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Overview CollabMap Provenance GraphsOverview
• Analytical study on various network measures of over 5,000 

provenance graphs from the crowdsourcing application CollabMap

• Findings include:

CollabMap Provenance Graphs
Crowdsourcing the identification of buildings and evacuation routes:

• Provenance graphs possess similar structural characteristics 
of real-world networks, such as having small diameters, power-
law degree distributions, and a similar densification pattern

• They are suitable for exploitation of existing network analysis 
tools for modelling, prediction, and inferencetools for modelling, prediction, and inference

• Provenance-specific network metrics were devised to gain insights 
about the structure of provenance graphs • City-wide mapping of buildings and evacuation routes for 

disaster-recovery simulations
• Results cross-checked by human users and automatically 

verified using Ordnance Survey maps
Examples of Practical Features

• Degree-distribution power-law exponent (DPE)

verified using Ordnance Survey maps
• Provenance recorded for auditing

data quality

DPE = 2.17 DPE = 4.11 DPE = 1.86

DPE = 3.09 DPE = 3.02 DPE = 4.11

A provenance graