents’ utilities are linear in a single-parameter
type θ ∈ [0, 1].

Ignoring computation of the utility lines, the runtime of the BestResponse algorithm is
dominated by line 5. Note that, to find the intersection point and the corresponding line
segment in L′ (if any) requires looping through all lines in L′, which has at most m−1 values.
Moreover, the for loop at line 5 also has at most m − 1 values. Therefore, the worst-case
runtime is in the order O(m2). We note that the upper envelope can be computed in m logm
time (see, e.g., [52]). However, we opt for a simpler implementation since it is efficient in
practice (since m′ is typically much smaller than m) and (as discussed in Section 6.2.2) the
total run-time of one iteration of our algorithm is likely to be dominated by the computation
of the individual utility lines.

To apply our method, one needs to be able to compute utility lines. Since there are m

16



actions, the utility lines are represented by m slopes and intercepts. This is independent of
other game parameters such as the number of players.10 The computation of utility lines is
specific to the particular domain, and this can become a bottleneck. However, in practice, it
is often possible to reduce the computation of a utility line by using a compact representation
of a game (such as action-graph games [26]), but we cannot provide any general analysis.
We do provide the details of how to efficiently compute utility lines in the domain we study
in Section 6. There, computation is dominated by the domain-specific tie-breaking rule (see
Appendix B).

5.2. Converting Fictitious Play Beliefs to a Pure Strategy

Although Theorem 1 shows that an equilibrium strategy can be recovered from the limit of
fictitious play beliefs, it does not provide an exact algorithm for doing so, but rather assumes
that such a procedure exists. From a theoretical point of view this assumption is valid, since
the necessary purification procedures are guaranteed to exist (see, e.g., [50]). However, by
itself, existence of a procedure is insufficient to apply the algorithm. For this reason, in
this section provide an explicit purification algorithm BeliefsToStrategy (see Figure 5)
for G-FACTs with type-linear utilities. In addition, based on the insight of this procedure,
we point out in Appendix A the steps necessary for generalisation of this procedure to
non-linear utility functions.

Algorithm BeliefsToStrategy

Input: game Γ = 〈N,A, u(·),Θ, F (·)〉
distribution of actions h

Output: equilibrium strategy (A′, c)

1: gather actions played with positive probability Â = {ai ∈ A | h(ai) > 0}
2: generate utility lines for actions Â

L = {σi, ιi}i∈{1,...,|Â|} = UtilityLines(〈N, Â, u(·),Θ, F (·)〉, h)
3: sort the utility lines in increasing order of slope

let a′i denote the action with the ith lowest slope: σ1 ≤ σ2 ≤ . . .
and define the ordered set A′ = (a′1, . . . , a

′
|Â|
)

4: generate the strategy that produces action distribution h

define c = (c1, . . . , c|A′|−1) ∈ R|A′|−1 | cj =
∑j

i=1 h(a
′
i) ∀1 ≤ j ≤ |A′| − 1

4: return (A′, c)

Figure 5: An algorithm for converting distribution of actions h into a pure strategy when agents’ utilities
are linear in a single-parameter type θ ∈ [0, 1].

10This is largely due to symmetry, but even in the asymmetric case (discussed in Appendix A.1), the
number of utility lines is n ·m and so scales linearly in the number of players.
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The BeliefsToStrategy algorithm in Figure 5 constructs a strategy where action ai
is played with probability h(ai). Actions are sorted in ascending order of slopes of their
utility lines and the action with the lowest slope a′1 is played by the types θ ∈ [0, h(a′1)].
The next action a′2 is played by the types θ ∈ [h(a′1), h(a

′
1) + h(a′2)], etc. The algo-

rithm has two important properties. First, for a converged distribution of actions h∗,
BeliefsToStrategy(h∗) is an equilibrium. Second, if h is sufficiently close to a converged
distribution, BeliefsToStrategy(h) is an ε-equilibrium strategy. These properties are the
subject of the following two theorems.

Theorem 2. If fictitious play beliefs converge ht → h∗ as t → ∞, then a pure-strategy
equilibrium can be constructed using the algorithm in Figure 5.

Proof. As we have shown in Theorem 1, convergence of beliefs means that the distribution
h∗ is produced by an equilibrium strategy: i.e., there exists a best response s∗ to h∗ that
generates h∗ itself. We also know that the latter property holds for BeliefsToStrategy(h∗),
since it produces h∗. Therefore, to conclude that BeliefsToStrategy(h∗) is an equilibrium,
it remains to be shown that BeliefsToStrategy(h∗) is a best response to h∗. To achieve
this, we will compare the BeliefsToStrategy(h∗) strategy and an arbitrary best response
to h∗, s∗. We will show that either BeliefsToStrategy(h∗) completely coincides with s∗,
or has the same utility for all types, and therefore is also a best response to h∗.

Now, recall that in the case of linear utility lines, any best response can be expressed
using the interval representation (A′, c). In this representation, the intervals (A′, c) are
listed in a non-decreasing order of their respective utility line slopes (see Observation 1).
Furthermore, the length of interval [ci−1, ci] is given by h∗(a′i). But this is exactly the
strategy produced by BeliefsToStrategy(h∗). Hence, if the best response to h∗ is unique,
BeliefsToStrategy(h∗) is necessarily this best-response strategy.

The only discrepancy between BeliefsToStrategy(h∗) and a best response s∗ to h∗ may
occur if some set of actions, A′′ ⊂ A′, have the same utility line, when evaluated at h∗. In this
situation, it is possible that BeliefsToStrategy(h∗) and s∗ choose different actions from
A′′ for some disagreement types. However, all these disagreement types will belong wlog. to
a single interval K where all actions from A′′ constitute a best response. Since, any action
ai ∈ A′′ is a best-response for types in K, BeliefsToStrategy(h∗) is a best response for all
types in K.

Furthermore, actions in A′′ are in a strict order (with respect to the utility line slope)
with actions in A′ \ A′′. Hence, BeliefsToStrategy(h∗) assigns actions in A′′ for types
in K, and only for types in K, and the same is true for any best response to h∗. If the
remaining structure, i.e. the use of actions in A′ \ A′′, of the best response s∗ is unique for
the complement of K, K̄, then this structure coincides with that of BeliefsToStrategy(h∗)
over K̄. As a result, BeliefsToStrategy(h∗) chooses best-response actions for all types,
and is a best-response strategy to h∗ for all types. If the best-response structure over K̄
using A′ \ A′′ is not unique, we repeat the argument regarding disagreement types for K̄
using A′ \ A′′. Since the set of actions is finite, there may be only a finite number of such
iterations before the remaining best-response structure becomes unique. We conclude, that
even if BeliefsToStrategy(h∗) differs from s∗ in its choices of actions for some types, this
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does not lead to reduction of utility. Therefore, BeliefsToStrategy(h∗) is a best response
to h∗.

Finally, since BeliefsToStrategy(h∗) is a best response to h∗ and generates h∗, it is the
equilibrium strategy.

Theorem 3. Let {ht}∞t=1 be a converging fictitious play sequence, ht → h∗. Denote by st the
best response to ht calculated during iteration t of fictitious play. Then:

|ũ(BeliefsToStrategy(ht), ht)− ũ(st, ht)| → 0.

Proof. Notice that, if there are multiple best responses to h∗, their utility is necessarily the
same. Since the utility lines û(θ, ai, h) are continuous in θ and h, and m is finite, their
upper envelope is a continuous function in θ and h. Recall also that we have assumed
the set of types to be compact and f continuous, hence ũ(s, h) = Eθ∼f [û(θ, s(θ), h)] is also
uniformly continuous in h for any (not necessarily best-response) strategy s (with a finite
interval representation (A, c)). As a result, for any strategy s and for any δ > 0 exists
T such that for all t > T , |ũ(s, ht) − ũ(s, h∗)| < δ. In particular, we can choose T so
that |ũ(BeliefsToStrategy(ht), ht) − ũ(BeliefsToStrategy(ht), h∗)| < δ. Furthermore, a
similar result holds for ũ(s[h], h), where s[h] is a functional that returns a best-response
strategy (e.g., the one from Figure 4), such that |ũ(st, ht) − ũ(s∗, h∗)| < δ. To see this,
recall that the utility of the best response is an upper envelope of a finite set of functions
continuous in h, hence also continuous in h. As a result, ũ(s[h], h) is uniformly continuous
as a function of h, and the necessary inequality follows.

Now, define the following correspondence:

Φ̄(h) = {s : ∀θ, û(θ, s(θ), h) ≥ û(θ, aj, h) ∀aj ∈ A}.

Notice that, similarly to Φ and Ψ from Theorem 1, this correspondence is non-empty, closed-
and compact-valued and upper hemicontinuous. We define the distance between two strate-
gies as d(s1, s2) =

∫
(s1(θ) 6= s2(θ))f(θ)dθ. Then for any positive δ that is less than the

probability of any action that is part of a best response to h′ or h∗, i.e. holds that:

δ < min(min
a′i∈A

′

h′(a′i), min
a∗i∈A

∗

h∗(a∗i )),

there exists T such that for all t > T it holds that for any s1 ∈ Φ̄(ht) and s2 ∈ Φ̄(h∗),
the distance d(s1, s2) < δ. In particular, there exists s∗ ∈ Φ̄(h∗) such that d(s∗, st) <
δ. Since both strategies are a best response and the distance between the strategies is
at most δ, the order of actions in (A′, c) must be the same as in (A∗, c). In particular,
this means that BeliefsToStrategy(ht) and BeliefsToStrategy(h∗) use the same order
of actions in their interval structure. In fact, they differ only over a set of types of size
d(BeliefsToStrategy(ht), BeliefsToStrategy(h∗)) < δ. Since utility is bounded, we have:

|ũ(BeliefsToStrategy(ht), h∗)− ũ(BeliefsToStrategy(h∗), h∗)| =
|ũ(BeliefsToStrategy(ht), h∗)− ũ(s∗, h∗)| < cδ,
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where c > 0 is some constant. Aggregating all three bounds together we have:

|ũ(BeliefsToStrategy(ht), ht)− ũ(BeliefsToStrategy(ht), h∗)| < δ

|ũ(BeliefsToStrategy(ht), h∗)− ũ(s∗, h∗)| < cδ

|ũ(st, ht)− ũ(s∗, h∗)| < δ.

Hence, we obtain that, for any δ, there exists a T so that for all t > T , the following holds:
|ũ(BeliefsToStrategy(ht), ht)− ũ(st, ht)| < c′δ, for some finite c′ > 0.

Theorem 3 guarantees that if FP converges, then an ε-Nash equilibrium is necessarily
obtained at some finite iteration. Furthermore, the proof structure allows another practi-
cal simplification. Specifically, before applying BeliefsToStrategy, we can simplify ht by
filtering out all actions that appear with numerically negligible probability (i.e. below the
threshold of δ) and renormalizing.11

6. Simultaneous Auctions

In previous sections we discussed an algorithm for finding equilibria in G-FACTs, and an
implementation for linear utility functions. In the current section, we apply the algorithm
to a setting where bidders participate in multiple simultaneous, single-sided, sealed-bid auc-
tions.12 Simultaneous auctions are a natural generalisation of single-item auctions when
multiple items are available for sale from different sellers. As we discussed in Section 2,
existing computational techniques cannot be applied to this setting due to continuous type
spaces, while discretisation of the type space comes at the expense of computationally fea-
sibility. That is, the settings with more than a few discrete types and bid levels are beyond
the computational reach of most techniques.

The purpose of analysing this setting is two-fold. First, we demonstrate the efficacy of
our algorithm for a complex setting where no analytical solution exists, and give convergence
results. Second, we demonstrate that our algorithmic technique can be used to contribute to
the auction literature by providing an extensive empirical characterisation of the equilibrium
bidding behaviour in simultaneous auctions. This empirical analysis is augmented in the next
section, where we derive an analytical characterisation for a basic setting and show that the
equilibria found for that setting match those that are found with our numerical approach.

In particular, in our experiments we focus on simultaneous Vickrey (i.e., second-price)
auctions. However, any other pricing (e.g., first-price or all-pay) could be chosen as this
does not affect the algorithm (but affects the equilibrium strategies). The auctions are
simultaneous in that a bidder needs to make a decision on how much to bid in each auction
without knowing any of the outcomes (unlike sequential auctions where the winner of an
auction is known before a bid is placed in another auction). For this setting, it has been shown

11A similar thresholding procedure was applied to mixed strategies in Ganzfried et al. [53].
12We note that a variation of the algorithm has also been successfully applied to a more complex double

auction setting in [54]. See Section 8 for more details.
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in prior decision-theoretic work [43] that, even though each individual auction is incentive
compatible (bidding the true value for the item being auctioned is a dominant strategy),
and even when the items are perfect substitutes (the bidder does not derive extra benefit
from winning more than one item), a bidder is often better off bidding in multiple auctions
and shading their bids, as opposed to choosing a single auction and bidding truthfully.
Furthermore, in the case of substitutable13 goods, the bidding strategies are typically non-
monotonic in type, which makes finding the equilibrium bidding strategies a challenging
task. In this section, we extend this work to a game-theoretic analysis in which all players
can participate in all auctions, and the aim is to compute an equilibrium strategy. Here, we
consider a wide range of combinatorial structures, including substitutes and complements.

6.1. Simultaneous Vickrey Auctions

We consider a setting with k simultaneous sealed-bid single-item Vickrey auctions. The
items sold in different auctions are heterogeneous. The set of auctions (equivalently, items)
is denoted by K = {1, . . . , k}. The set of players N corresponds to the bidders. Each bidder
has a single-dimensional privately-known type θ which is i.i.d. sampled from a c.d.f. F
with continuous support on [0, 1]. F is assumed to be common knowledge. The finite action
space is given by a set of joint bids defined as follows. Each auction has a finite set of
admissible bids levels B ⊂ R+, and a bidder chooses a bid for each auction.14 For simplicity,
we furthermore assume that all auctions have the same bid levels and these are equally
spaced (both of these simplifications can be trivially relaxed but we choose this restriction
to reduce the number of parameters to consider). Thus, the action space is A = Bk. Note
that simultaneous auctions with discrete bids and continuous types are an instance of G-
FACTs since the action space is finite, but the types are continuous. The only piece missing
from a full specification of a Bayesian game is the utility function, which we define next.

While the type of a bidder is single dimensional, we assume that the bidders have com-
binatorial preferences: i.e., the items are heterogeneous and may range from perfect sub-
stitutes to perfect complements and combinations of these. This is achieved by a function
φ : 2K → R, common to all bidders which specifies a complementarity structure of the auc-
tions. The value that a bidder with type θ derives from winning a subset of items η ⊆ K is
given by the product φ(η)θ. Notice that the relative values of bundles are the same across
bidders. In essence, the type is a scaling parameter: if bidder 1 has type x and bidder
2 has type 3x, this means that bidder 2’s value for each bundle is 3 times as high as the
value of bidder 1. We acknowledge that single-dimensional types are more restrictive than
multi-dimensional types that allow each bidder to have his own complementarity structure.

13Two items are substitutable if the utility from winning both of them is less than the sum of the utilities
for each individual item. Similarly, two items are complementary if the utility from winning both of them is
more than the sum of the utilities for each individual item.

14We argue that having a finite set of bids is not necessarily restrictive in practice, since bids are often
rounded to an appropriate level (e.g. to the nearest dollar amount for small bids, the nearest ten-fold for
larger bids, etc). In addition, the set of admissible bids can be further restricted by the auctioneer to increase
seller revenue [46, 55].
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Nevertheless, our restricted model is a good approximation for scenarios where items are
likely to have a common complementarity structure (e.g., the bundle of left and right shoes
is valuable, while each item in isolation is not).

As an example consider the case of two auctions (K = {1, 2}) that we study in detail
in the rest of the paper. Let α = φ({1}), β = φ({2}), and γ = φ({1, 2}) denote the value
from winning only the first auction, only the second auction, and both auctions, respectively.
Then, having α = β = γ = 1 corresponds to a setting of perfect substitutes and free disposal.
That is, a bidder does not gain from winning multiple items, but there is no cost either (not
including any additional payments from winning multiple auctions). Our computational and
analytical techniques do not rely on the assumption of free disposal, and, for completeness,
we consider complementarity structures where free disposal does not hold: i.e., the values
0 ≤ γ ≤ min(α, β). At its extreme, γ = 0, we have valuations where winning both items
results in zero value (this could be interpreted as the cost of disposal of the second item
being equal to the independent value of the first item). Furthermore, α = β = 0 and γ = 1
represents the case with perfect complements. That is, a bidder only receives utility from
winning both items. Finally, setting γ = α + β means that the items are independent.

In addition, we can model auctions selling heterogeneous items. For example, β = 2α and
2α ≤ γ ≤ 3α model the case when the item sold in the second auction is twice as valuable
as the item from the first auction, and these items exhibit some degree of substitutability.
Such preferences could arise, for example, when the same type of item is sold in two different
quantities (e.g., 1-liter and 2-liter cartons of milk), but having both is more than a bidder
typically needs.

The assumption of a common complementarity structure φ enables us to model combi-
natorial valuations while keeping bidder types single dimensional. Alternatively, true combi-
natorial valuations would endow each bidder with his own combinatorial structure, making
each type 2|K|-dimensional. This more general model is left open for future work (our ex-
tension to multi-parameter domains in Appendix A.2 may be helpful). Thus, in the present
work we focus on the common complementarity structure.

Given a complementarity structure φ, the expected utility of a bidder from playing action
a ∈ A is:

û(θ, a, h) = θ
∑

η⊆K

φ(η)q(a, η, h)− cost(a, h) (5)

where:

• q(a, η, h) is the probability that playing an action (bids) a ∈ A results in winning
exactly the set η of auctions, given the distribution of actions from the opponents, h.
In Appendix B we show how this probability is calculated (note that this is not trivial
since we have discrete bids and therefore need to take into account a tie breaking rule).

• cost(a, h) is the expected payment when placing action a and given distribution h.
Appendix B shows how this is calculated (as can be seen in the appendix, note that
the expected payment is simply the sum of the expected payment for each auction, and
so is much easier to calculate since this can be done independently for each auction).
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Parameter Value(s)
Number of auctions (k) 2
Number of bidders (n) 2,5,10
Number of bid levels per auction (|B|) 2,5,10
Type probability distribution (F ) Uniform([0, 1])
Complementarity structure (α,β) varies
Complementarity structure (γ) 0, .05, .1, . . . , 2.95, 3
Initialisation of FP beliefs random
Number of runs for each setting 30
Number of FP iterations per run 5000

Table 1: Experimental Settings

Importantly, note that expected utility û is linear in θ, which allows us to apply the
algorithms from Section 5.

6.2. Numerical Results

In this section we present equilibrium results obtained by running the fictitious play algorithm
described in Figures 1, 3, 4, and 5. The algorithm in Figure 3 is instantiated using Equation 5.
The details of the tie-breaking rule appear in Appendix B (throughout the analysis we
use the exact tie breaking rule unless specified otherwise). In the following, we start with
the experimental setup in Section 6.2.1. Then, in Section 6.2.2 we measure the empirical
convergence of the algorithm to an ε-Nash equilibrium. The actual equilibria obtained are
first discussed with only 2 bid levels per auction in Section 6.2.3 for homogenous items, and
in Section 6.2.4 for heterogeneous items. In Section 6.2.5 these results are extended to more
than 2 bid levels.

6.2.1. Experimental Setup

A game is specified by the number of auctions, the number of bidders, a set of possible bids,
a complementarity structure, and a distribution of agents’ types. In all of the experiments,
we focus on 2 auctions, and a uniform distribution of types between 0 and 1. We begin
the numerical investigation with the simplest possible setting: 2 bidders, 2 bid levels per
auction, and complementarity structures where the individual value of each item is the same
(i.e., the items sold at both auctions are identical). In this setting, we find an equilibrium for
each degree of complementarity from substitutes to complements. The observed equilibria
for this simple setting enable us to identify some properties that continue to hold in the
more complicated setting we consider next: auctions with more than 2 bidders, and auctions
selling different items. We then further expand the setting by considering more than 2 bid
levels.

An overview of various experimental settings is given in Table 1. Although we tested with
many other values as well, these are representative of the results that we obtained. The bid
levels in B are equally spaced between 0 and 1. This means that, if the number of bid levels
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is 2, then B = {0, 1}. On the other hand, if this is set to 5, then B = {0, 0.25, 0.5, 0.75, 1.0},
etc. Recall that the number of bid levels is per auction. This means that, for example, if this
number is 10, then the total number of actions for a bidder when there are 2 simultaneous
auctions is 102 = 100. Furthermore, random initialisation of the FP beliefs means that the
initial probability of each action is set randomly between 0 and 1, and then normalised so that
the probabilities sum to one (note that this is different from having each action played with
equal probability). These values are sampled anew for different runs of the same experiment.
Therefore, the (only) difference between runs is the initial FP beliefs (since the algorithm
itself is deterministic). The aim in having multiple runs is to see whether or not different
initial beliefs result in different equilibrium strategies being computed. When multiple runs
converge to the same ε-equilibria, we are more confident that a true equilibrium has been
identified as we describe next. We run each experiment 30 times to obtain statistically
significant results based on 95% confidence intervals.

6.2.2. Convergence and Scalability

In this section we empirically analyse to what extent the results converge, and the compu-
tational runtime required as we scale the number of bidders and bid levels. These results
provide a useful insight into the practical applications of the algorithm. In more detail, we
measure convergence in terms of the size of ε in the ε-Nash equilibrium (see Definition 2 in
Section 3). Recall that the ε of a given strategy s is given by the difference between the
utility obtained by playing a best response s∗ to hs and the utility from playing s when
the action distribution is hs: ε(s) = ũ(s∗, hs) − ũ(s, hs). In particular, we would like to
measure the ε of the strategy that can be constructed from the current FP beliefs, ht, using
the BeliefsToStrategy algorithm. Thus, we set s = BeliefsToStrategy(ht) and hs = ht.
In addition, to obtain a unit-free measure of convergence so that we can compare different
settings,15 we use a standard approach to normalise the difference, resulting in the so-called
relative error [56]:

error(t) =
ũ(s∗, ht)− ũ(BeliefsToStrategy(ht), ht)

ũ(s∗, ht)
(6)

Note that the error is guaranteed to be between 0 (the equilibrium) and 1 (as far as a strategy
can be from the equilibrium).

The results using this measure appear in Figure 6, which shows the percentage of runs
that converge to a given error within a number of iterations, for all settings described in
Table 1, and where each setting is run 30 times, and α = .7 and β = 1 (the results are very
similar for other values of α and β). This figure shows that virtually all runs of the algorithm
converge to ε-equilibrium with a small error. Moreover, as the number of iterations increases,
the percentage of runs that are within ε of the equilibrium keeps increasing. This indicates
that, on average, once an ε-equilibrium for a given ε is reached, running extra iterations does
not lead to divergence.

15Equilibrium utility for different complementary structures could be very different. Thus, the same
absolute difference may constitute 1% of utility for one complementarity structure, and 200% for another.
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Figure 6: Percentage of runs converged within a given error in simulations with α = .7, β = 1, and the
parameters n, |B|, and γ taking each of the values described in Table 1. For each combination of parameters,
30 simulations were run.

A potential weakness of the ε-equilibrium concept is that, even though the gain from
deviation may be very small, the ε-equilibrium strategy may be arbitrarily far away from
an exact equilibrium strategy (see, e.g., [57]). We address this concern in two ways. First,
we run the same settings starting from different initial beliefs. If the algorithm consistently
converges to the same strategy,16 this increases our confidence that the true equilibrium is
obtained (note that the converse is not true, since converging to different strategies could
simply mean that there exist multiple equilibria). We found that, using our algorithm, all
of the simulations for 2 bid levels (Sections 6.2.3 and 6.2.4), as well as the simulations with
more bid levels for auctions selling weakly complementary items (i.e., γ ≥ α+β), converged
in the latter stronger sense.

Second, we compare the strategies with analytical results for settings where these can be
derived. In particular, for a special case of 2 bidders, 2 auctions, and 2 bid levels, we are
able to derive equilibria analytically (our derivation is discussed in Section 7.1). We see that
the analytical results are identical to the equilibrium results obtained computationally in
Section 6.2.3. Thus, in this special case, ε-equilibria obtained numerically are approximating
exact pure-strategy equilibria. Although we do not have a theoretical proof of convergence
in general, we note that the equilibria we obtain for variants of this special case (e.g., with
more than 2 bidders or with heterogeneous items) follow the same structure, which we take

16As measured, for example, by a negligibly small Euclidean distance between the action distributions
from different runs after a fixed number of iterations.
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Figure 7: Average number of iterations required to reach error = 0.01 (left) and time per iteration (right)
for different values of n and different preference structures with β = 1. Here, we use the exact tie breaking
rule (note that the number of bidders does not affect the time per iteration when using the approximate tie
breaking rule). The number of bid levels is set to |B| = 10. Results are averaged over the 15 fastest of 30
runs. The error bars denote the 95% confidence intervals.

as a reasonable evidence that these approximate equilibria are close (in terms of the strategy,
not just the utility) to exact equilibria.

We now consider the amount of computation required, both in terms of the number of
iterations, as well as time elapsed before convergence to an ε-Nash equilibrium. In these
experiments, we choose error = 0.01 (i.e., where the error is no more than one percent of
the total utility), but the results show similar trends for other values. In particular, we are
interested to see how our algorithm scales for the simultaneous auctions setting with k = 2
auctions, when we increase the number of bidders and the number of discrete bid levels.
Although each experiment is run 30 times with different initial beliefs, the results in this
section show the average over the 15 runs with the lowest runtime. We do this because
the results vary depending on the initial beliefs, and we see that, while in most cases the
results converge within a couple of hundred iterations, there are a few outliers which skew the
results and take much longer or do not converge to the required error within the maximum
numbers of iterations (which was set to 2500 for these particular experiments). We avoid
these outliers by taking the top half of the runs. Furthermore, we argue that, in practice, it
is possible to run a number of experiments in parallel to see which one converges first, which
would have the same effect. All of the experiments were run on a Linux cluster with 2.27
Ghz Nehalem processors and the simulation was implemented in Java.

There are two factors that determine the total computation time: the number of iterations
required and the computation time for each iteration. The effect of the first factor can be
seen in Figures 7(left) and 8(left) which show the average number of iterations required to
reach the equilibrium, as we increase the number of bidders, respectively the number of bid
levels per auction, for a variety of preference structures. This result shows that the number
of required iterations always increases as the number of bidders increases, but typically
flattens out as we increase the number of bid levels. An increase in the number of iterations
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Figure 8: Average number of iterations required to reach error = 0.01 (left) and time per iteration (right)
for different values of |B| and different preference structures with β = 1. The number of bidders is set to
n = 10, and the approximate tie breaking rule is used. Results are averaged over the 15 fastest of 30 runs.
The error bars denote the 95% confidence intervals.

is indicative of the difficulty of the problem, and this suggests that problems with more
bidders are more challenging to solve, which seems intuitive. In most cases, however, the
increase seems to be linear or even sublinear, and so has relatively little impact on the final
computation. Interestingly, the preference structure also has a large effect on the difficulty
of the problem, and generally increasing the asymmetry between the two auctions increases
the number of iterations required. On the other hand, increasing the number of bid levels
merely increases the granularity and, for a given relative error, this has little effect on the
number of iterations needed to converge.

Whereas the algorithm scales relatively well in terms of the number of iterations for
the simultaneous auctions domain, it is less promising when we consider the computation
required for each iteration. Here, the computation required is mainly due to computing the
utility lines (the UtilityLines algorithm in Figure 3, which requires finding the slope and
intercept in Equation 5), and computing the best response (i.e., the BestResponse algorithm
in Figure 4).17 We first consider the effect of the number of bidders which, due to the tie
breaking rule, affects the computation of utility lines. Note that, from Appendix B, we
can see that, to compute the exact probability of winning, we need to consider all possible
numbers of ties in each auction. As a result, for m = 2 auctions the computation required
scales in the order O(n3) with the number of bidders. The empirical results in Figure 7
(right) are for the same settings as before, and show the average real time (in seconds)
required to compute an iteration, as we increase the number of bidders. Note that, as we
can expect, the number of bidders has a large impact on the computation, but the preference

17Note that the computation of the BeliefsToStrategy algorithm is negligible compared to the other
algorithms since the main part consists of sorting the actions by slope. Furthermore, the BeliefsToStrategy
algorithm is only required to compute the relative error (Equation 6), and the strategy itself once the process
has converged.
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structure does not.
Clearly, we can do much better by simply using an approximation of the tie breaking

rule, and a simple approximation which scales well with the number of bidders is given in
Appendix B.1. Using this approximation, the increase in computation due to an increase
in the number of bidders becomes negligible. Furthermore, we empirically consider the
additional error (in terms of the ε-Nash) introduced by this approximation (we do so by
computing the best response both with and without the approximation, and computing the
error in both cases). From this we can determine that the error decreases and goes to zero
as the number of bid levels goes to infinity, but empirically we find that the error is already
very small for small numbers of bid levels. For example, the average additional error is less
than 0.003 when the number of bid levels is 20.

In terms of the runtime when increasing the number of bid levels, in the case of k =
2 the number of actions is equal to |B|2, where |B| is the number of bid levels, and so
the time complexity of a single iteration is at least O(|B|2). Furthermore, as discussed
in Section 5.1, the time complexity for finding the best response using our algorithm is
O((|B|2)2) = O(|B|4). This is consistent with the empirical results depicted in Figure 8(right)
which show the time per iteration when using the approximate tie breaking rule, as the
number of discrete bid levels increases.18 As a result, for k = 2, we can easily compute
results for settings of 100 discrete bid levels per auction.

6.2.3. Equilibrium Results for Homogenous Items

We first consider a simple setting where the items sold at each auction are identical, the
set of bids is B = {0, 1}, and there are only n = 2 bidders. Given that the auctions are
identical, we set α = β = 1, and vary the value of γ as specified in Table 1 and explained
in Section 6.1. This value ranges from γ = 0, which models a setting of extreme substitutes
without free disposal, to γ = 3 which corresponds to complements. In-between are perfect
substitutes (γ = 1) and independent auctions (γ = α + β = 2). In what follows we analyse
the results after 5000 iterations of the fictitious play algorithm (this number was found to
be sufficiently large for experiments to converge to a very small error).

To illustrate the results, Figure 9 shows the strategy and corresponding utility lines
generated by the BeliefsToStrategy procedure at the end of a particular run for a setting
with γ = 1.4 (i.e., a representative value where agents have substitutable preferences). This
figure shows that, for this setting, all 4 possible actions are played with non-zero probability.
Moreover, as can be expected, agents with higher types bid higher. Specifically, agents with
a low type play (0, 0); agents with a very high type play (1, 1), and in-between types play
either (0, 1) or (1, 0). From this example we can see several interesting trends. First, the
slopes of the utility lines are increasing as expected, except for actions (0, 1) and (1, 0) where
the slopes seem to be identical. Second, the actions (0, 1) and (1, 0) seem to be played
with equal probability (note that the type interval is of equal size and types are uniformly

18We note that there is considerable scope for optimising the code, e.g. by using a more efficient algorithm
for computing the upper envelope or by detecting and removing dominated utility lines (see Section 5.1).
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Figure 9: Equilibrium strategy and corresponding utility for γ = 1.4 and n = 2.

distributed). In fact, however, the fictitious play beliefs assign almost equal probabilities to
(1, 0) and (0, 1), and the slopes are almost identical. Furthermore, the slopes oscillate: if
at iteration t the action (1, 0) has a slightly higher slope, then at iteration t + 1 the action
(0, 1) has a higher slope. This is because the best-response strategy also oscillates, and only
one of the actions (1, 0) or (0, 1) is played with non-zero probability in best response, never
both, and these two actions alternate. This illustrates why a special BeliefsToStrategy
procedure is needed to find an equilibrium and why simply taking the best response does
not result in an equilibrium strategy.

In more detail, this fluctuating behaviour mimics the FP dynamics in games of complete
information such as matching pennies, where the best response for the mismatching player is
heads whenever the probability of playing tails is above one half, and tails otherwise. There,
the beliefs asymptotically approach equal probability of playing heads and tails yielding an
equilibrium strategy. Similarly, here the FP beliefs for actions (1, 0) and (0, 1) become in-
creasingly similar as the number of iterations increases. However, in contrast to complete
information games where FP beliefs define a unique mixed strategy, in games of incomplete
information, FP beliefs do not correspond to a single strategy. Thus, we need to convert FP
beliefs into a strategy that induces these beliefs and is roughly a best response to them. The
BeliefsToStrategy procedure accomplishes this goal as we proved in Section 5.2. Further-
more, in Section 7.1 we formally show that the strategy found by the BeliefsToStrategy

procedure in fact corresponds to the analytically derived strategy for the case of n = 2
bidders, 2 bid levels, and 2 auctions. In particular, we can see that, in equilibrium the two
actions (1, 0) and (0, 1) are always played with identical probability as expected.19

19It is worth noting that, in the homogenous case, there actually exists a continuum of equilibrium strate-
gies. This is because the agents are indifferent between playing (1, 0) and (0, 1). For example, the strategy
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value range bid
0 ≤ v ≤ h(0, 0) (0, 0)
h(0, 0) ≤ v ≤ h(0, 0) + h(1, 0) (1, 0)
h(0, 0) + h(1, 0) ≤ v ≤ h(0, 0) + h(1, 0) + h(0, 1) (0, 1)
h(0, 0) + h(1, 0) + h(0, 1) ≤ v ≤ 1 (1, 1)

Table 2: Strategy corresponding to beliefs h.

Next, we consider the equilibrium strategies for different values of γ. We can plot action
distributions more concisely than equilibrium strategies and take advantage of BeliefsToStrategy
to map each action distribution to a strategy. To this end, Figure 10 plots action distribu-
tions for each value of the complementarity parameter γ between 0 and 3. This figure (and
other figures that follow) shows action distributions (i.e., FP beliefs) after 5000 FP iterations,
and averaged over 30 runs. We omit the error bars in the figures because the confidence
intervals are very small and cannot be seen. This shows that, starting from different initial
beliefs, the beliefs converge to the same action distribution. An equilibrium strategy can
be recovered from the action distributions by applying the BeliefsToStrategy procedure.
The resulting strategy appears in Table 2.
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Figure 10: Action distributions (i.e., FP beliefs after 5000 iterations) for auctions with n = 2 bidders selling
homogeneous items.

As can be seen, the action distributions appear to be continuous in the complementarity
parameter γ (see Figure 10). Furthermore, the values of γ can be partitioned into three inter-

where the intervals for (0, 1) and (1, 0) in Figure 9 are swapped is also an equilibrium. Also, there exist
equilibria with more intervals. However, all of these equilibria result in the same action distribution, and
this action distribution is unique (see also Section 7.1).
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vals, each corresponding to a different set of actions being played with non-zero probability.
For low values of γ (in the case of highly substitutable items), action (1, 1) is never played;
in the mid-range, all 4 actions are played with non-zero probability; in the case of comple-
mentarities (1, 0) and (0, 1) are never played. We denote these intervals by [0, γ̂1], [γ̂1, 2], and
[2,∞], where γ̂1 is the lowest value of γ for which the bid (1, 1) is played in equilibrium. As
can be seen in Figure 10, for this particular setting the value of γ̂1 ≈ 1.2.20 Furthermore, as
soon as γ reaches the value of additive valuations (γ = α+ β = 2), the bids (1, 0) and (0, 1)
are not played at all as the agents try avoiding winning a single item. Interestingly, this is
consistent with existing analytical results in the literature for continuous bids whereby only
equal-bid pairs are played for items that display complementarity [1] (when the auctions are
identical).

γ ∈ [0, γ̂1] γ ∈ [γ̂1, 2] γ ∈ [2,∞] γ = ∞
f(0, 0) decreases increases decreases 0
f(1, 0) = f(0, 1) increases decreases 0 0
f(1, 1) 0 increases increases 1

Table 3: Equilibrium analysis for homogeneous items and 2 bid levels.

Table 3 further analyses the strategy and shows that equilibrium action distributions are
monotone in γ within each of the intervals (the values for γ = ∞ are based on simulations for
large (but finite) values of γ). Furthermore, the probability of playing the “highest” possible
bid of (1, 1) increases as the items become more complementary. In fact, we observe that, in
the limit, the probability of bidding (1, 1) approaches 1 from below. However, for any finite
γ, the bid (0, 0) is played in equilibrium by the types that are small enough, resulting in a
positive h(0, 0).

In the remainder of this section, we show that our technique can be used to derive
equilibria for more than 2 bidders. The results for 5 and 10 bidders are shown in Figure 11.
We observe the pattern identified for 2 bidders continues to holds for 5 and 10 bidders. In
particular, we observe the same types of interval, where only the value of γ̂1 (the lowest γ
for which the action (1, 1) is played) changes. Furthermore, the monotonicity results shown
in Table 3 are identical for these intervals. Comparing across the graphs, we notice that γ̂1
increases with the number of bidders. That is, the items must display more complementarity
for (1, 1) to be played in equilibrium when there is more competition. This is a result of an
increasing cost associated with the bid (1, 1): the same strategy s results in a higher (second)
price as the number of bidders playing the strategy increases. This leads to a higher expected
cost of winning with the bid of 1, discouraging bidding 1 unless the type is sufficiently high.
This effect is also reflected in a lower probability of playing (1, 0), (0, 1), and (1, 1) across γ
when n = 10 compared to when n = 5.

20We derive the exact value in Section 7.1.
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Figure 11: Action distributions for auctions selling homogeneous items.

6.2.4. Equilibrium Results for Heterogeneous Items

Our next set of results considers auctions selling different items and where an agent has
different valuations for these items. To illustrate the effect of the degree of asymmetry, we
run two sets of experiments for different relative values of the items. In the first set, the
value of the item sold in one auction is .7 of the value of the item sold in the other auction
(α = .7, β = 1). In the second set of experiments, one item is much less valuable: its value
is only .3 of the value of the other item (α = .3, β = 1). Notice that the case of additive
valuations, beyond which the items become complementary, occurs at γ = α + β, which is
γ = 1.7 for the first case and γ = 1.3 in the second.

Action distributions for each setting with 2, 5 and 10 bidders are plotted in Figure 12.
As before, these results are averaged over 30 runs. Since the item sold in the second auction
is more desirable, we can see that, in equilibrium, (0, 1) is played more often than (1, 0): the
curve h(0, 1) is above h(1, 0) for all values of γ. Furthermore, we note that, even though the
actions (1, 0) and (0, 1) are played on adjacent intervals, the switching of the optimal best
response in each iteration, which we observed in the homogeneous case, does not occur here.
After sufficiently many iterations, the bid (1, 0) is always selected by lower types, and the
bid (0, 1) is always selected by the higher types. Thus, Table 2 still provides an equilibrium
strategy.

We observe similarities in the equilibrium structure of homogeneous and heterogeneous
cases. After identifying the regions where the set of bids played with non-zero probability
does not change, we notice that as in the homogeneous case, the probability of each bid
within a region is monotonic in γ. The bids (1, 0) and (0, 1) are not symmetric when items
are heterogeneous, resulting in more regions. For n = 5 and n = 10, there are five regions
summarised in Table 4. Comparing the graphs for n = 5 and n = 10, we notice that as
in the homogeneous case, the probability of bidding (0, 0) is higher for n = 10 while the
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Figure 12: Action distributions for auctions selling heterogeneous items.
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γ ∈ [0, γ̂1] γ ∈ [γ̂1, γ̂2] γ ∈ [γ̂2, γ̂3] γ ∈ [γ̂3, γ̂4] γ ∈ [γ̂4,∞] γ = ∞
f(0, 0) decreases decreases increases decreases decreases 0
f(1, 0) 0 increases decreases 0 0 0
f(0, 1) increases increases decreases decreases 0 0
f(1, 1) 0 0 increases increases increases 1

Table 4: Equilibrium analysis for heterogeneous items and 2 bid levels. The bid (1, 1) is played with positive
probability for γ > γ̂2. The bid (1, 0) is played with zero probability for γ < γ̂1 (γ̂1 is zero for n = 5 and
n = 10) and γ > γ̂3. The bid (0, 1) is played with zero probability for γ > γ̂4.

probabilities of the other bids are lower. Comparing two complementarity structures α = .7
and α = .3, we observe that the bid (1, 0) is played more often when the item is worth .7
than when it is worth .3 (symmetrically, the bid (0, 1) is played less often). This corresponds
to a higher competition for the item when it is more desirable.

6.2.5. Equilibrium Results for Auctions with More Than Two Bid Levels

The strategies analysed so far were limited to two bid levels. However, our technique can be
applied to any number of bid levels. Here we discuss results for ten bid levels, but similar
results hold for other bid levels. With more than two bid levels, there is no easy way to
represent the results concisely for each value of γ as we did before (since the number of
possible actions is large). Therefore, we select a few representative values of γ to illustrate
the types of equilibria we find. To this end, Figure 13(a) shows equilibria for homogeneous
items with a small degree of complementarity. The bid submitted in each auction is plotted
as a function of type. We see that, consistent with the two-bid and continuous case (see
[10]), in the case of homogeneous items, the bids in both auctions are the same (i.e., the
lines coincide) and are given by an increasing step function. In fact, we observe that for any
γ > α + β, the equilibrium follows this structure.

In the case of complementary heterogeneous items, the strategy follows the same form:
the bid in each auction is an increasing step function, which is also consistent with the
results for 2 bid levels (see, e.g., Figure 9(a)). This can be seen in Figure 13(b), which shows
equilibrium strategies for heterogeneous items with a small degree of complementarity. We
tried many other parameter settings (i.e., changing the number of bidders, bid levels, and
complementarity structures with γ > α + β), and equilibria for all of them followed this
structure. Moreover, we noticed that, for high degrees of complementarity, the step functions
coincide as in the homogeneous case.

Our results for substitutable items (i.e., γ < α+β) are not as conclusive for two reasons.
First, even though convergence to ε-equilibrium with a low error was always observed, mul-
tiple runs did not always produce the same equilibrium. Second, we could not discern any
general patterns as we did in the complementary case. To illustrate this, we plot equilibrium
strategies for two settings where multiple runs led to the same equilibrium. For weakly sub-
stitutable items, the equilibrium resembles the increasing step functions which characterised
equilibria for complementary items. An example of this is in Figure 14(a). However, when
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Figure 13: Complementary items: equilibrium strategies for 5 bidders with 10 bid levels.

items are stronger substitutes, equilibrium is more difficult to describe. Figure 14(b) shows
equilibrium when items are close to being perfect substitutes.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

type

 

 

auction 1 bid
auction 2 bid

(a) α = .7, β = 1, γ = 1.6

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

type

 

 

auction 1 bid
auction 2 bid

(b) α = .7, β = 1, γ = 1

Figure 14: Substitutable items: equilibrium strategies for 2 bidders with 5 bid levels.

Before proceeding to an analytical characterization of equilibria, we note that all of the
numerical results described in this section are for two simultaneous auctions. The algorithm
is applicable to any number of auctions, however, we chose to study this case as it is already
complex enough (and has not been solved before). Furthermore, computing the fair tie-
breaking rule for three or more auctions becomes too cumbersome (the case with two auctions
is already complex enough as can be seen in Appendix B). We emphasise that settings
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with 3 and more simultaneous auctions can be studied with our FP algorithm given an
approximation of the tie-breaking rule.

In the next section we provide analytical characterization of equilibria. The equilibria
that we derive there analytically confirm our numerical results from in Section 6.2.3.

7. Analytical Characterisation of Equilibria for Linear Utilities

This section provides an analytical characterisation of equilibria for the case when agents’
utilities are linear in type (as defined in Section 5). In more detail, we reduce the problem
of finding equilibria to solving systems of polynomial equations. While this characterization
holds for all games with linear utilities, deriving equilibrium relies on the ability to solve the
systems exactly. We demonstrate that it can be done for simultaneous auction games studied
in Section 6.2.3. Specifically, we analytically derive the equilibria and prove their uniqueness
for each complementarity structure in simultaneous auctions for two homogeneous items
with two bid levels and two bidders.

We compare these equilibria to the empirical results in Section 6.2.3. This comparison is
important since, even though the empirical results generally converge to a very small error,
the small error only means that deviating from the approximate equilibrium strategy results
in at most a small benefit. However, there are no guarantees that the approximate equi-
librium is similar to the theoretical Nash equilibrium (in terms of the action distributions).
Given this, the results in this section confirm that the ε-Nash equilibria discovered for this
setting are the same as the unique exact equilibria derived below, and provide a validation
for the fictitious play approach (at least in the simultaneous auctions domain). This holds for
the entire range of complementarity structures for identical auctions studied in Section 6.2.3.

Our analytical characterisation begins with the analysis of best response. We continue
using the best response representation from Section 5.1. Thus, a best response is specified
by a set of m′ actions A′ ⊆ A ordered according to the slope and the corresponding intervals
(represented by an increasing vector c ∈ R

m′−1) on which each action is played: action a′j is
the best-response action on the interval given by [cj−1, cj]. This representation is without loss
of generality for pure-strategy best response: the actions of any best response are increasing
in the slope of the utility lines21 and a single action is played for each type. Whereas in
Section 5.1 we presented an algorithmic procedure for finding a best response (see Figure 4),
we now provide an analytical characterisation. First, we give a few observations that follow
immediately from the best-response structure.

Recall from equilibrium results for single-item auctions with continuous actions that the
equilibrium action (i.e., bid) increases in type. However, in our model the set of actions
is discrete and may have a more complex underlying structure (as would be the case, for
example, in the simultaneous auctions model, where bids are not single dimensional), and
there is no self-evident total order among them. To remedy this, we consider slopes of the
utility lines. These slopes provide a total order over actions. As we noted in Observation 1,

21This follows from the fact that the best-response function (see Equation (3)) is convex.
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the slopes of actions played in a best response strategy increase in type. Since an equilib-
rium is a best response, the same applies to equilibrium actions, providing an equilibrium
monotonicity condition.

Observation 2. The slope of the utility envelope of an equilibrium strategy increases in type.

A direct consequence of this is another observation.

Observation 3. If all slopes are distinct in equilibrium, an action cannot be played on more
than one interval.

For a given action distribution h, we say that ai � aj if the slope of ai’s utility line is
smaller than the slope of aj’s utility line. With this notation, a best response is characterised
by the following lemma.

Lemma 1. Given a set of available actions A = {a1 � . . . � am}, the pair (A′ = {a′1 �
. . . � a′m′}, c) is a pure-strategy best response to the action distribution h if and only if the
following equations are satisfied:

A′ ⊆ A (7)

0 < c1 < . . . < cm′−1 < 1 (8)

û(cj, a
′
j , h) = û(cj, a

′
j+1, h) ∀ 1 ≤ j ≤ m′ − 1 (9)

û(0, a′1, h) ≥ û(0, ak, h) ∀ ak ≺ a′1 (10)

û(cj, a
′
j , h) ≥ û(cj, ak, h) ∀ 1 ≤ j ≤ m′ a′j ≺ ak ≺ a′j+1 (11)

where c0 = 0, cm′ = 1, and a′m′+1 is a dummy action (i.e., it does not appear in A) and has
a slope above am (this dummy action is used in Equation (11)).

Proof. See Appendix C.

The analytical characterization of a best-response provides a partial characterization of
equilibrium: each equilibrium strategy is a best response. To be an equilibrium, the best-
response strategy must be a best-response to itself. We formalise this in the theorem below.

Theorem 4. A strategy s is a pure-strategy symmetric equilibrium of the game Γ = 〈N,A, u(·),Θ, F (·)〉
with û(θ, s(θ), hs) linear in θ if and only if:

s(θ) = a′j | θ ∈ [cj−1, cj]

where (A′ = {a′1 � . . . � a′m′}, c) satisfies Equations (7)-(11) as well as:

h(a′j) = F (cj)− F (cj−1) ∀ 1 ≤ j ≤ m′ (12)

h(aj) = 0 ∀aj /∈ A′ (13)
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Proof. A strategy is an equilibrium if and only if it is a best response (and thus can be repre-
sented by a pair (A′, c)) to itself: i.e., to the action distribution it induces. Equations (7)-(11)
ensure the strategy is a best response. The action distribution corresponding to a strategy
(A′, c) is easy to express analytically: the probability of playing an action a′j ∈ A′ is the
same as the probability that the type is from the interval [cj−1, cj] (Equation (12)) while the
probabilities of all other actions are zero (Equation (13)).

A direct way of searching for an equilibrium is for each possible subset of actions A′ ⊆ A
to check whether there exist parameters c satisfying best-response (8)-(11) and action dis-
tribution (12)-(13) equations. Although in general the equations can be arbitrarily complex
depending on the distribution of types and number of players, they are almost always numer-
ically solvable (see, e.g., [58, 59, 60, 61]). A complete analytical characterisation is tractable
when the number of actions is small. In the next section, we provide such a characterisation
for the simultaneous auctions setting with 2 bid levels studied in Section 6.2.3.

7.1. Two Identical Items, Two Bidders, Two Bids Per Auction, Uniform Distribution of
Types

In this section, we use the above characterisation to provide an analytical derivation of
the equilibrium for the simultaneous auctions setting studied numerically in Section 6.2.3.
Specifically, we restrict our attention to 2 auctions each selling an identical item and 2 bidders
with types uniformly distribution between 0 and 1. Furthermore, there are 2 bid levels per
auction: 0 and 1. The set of possible joint bids is therefore A = {(0, 0) (0, 1) (1, 0) (1, 1)}.
As before, we set α = β = 1. The only remaining complementarity parameter is γ, which
determines how much more or less an agent values having both items. In the following, we
analytically derive equilibria as a function of γ.

We start by making several observations. First, due to uniform distributions, the bid
distribution in Equation (12) induced by a strategy (A′, c) becomes:

h(a′j; c) = F (cj)− F (cj−1) = cj − cj−1

Second, we note that the actions (0, 1) and (1, 0) must be played with equal probability
in equilibrium. To see this, suppose that (1, 0) is played more often than (0, 1). Then,
the probability that the second auction has the price of 0 is higher. However, since the
agent is indifferent between winning either item the best response is to play (0, 1) more
often. Therefore, in equilibrium, the probabilities of playing (1, 0) and (0, 1) are the same,
and these actions have an identical utility line in the best response. As a result, the best
response interval on which either of the bids is played is continuous. That is, if these bids
are played in an equilibrium on the interval [c1, c2], then there is a continuum of equivalent
equilibria where:

s(θi) = (0, 1) or (1, 0) | f(1, 0) = f(0, 1) =
c2 − c1

2
if θi ∈ [c1, c2] (14)

This explains the switching behaviour we observed in fictitious play (see Section 6.2.3): at
the equilibrium point any order of bids (1, 0) and (0, 1) is acceptable. However, any small
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change away from h((1, 0)) = h((0, 1)), leads to a unique preferred order. For notational
convenience, since the probabilities of playing (1, 0) and (0, 1) are the same in equilibrium,
in the following we merge this action into a single action and refer to the merged action as
(1, 0). Specifically, saying that the action (1, 0) is played on the interval [cj−1, cj] means that
the actions (1, 0) and (0, 1) are played with equal probabilities on this interval.

Given the above observation, we can identify a unique order of slopes for each of the three
actions. Note that, regardless of h, the action (1, 0) wins in all the cases when the action
of (0, 0) wins. Similarly, the action (1, 1) wins in all the cases when the action (1, 0) wins.
Thus, (0, 0) has the lowest slope, (1, 0) is next, and (1, 1) has the highest slope. In particular,
notice that the order does not depend on γ. Now, following Observation 2, in equilibrium,
the slope increases in type, which means that (1, 0) (or (0, 1)) is played by higher types than
(0, 0), and (1, 1) is played by higher types than (1, 0). Note that this is consistent with the
equilibrium strategy described in Table 2.

The next step is to see which actions are played in equilibrium, and with what probabili-
ties. It is easy to see that for any action distribution, (0, 0) is the best response for types that
are low enough and, thus, is played with a positive probability in any equilibrium. However,
it is never the case that (0, 0) is the only action in the support. These observations imply
that the possible sets of equilibrium actions are {(0, 0) (1, 0)}, {(0, 0) (1, 1)}, and the set of
all actions {(0, 0) (1, 0) (1, 1)}. In fact, as we will show, each of these sets corresponds to an
equilibrium for some range of complementarity structures.

As an example, consider the set A′ = {(0, 0) (1, 0)}. In the notation of Lemma 1,
m′ = |A′| = 2 and, to establish the probability of each action being played we are looking
for the intersection point 0 ≤ c1 ≤ 1 satisfying:

u(c1, (0, 0), h(·; c)) = u(c1, (1, 0), h(·; c))
u(1, (1, 0), h(·; c)) ≥ u(1, (1, 1), h(·; c))

A solution exists only for 0 < γ ≤ 2(2−
√
2) and is unique:

c1 =
−4− γ +

√
16γ + γ2

−4 + 2γ

Carrying out a similar analysis, we derive equilibria for the other 2 action sets. Details of
these derivations can be found in Appendix D. These derivations show that there is a unique
equilibrium (except for variations between actions (0, 1) and (1, 0)) for each value of γ. More
formally:

Theorem 5. The simultaneous auctions game defined by 2 bidders, actions

A = {(0, 0) (0, 1) (1, 0) (1, 1)}

uniform distribution of types in [0, 1], and complementarity structure α = β = 1 and γ > 0
has a unique22 equilibrium defined below for every value of γ.

22We are treating all equilibria given by Equation (14) as one.
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For 0 < γ ≤ 2(2−
√
2) the equilibrium is A′ = {(0, 0) (1, 0)} and c = (c1) where:

c1 =
−γ − 4±

√
γ2 + 16γ

2(γ − 2)

For 2(2−
√
2) < γ < 2 the equilibrium is A′ = {(0, 0) (1, 0) (1, 1)} and c = (c1, c2) where:

c1 =
2
(
2− 2γ +

√
−γ2 + γ3

)

4− 4γ + γ2

c2 =
−6γ2 + 4

√
(−1 + γ)γ2 + 2γ

(
2 +

√
(−1 + γ)γ2

)

(−2 + γ)2
(
−γ +

√
(−1 + γ)γ2

)

For γ = 2 the equilibrium is A′ = {(0, 0) (1, 1)} and c = (.5).
For 2 < γ the equilibrium is A′ = {(0, 0) (1, 1)} and c = (c1) where:

c1 =
−6− γ +

√
−28 + 44γ + γ2

4(−2 + γ)

Figure 15 plots the action distributions defined in the theorem above. Notice that the
graph is virtually identical (up to very fine precision) to Figure 10 obtained via numerical
simulations. As we conjectured in Section 6.2.3, the equilibrium probabilities of each action
are continuous in γ. The structure identified in Table 3 is also confirmed. Using the analytical
characterisation, we determined that the smallest value of γ for which the bid (1, 1) is played
in equilibrium is 2(2−

√
2). This provides the exact value of γ̂1, which we roughly estimated

to be around 1.2 by looking at Figure 10.
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Figure 15: Analytical Results: action distributions for auctions with 2 bidders selling homogeneous items.
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Furthermore, the value of γ = 2 corresponds to independent auctions and equilibrium
can be found for each auction separately. The single auction equilibrium with possible bids
0 and 1 can be easily derived: the unique equilibrium is to bid 0 for the values below .5 and
to bid 1 for the values above .5. Combining individual equilibrium strategies, we get the
equilibrium strategy: bid (0, 0) for the values below .5 and (1, 1) for the values above. Each
of the two equilibrium bids has the probability of .5 as can be seen in Figure 15 for γ = 2.

Our analytical results show that, even though the approximate equilibrium strategy is
not guaranteed to be similar to the actual Nash equilibrium strategy, in practice, we find
that the empirical results are very close to the exact ones.

8. Conclusions

In this work we generalise FP to games of incomplete information with discrete actions and
continuous types. We prove that, if FP beliefs converge, a pure-strategy Bayesian-Nash
equilibrium can be constructed from the beliefs’ limit point. Our algorithm recovers this
equilibrium in case of (asymptotic) convergence. Furthermore, a pure ε-equilibria for any
ε > 0 can be obtained after a finite number of iterations.

The key distinguishing feature of our FP approach is that it works directly with contin-
uous types and remains scalable in the number of agents and actions. This is in contrast to
other currently available solvers (e.g., those listed in Section 2) that are typically only able
to find equilibria in settings with discrete type spaces of small size or two players. Although,
recent advances (such as graphical game representations and hybrid algorithms) allow dis-
crete solvers to scale to larger type spaces, they nevertheless fail to accommodate cardinally
larger continuous types. On the other hand, our algorithm is applicable to a large class of
games with continuous type spaces and each iteration of FP can be computed efficiently.
Furthermore, our FP algorithm can be applied to a wide range of auction settings, provid-
ing equilibrium calculations that otherwise would require specialised analyses and solution
algorithms.

To illustrate the efficacy of our algorithm, we perform a set of numerical experiments,
where FP was applied to a range of simultaneous auctions settings, where players have
various combinatorial preferences for the items. The experiments show that FP converges
to a very small ε in the settings we investigate, providing an empirical characterisation
of equilibria in a complex domain for which no general theoretical results exist. We then
analyse these equilibria in detail. The results show that, for weakly complementary items,
as we vary the complementarity structure, the changes in equilibrium bids are continuous
(there are no jumps). Furthermore, we observe that the bids are monotonic within each
range of the complementarity parameter, i.e. where the support of equilibrium bids does not
change. These characteristics continue to hold as we increase the number of bid levels and
the number of bidders, although the position of the regions shift.

While the numerical results show convergence to ε-Nash equilibria with very small ε (in
the order of less than 1% of the utility), there is no guarantee that this equilibrium is close
to the true pure Nash equilibrium (which is known to exist for our setting). Therefore,
to further support our results, in addition to the algorithm, we developed a full analytical
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characterisation for small settings. This shows that the equilibrium results are in fact unique,
and correspond to those found by the FP algorithm.

We observe numerical convergence of FP to ε-equilibrium in all of our experiments, and to
the same strategy in the experiments with complementary items. However, at the moment,
we are not able to prove convergence analytically. The problem also proves elusive in games of
complete information where results are available only for restricted settings (see, e.g., [7, 15]).
In fact, there are counter examples where FP is known not to converge. Identifying restricted
settings of incomplete information where the generalised version of fictitious play provably
converges remains open for future work.

Also open for future research are applications of the technique presented here to other
domains (e.g., multi-unit or combinatorial auctions), both as a means of testing the conver-
gence properties of FP, and as a means of obtaining numerical solutions to initiate a study
of equilibrium properties in these domains. In fact, the technique outlined in this paper
has been recently applied to compute equilibrium trading strategies in simultaneous double
auctions in [54]. The authors show that in such settings, the FP algorithm consistently
converges, allowing equilibrium trading strategies to be identified. There, the authors go
even beyond a simple double auction to multiple simultaneous double auctions, where both
buyers and sellers need to choose a double auction where they place bids and asks respec-
tively. This setting is complex due to the presence of both positive and negative networks
effects; buyers are attracted to double auctions with many sellers, but would like to avoid
competing buyers, and conversely for sellers.
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Appendix A. Extensions

In this appendix we review some of the assumptions we used in the main body of the paper
regarding the setting, utility functions and equilibria. Specifically, we consider, in turn,
the limitations of a symmetric setting, single-dimensional type and linear dependency of the
utility in type. In more detail, we show how the algorithm can be used to handle asymmetric
settings and give a sketch of extensions to our algorithms to resolve the remaining limitations.

Appendix A.1. Asymmetric Fictitious Play

It is straightforward to extend the algorithms presented in this paper to asymmetric settings
where each player has a potentially different action space, A, utility function, u(·), type space
Θ, and distribution over types F (·), resulting in asymmetric equilibria. Formally, an asym-
metric Bayesian game is defined by Γasym = 〈N, {Ai, ui(·),Θi, Fi(·)}i∈N〉.23 In equilibrium,
each player i ∈ N can have a different strategy si(·), resulting in action distribution hs,i(·).
Moreover, the expected utility function of a player i of type θ ∈ Θi when playing action ai
in an asymmetric setting given the action distributions of other players j ∈ N−i = N\i is
defined as:

ûi(θ, ai, {hs,j}j∈N−i
) = E{Yj∼hs,j}j∈N−i

[ui(θ, ai, {Yj}j∈N−i
)].

Similarly, the expected utility from playing a strategy s′(·) when players j 6= i play strategies
sj(·) is ũi(s

′, {hs,j}j∈N−i
) = Eθ∼Xi

[ûi(θ, si(θ), {hs,j}j∈N−i
)].

Given this we can define an asymmetric equilibrium as follows:

Definition 4. A strategy profile si : Θi → Ai, i ∈ N is an asymmetric pure-strategy equilib-
rium of a game Γasym if:

ũi(si, {hs,j}j∈N−i
) ≥ ũi(s

′, {hs,j}j∈N−i
) ∀ s′ ∈ Si, i ∈ N.

The remaining definitions can be modified analogously to the asymmetric setting.
We now turn to the FP algorithm in Figure 1. To handle asymmetric settings, the

algorithm now needs to compute the best response and maintain a separate set of beliefs for
each player i ∈ N , which need to be updated separately (note that, if a subset of the players
are symmetric, these can be grouped together into a single representative player). There
are two approaches in which the beliefs can be updated: simultaneously or sequentially. In
the former case, the best response for each player is calculated based on the beliefs from the
previous iteration (at time t). In the latter case, the FP beliefs of each player are updated
sequentially and these updated beliefs are used by the next player to calculate his best
response. Although simultaneous updating is most commonly used in standard FP, Berger
has shown that sequential updating actually has better convergence properties [62].

23Importantly, even though each agent has a different type distribution, Fi(·), we still require that these
distributions are common knowledge. That is, we do not consider settings where some players have asym-
metric beliefs about another player, and extending the FP algorithm to such settings is non-trivial.
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The amended FP algorithm containing both alternative updating rules is given in Fig-
ure A.16. Note that the BestResponse procedure requires a minor modification to the input
to include the index of the player whose strategy we are computing, and the action distri-
bution for each player j 6= i. However, no other modifications are needed to this algorithm.
Furthermore, note that the BeliefsToStrategy procedure needs to be executed for each
player. Finally, the convergence criterion needs to be modified since the best response can
produce a different ε for each player.

Algorithm AsymmetricFictitiousPlay

Input: game Γasym = 〈N, {Ai, ui(·),Θi, Fi(·)}i∈N〉,
initial beliefs h0

i , i ∈ N , update rule κ
Output: if converges, equilibrium strategy

1: set iteration count t = 0
2: repeat

3: for i ∈ N
4a: using simultaneous updating:

strategy s = BestResponse(Γasym, i, {ht
j}j∈N−i

)
4b: using sequential updating:

strategy s = BestResponse(Γasym, i, {ht+1
j }j<i, {ht

j}j>i)
5: compute the corresponding action distribution:

∀ai ∈ Ai : hs(ai) =
∫
s−1(ai)

fi(x)dx

6: update beliefs of player i:
∀ai ∈ Ai : h

t+1
i (ai) = κ(t)ht

i(ai) + (1− κ(t))hs(ai)
7: end for

8: set t = t+ 1
9: until converged

10: return {BeliefsToStrategy(ht+1
i )}i∈N

Figure A.16: Fictitious play algorithm for asymmetric games of incomplete information.

Appendix A.2. Multi-dimensional types and non-linear utility

First, taking a closer look at the FictitiousPlay algorithm, depicted in Figure 1, it is easy
to see that it does not directly depend on the type space dimensionality. Rather, it was
in the best response calculation and the BeliefsToStrategy procedure, where we made
explicit use of our assumptions. Therefore, it is for these procedures that we need to relax
our assumptions of type-space dimensionality and utility linearity.

Second, both the calculation of the best response and the BeliefsToStrategy procedure
are based on a particular division of the type space: specifically, type space breakdown to
action-equivalent subsets with respect to the best response upper envelope. Formally, for a
belief h, we define for every action a ∈ A a set Ña(h) = {θ ∈ Θ|û(θ, a, h) ≥ û(θ, a′, h) ∀a′ ∈
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A}. Given a particular lexicographic ordering � of actions, we can refine these sets into a

collection of disjoint sets {Ia}a∈Ã⊆A (e.g., by setting Ia = Ña \
⋃

a′�a

Ña′ , and purging empty

Ia’s). Notice, that the collection {Ia}a∈Ã is a cover of the type space, so that
⋃
a∈Ã

Ia =

Θ. In fact, a specific collection would fully characterise the best response to a belief h.
In particular, in the case of single-dimensional utilities, this led to an interval structure.
Notice, that BeliefsToStrategy simply utilises the collection {Ia}a∈Ã to define a policy
s(θ) = argmax

a∈Ã
Ia(θ).

Furthermore, formally the construction of the collection {Ia} needs no assumption on the
dimensionality, nor linearity of the utility function. Rather, these properties effect only the
efficiency of that collection’s representation. For instance, in the case of single-dimensional
type space, the ordering of actions (by slope of their utility) created a linear fully ordered
structure – the interval structure. On the other hand, for a two dimensional type space,
such an ordering is infeasible. However, alternative representations of such collections are
possible. In fact, the field of computational geometry provides an extensive arsenal of such
representations and algorithms ranging from envelopes of piecewise linear functions (see,
e.g., [63]) to complex analytical curves (see, e.g., [64]).

Finally, notice that only the proof of Theorem 3 has made any use of the interval structure.
Specifically, it relied on the fact that the geometry of the interval structure is similar for
similar beliefs ht and h∗. This statement, however, can be reproduced for any representation
of the collection {Ia}, be that a set of intervals or a Delaunay triangulation, as long as it
is consistent with some partial transitive ordering of actions for all beliefs h. Hence, by
augmenting the representation of {Ia}, both the BeliefsToStrategy procedure and the
Theorem 3 can be adapted to hold for any dimensionality of the type space (or a non-linear
utility).

Appendix B. Expected Utility With Fair Tie-Breaking

In this section we provide a computationally efficient procedure to compute the expected
utility of an agent when there arem = 2 simultaneous auctions, when using a fair tie breaking
rule. This tie breaking rule means that, if k players place the same bid in a particular auction,
the probability of winning that auction is given by 1/k. For convenience, we assume that
both auctions have the same bid levels. Let B denote the set of discrete bids in a particular
auction. Then the set of actions A = B × B available to each bidder is given by bid pairs
b = (b1, b2) ∈ A, where b1 and b2 are the bids in auctions 1 and 2 respectively.

Recall from Section 6.1 that the expected utility from playing an action b ∈ A is given
by:

û(θ,b, h) = θ
∑

η⊆K

φ(η)q(b, η, h)− cost(b, h) (B.1)

In the following, we consider the left term first (which computes the expected value), followed
by the right term (which computes the expected cost). Let Pr(Wi), Pr(Wi ∩ Wj), and
Pr(Wi ∩ W̄j) denote the probability of winning auction i, the probability of winning both
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auctions i and j, and the probability of winning auction i but not j. Then for K = {1, 2},
we can rewrite the first term (ignoring the type) in equation B.1 as follows:

∑

η⊆{1,2}

φ(η)q(b, η, h) = αq(b, {1}, h) + βq(b, {2}, h) + γq(b, {1, 2}, h)

= αPr(W1 ∩ W̄2) + β Pr(W̄1 ∩W2) + γ Pr(W1 ∩W2)

= α[Pr(W1)− Pr(W1 ∩W2)] + β[Pr(W2)− Pr(W1 ∩W2)] + γ Pr(W1 ∩W2)

= αPr(W1) + β Pr(W2) + [γ − α− β] Pr(W1 ∩W2),

where α = φ({1}), β = φ({2}), and γ = φ({1, 2}) as defined in Section 6.1. From the
equation, we can see that, in order to calculate the expected value, it is sufficient to calculate
Pr(W1), Pr(W2), and Pr(W1 ∩W2). In the following, we derive these probabilities based on
the action distribution h.

Let H(b) =
∑

b′∈A:b′
1
<b1&b′

2
<b2

h(b′). It is convenient to think of the function H as a

(multi-dimensional) cumulative distribution, where h is the corresponding probability mass
function. In the following, we will also use the notation H(b1, b2) = H(b) and h(b1, b2) =
h(b). Note that we define the inequalities in H to be strict. In addition, we use ≤ bi
to denote a non-strict relationship for a particular auction. For example, H(b1,≤ b2) =∑

b′∈A:b′
1
<b1&b′

2
≤b2

h(b′).24 Furthermore, let X1 and X2 denote random variables representing

the bids placed by a bidder in auctions 1 and 2 respectively.25 We can then use the functions
H and h to define the following events:

1. Pr(X1 < b1 ∩X2 < b2) = H(b1, b2): win both auctions,

2. Pr(X1 = b1 ∩X2 = b2) = h(b1, b2): tie in both auctions,

3. Pr(X1 = b1 ∩X2 < b2) = H(≤ b1, b2)−H(b1, b2): tie in auction 1 and win auction 2,

4. Pr(X1 < b1 ∩X2 = b2) = H(b1,≤ b2)−H(b1, b2): win auction 1 and tie in auction 2,

5. Pr(X1 > b1 ∩X2 > b2) = [1−H(≤ b1,≤ b2)]: lose both auctions.

Note that the above events are mutually exclusive and always sum to one. If we define
Hi(bi) =

∑
b′∈A:b′i<bi

h(b′) to be the cumulative bid distribution for a particular auction, we
can similarly derive mutually exclusive events for a single auction:

1. Pr(Xi < bi) = Hi(bi): win auction i,

2. Pr(Xi = bi) = Hi(≤ bi)−Hi(bi): tie in auction i,

3. Pr(Xi > bi) = [1−Hi(≤ bi)]: lose auction i.

24In practice, these functions can be implemented using a single look-up table, which can be computed in
linear time and needs to be generated only once at the beginning of each FP iteration.

25Note that these random variables consider the bids of one of the bidders, and not all bidders. Since
bidders are assumed to be symmetric it does not matter which particular one. Also, note that the variables
are interdependent since the actions specify bid pairs. Therefore, we cannot assume that, e.g., Pr(X1 <
b1 ∩X2 < b2) = Pr(X1 < b1) · Pr(X2 < b2).
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The above provides the probabilities of certain events for a single other opponent. How-
ever, since there are n − 1 opponents, we need to calculate the distribution of the first-
order statistic. When the bids are continuous, this is straightforward since (for example)
Pr(Xi < bi) = Pr(Xi ≤ bi), and so Pr(Wi) = Pr(Xi < bi)

n−1 = Hi(bi)
n−1. However, in the

case of discrete bids, we also have to account for the tie breaking rule. For the single-auction
case, Pr(Wi) becomes:26

Pr(Wi) =
n−1∑

x=0

1

x+ 1

(
n− 1

x

)
Pr(Xi = bi)

x Pr(Xi < bi)
n−1−x (B.2)

In the case of two auctions, this becomes much more complex since we need to enumerate
over three possible events where ties occur: ties can occur in auction 1 only, in auction 2 only,
or in both auctions. In the following, let x denote the number of bidders that correspond to
first event, y to the second event, and z to the third event. Then, Pr(W1 ∩W2) becomes:

Pr(W1 ∩W2) = (B.3)

n−1∑

x=0

n−1−x∑

y=0

n−1−x−y∑

z=0

(
n− 1

x

)(
n− 1− x

y

)(
n− 1− x− y

z

)
1

x+ z + 1

1

y + z + 1
×

Pr(X1 = b1 ∩X2 < b2)
x Pr(X1 < b1 ∩X2 = b2)

y Pr(X1 = b1 ∩X2 = b2)
z×

Pr(X1 < b1 ∩X2 < b2)
n−1−x−y−z

The above completes the computation of the expected value. We now show how to com-
pute the final component of equation B.1, the expected cost cost(b, h). We note that,
unlike the probability of winning η out of K auctions, we can consider the expected costs
for each auction separately thanks to linearity of expectation. Specifically, cost(b, h) =
cost1(b1, h)+ cost2(b2, h), where costi(bi, h) is the expected cost of auction i when bidding bi
in this auction. From [1] we know that for a single second-price auction, in the continuous

case, the expected payment is equal to: costi(bi, h) =
∫ bi

0
yg(y)dy, where g(y) is the density

function of the first-order statistic of the bid distribution. However, with discrete bids, we
need to consider two cases separately: when the second-highest bid in auction i is strictly
less than bi, then the bidder wins for sure. On the other hand, if the second-highest bid is
equal to bi, the probability of winning depends on the tie breaking rule. This results in the
following equation:

costi(bi, h) =
∑

x∈B|x<bi

x
[
(Hi(≤ x))n−1 − (Hi(x))

n−1
]
+ bi

[
Pr(Wi)− (Hi(x))

n−1
]
, (B.4)

where [(Hi(≤ x))n−1 − (Hi(x))
n−1] is the marginal bid distribution and corresponds to g(y)

in the continuous case. This completes the expected utility calculation.

26Note that this is similar to Example 1 in Section 3, except that the distribution also takes into account
the fact that the actions are joint bids over multiple auctions.

51



As can be seen, due to the tie breaking rule, calculating the expected utility is compu-
tationally demanding. In particular, Equation B.3 considers all combination of ties which
can simultaneously occur in 2 auctions (note that we cannot consider the auctions indepen-
dently as the bid probabilities in the two auctions are correlated), and its computation is in
the order of O(n3). This complexity increases rapidly for more than 2 auctions. Hence, in
the next section we consider a way to approximate the expected utility concerning the tie
breaking.

Appendix B.1. Approximate Tie Breaking

The above shows that, while computing the expected cost component of the expected utility
is relatively easy since this can be done independently for each auction, the same is not true
for calculating the expected value, which involves calculating the probability of winning every
subset of auctions. In particular, the tie breaking rule increases the computation required
and does not scale well with the number of bidders and the number of auctions. To address
this problem, in this section we present an approximated tie breaking rule, which has been
used in some of the experiments in this paper (specifically, in Section 6.2.2).

In more detail, the approximation is based on the observation that, in the case of 2 auc-
tions, the exact probability of winning is always between H(≤ b1,≤ b2)

n−1 and H(b1, b2)
n−1.

The first term over-estimates the probability of winning, whereas the second term under-
estimates it. Given this, the approximate probability of winning both auction is defined
as:

P̃r(W1 ∩W2) = λH(≤ b1,≤ b2)
n−1 + (1− λ)H(b1, b2)

n−1, (B.5)

where λ is a parameter which can be tuned. In the experiments, we used the value λ =
1/3 which performed well in general compared to the exact solution, although we did not
excessively tune it. Note that this approach can also be applied to a single auction, and
more than 2 auctions.

Appendix B.2. Two Bidders

Here, we consider a special case of the equations with the exact tie breaking rule for n = 2.
Instantiating Equation B.3 for n = 2, this results in the following 4 combinations of (x, y, z):
(0, 0, 0); (0, 0, 1); (0, 1, 0);(1, 0, 0). Expanding the equation we get

Pr(W1 ∩W2) =

H(b1, b2)︸ ︷︷ ︸
0,0,0

+
1

4
h(b1, b2)
︸ ︷︷ ︸

0,0,1

+
1

2
[H(b1, b2 + ε)−H(b1, b2)]
︸ ︷︷ ︸

0,1,0

+
1

2
[H(b1 + ε, b2)−H(b1, b2)]
︸ ︷︷ ︸

1,0,0

=

1

4
h(b1, b2) +

1

2
H(b1,≤ b2) +

1

2
H(≤ b1, b2)

In the case of a single auction, we get:

Pr(Wi) = Hi(bi) +
1

2
[Hi(≤ bi)−Hi(bi)] =

1

2
[Hi(≤ bi) +Hi(bi)] (B.6)
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Instantiating Equation B.1, we get

u(θ,b, h) = θ (αPr(W1) + β Pr(W2) + (γ − α− β) Pr(W1 ∩W2))− cost(b, h)

= θ(α
1

2
[H1(≤ b1) +H1(b1)] + β

1

2
[H2(≤ b2) +H2(b2)] +

(γ − α− β)[
1

4
h(b1, b2) +

1

2
H(b1,≤ b2) +

1

2
H(≤ b1, b2)])− cost(b, h)

The expected payment for auction i simplifies to

costi(bi, h) =


 ∑

x∈B|x<bi

x [Hi(≤ x)−Hi(x)]


+

1

2
bi [Hi(≤ bi)−Hi(bi)]

Appendix B.3. Two Bids

Further assume the only available bids levels are B = {0, 1}. This results in 4 possible
bid pairs as actions. We denote the probability of encountering each bid pair, and the
corresponding cumulative distribution as follows:

h(0, 0) = x H(0, 0) = 0
h(1, 0) = y H(1, 0) = 0 H(≤ 1, 1) = x+ y
h(0, 1) = z H(0, 1) = 0 H(1,≤ 1) = x+ z
h(1, 1) = 1− x− y − z H(1, 1) = x H(≤ 1,≤ 1) = 1

The corresponding distributions for single auctions are:

H1(0) = 0 H1(1) = x+ z H1(≤ 1) = 1
H2(0) = 0 H2(1) = x+ y H2(≤ 1) = 1

This then results in the following expected utility for each action:

û(θ, (0, 0), h) = θ[α(
1

4
x+

1

2
z) + β(

1

4
x+

1

2
y) + γ

1

4
x]

û(θ, (1, 0), h) = θ[α(−1

4
y +

1

2
z +

1

2
) + β

1

4
y + γ(

1

4
y +

1

2
x)]− 1

2
(1− x− z)

û(θ, (0, 1), h) = θ[α
1

4
z + β(

1

2
y − 1

4
z +

1

2
) + γ(

1

4
z +

1

2
x)]− 1

2
(1− x− y)

û(θ, (1, 1), h) = θ[α(−1

4
x− 1

4
y +

1

4
z +

1

4
) + β(−1

4
x+

1

4
y − 1

4
z +

1

4
) + γ(

3

4
x+

1

4
y +

1

4
z +

1

4
)]

− 1 + x+
1

2
(y + z)
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Appendix B.4. Identical Auctions

The auctions are identical when α = β. Since we do not restrict γ, we can without loss of
generality set α = β = 1.

û(θ, (0, 0), h) = θ[
1

2
x+

1

2
y +

1

2
z + γ

1

4
x]

û(θ, (1, 0), h) = θ[
1

2
z +

1

2
+ γ(

1

4
y +

1

2
x)]− 1

2
(1− x− z)

û(θ, (0, 1), h) = θ[
1

2
y +

1

2
+ γ(

1

4
z +

1

2
x)]− 1

2
(1− x− y)

û(θ, (1, 1), h) = θ[(−1

2
x+

1

2
) + γ(

3

4
x+

1

4
y +

1

4
z +

1

4
)]− 1 + x+

1

2
(y + z)

We are interested in utilities under symmetric equilibria. In all such equilibria the proba-
bilities of playing bids (1, 0) and (0, 1) are the same: i.e., y = z.

û(θ, (0, 0), h) = θ[
1

2
x+ y + γ

1

4
x]

û(θ, (1, 0), h) = u(θ, (0, 1)) = θ[
1

2
y +

1

2
+ γ(

1

4
y +

1

2
x)]− 1

2
(1− x− y)

û(θ, (1, 1), h) = θ[(−1

2
x+

1

2
) + γ(

3

4
x+

1

2
y +

1

4
)]− 1 + x+ y

Appendix C. Proof of Lemma 1

Proof. We need to show that (A′, c) specifies an upper envelope of the utility lines {û(θ, aj, h)}mj=1.
Equations (7) and (8) simply limit attention to a convenient best-response representation,
which, as we noted is without loss of generality. A pair (A′, c) satisfying these two equations
defines a function:

g(θ) = û(θ, a′j, h) where j | θ ∈ [cj−1, cj]

First we show the “if” direction. Equation (9) guarantees that the function is continuous: at
each intersection point cj (where the function g(θ) switches from one utility line to another),
the values of adjacent utility lines are the same. This function is an upper envelope if no
utility line lies above it. Since each equation is a line, it is sufficient to check that at each
intersection point cj the value of g(θ) is at least as high as the value of all other utility
lines. In fact, it is enough to check each of the lines A \ A′ at exactly one cj as we argue
next. For a line ak ∈ A \ A′ we can uniquely identify a′j and a′j+1 such that a′j ≺ ak ≺ a′j+1.
Equation (11)27 checks that the utility from playing ak at the type cj is below the utility from

27Equation (10) covers the special case of a′
1
, the first action in A′: the value of g(θ) at 0 is checked to be

at least as high as the values of all utility lines with slopes below a′
1
.
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playing a′j (which, by Equation 9, is the same as the utility from playing a′j+1). Formally,
we have:

û(cj, ak, h) ≤ û(cj, a
′
j , h) = û(cj, a

′
j+1, h)

We first consider:

û(cj, ak, h) ≤ û(cj, a
′
j+1, h) (C.1)

Since two lines intersect at most once, and after the intersection, the line with the higher
slope is on top, Equations (9) together with a′1 ≺ . . . ≺ a′m′ imply:

û(cj+1, a
′
j+1, h) ≤ û(cj+1, a

′
j+2, h) ∀θ ≥ cj+1

û(cj+2, a
′
j+2, h) ≤ û(cj+2, a

′
j+3, h) ∀θ ≥ cj+2

. . .

û(cm′−1, a
′
m′−1, h) ≤ û(cm′−1, a

′
m′ , h) ∀θ ≥ cm′−1

Recalling that ak ≺ a′j+1 and applying the argument above to Equation (C.1), we get:

û(θ, ak, h) ≤ û(θ, a′j+1, h) ∀θ ≥ cj (C.2)

Noting that û(cj, a
′
j+1, h) ≤ û(cj+1, a

′
j+1, h) and combining Equation (C.2) with the inequal-

ities above, we get:

û(ci, ak, h) ≤ û(ci, a
′
i, h) ∀i ≥ j + 1 (C.3)

In other words, if a utility line with a smaller slope than a′j+1 is below a′j+1 at cj, then it is
also below g(θ) for all types above cj. It remains to consider the case of a′j ≺ ak:

û(cj, ak, h) ≤ û(cj, a
′
j , h) (C.4)

Analogously to the argument above, before two lines intersect, the one with the lower slope
is above the one with the higher slope. Hence, Equation (9) and a′1 ≺ . . . ≺ a′m′ imply:

û(cj−1, a
′
j, h) ≤ û(cj−1, a

′
j−1, h) ∀θ ≤ cj−1

û(cj−2, a
′
j−1, h) ≤ û(cj−2, a

′
j−2, h) ∀θ ≤ cj−2

. . .

û(c1, a
′
2, h) ≤ û(c1, a

′
1, h) ∀θ ≤ c1

Recalling that ak ≺ a′j+1, and applying the argument above to Equation (C.4), we get:

û(θ, ak, h) ≤ û(θ, a′j , h) ∀θ ≤ cj (C.5)

Noting that û(cj−1, ak, h) ≤ û(cj−1, a
′
j, h) and combining Equation (C.5) with the inequalities

above, we get:

û(ci, ak, h) ≤ û(ci, a
′
i, h) ∀i ≤ j (C.6)
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By Equations (C.3) and (C.6), the line for ak is below g(θ) at all intersection points ci and
therefore at all types. This argument applies to all lines ak, proving that (A′, c) is a best
response.

The “only if” part of the proof is trivial: violating Equation (9) for any j results in a
discontinuous function, while a best response must be continuous. Furthermore, if any of
the inequalities in Equations (10) or (11) do not hold, then a better response is available,
again contradicting the best response.

Appendix D. Derivation of Equilibrium Strategies

Here we provide a derivation of the equilibria discussed in Section 6 and plotted in Figure 15.
The equilibrium bid distribution for a symmetric equilibrium (A′, c) is

h(bπ(j); c) = F (cj)− F (cj−1) ∀ 1 ≤ j ≤ |A′|
h(bj ; c) = 0 ∀bj /∈ A′

Plugging in the uniform distribution of types we get

h(bπ(j); c) = cj − cj−1 ∀ 1 ≤ j ≤ |A′|

As before, we use x, y, y, 1−x−2y to denote h(0, 0), h(1, 0), h(0, 1), and h(1, 1) respectively.
We present a complete derivation for A′ = {(0, 0) (1, 0)}. The piecewise linear strategy

(A′, c) consists of 2 intervals: bid (0, 0) is played on the interval θ ∈ [0, c1], bid (1, 0) on the
interval θ ∈ [c1, 1]. The strategy is given by a parameter 0 < c1 < 1. Using Lemma 1, (A′, c)
must satisfy

u(c1, (0, 0), h(·; c)) = u(c1, (1, 0), h(·; c)) (D.1)

u(1, (1, 0), h(·; c)) ≥ u(1, (1, 1), h(·; c)) (D.2)

h(0, 0) = x = c1 h(1, 0) = h(0, 1) = y =
1− c1

2
h(1, 1) = 0 (D.3)

Since we fixed A′, the only degrees of freedom are c and γ. We solve the first equation for
c1 as a function of γ and plug it into the second inequality to find the range of γ supporting
the equilibrium (A′, c).

Expanding u(c1, (0, 0), h(·; c)) = u(c1, (1, 0), h(·; c)), we obtain

c1[
1

2
x+ y + γ

1

4
x] = c1[

1

2
y +

1

2
+ γ(

1

4
y +

1

2
x)]− 1

2
(1− x− y)

Replacing x and y according to Equations D.3 and simplifying we obtain

c21(γ − 2) + c1(γ + 4)− 2 = 0

The roots of the quadratic equation are

c1 =
−γ − 4±

√
γ2 + 16γ

2(γ − 2)
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The roots are real only for γ ≤ −16 and γ ≥ 0∧ γ 6= 2. We are only interested in the roots
that satisfy 0 < c1 < 1. The root

−γ − 4−
√
16γ + γ2

2(γ − 2)

is never between 0 and 1: negative for γ = −16 and decreasing as γ decreases; equal to 1
for γ = 0 and increasing for γ ∈ [0, 2); approaching -1 from below for γ > 2. The other root

c1 =
−γ − 4 +

√
16γ + γ2

2(γ − 2)
(D.4)

is approaching zero from below for γ ≤ −16 as γ decreases. This root falls into the feasible
range 0 < c1 < 1 for γ > 0 (undefined for γ = 2): equals 1 at γ = 0 and approaches zero
from above as γ increases. Therefore, only Equation D.4 for γ > 0 may be supporting an
equilibrium. To be an equilibrium, it must satisfy Equation D.2. We find the values of γ > 0
where the condition is satisfied

[
1

2
y +

1

2
+ γ(

1

4
y +

1

2
x)]− 1

2
(1− x− y) ≥ [(−1

2
x+

1

2
) + γ(

3

4
x+

1

2
y +

1

4
)]− 1 + x+ y

Replacing x and y according to Equations D.3, then replacing c1 with Equation D.4, we get
after simplification

5γ2 + γ
√
16γ + γ2 − 24γ + 16

16(2− γ)
≥ 0

Solving the resulting inequality for γ, we obtain 0 < γ ≤ 2(2 −
√
2) giving us a full

characterization of equilibrium for A′ = {(0, 0) (1, 0)}: the strategy (A′, c) with c defined in
Equation D.4 is an equilibrium for 0 < γ ≤ 2(2−

√
2).There are no other equilibria with the

support A′ = {(0, 0) (1, 0)}.
Equilibria for A′ = A = {(0, 0) (1, 0) (1, 1)} and A′ = {(0, 0) (1, 1)} are derived simi-

larly28. The systems of equations that need to be solved are

u(c1, (0, 0), h(·; c)) = u(c1, (1, 0), h(·; c))
u(c2, (1, 0), h(·; c)) = u(c2, (1, 1), h(·; c))
0 < c1 < c2 < 1

h(0, 0) = c1 h(1, 0) = h(0, 1) =
c2 − c1

2
h(1, 1) = 1− c1 −

c2 − c1
2

and

u(c1, (0, 0), h(·; c)) = u(c1, (1, 1), h(·; c))
u(c1, (0, 0), h(·; c)) ≥ u(c1, (1, 0), h(·; c))
0 < c1 < 1

h(0, 0) = c1 h(1, 0) = h(0, 1) = 0 h(1, 1) = 1− c1

28The algebraic derivations in this Section were performed in Mathematica 7.0 [60]
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respectively.
The results above show that the equilibrium for each value of γ is unique (see Figure 15).
We omit algebraic derivations and only present the solutions describing equilibria. The

bids A′ = A = {(0, 0) (1, 0) (1, 1)} support the following unique equilibrium on 2(2−
√
2) <

γ < 2

c1 =
2
(
2− 2γ +

√
−γ2 + γ3

)

4− 4γ + γ2

c2 =
−6γ2 + 4

√
(−1 + γ)γ2 + 2γ

(
2 +

√
(−1 + γ)γ2

)

(−2 + γ)2
(
−γ +

√
(−1 + γ)γ2

)

The bids A′ = {(0, 0) (1, 1)} support the following unique equilibrium on 2 < γ

c1 =
−6− γ +

√
−28 + 44γ + γ2

4(−2 + γ)
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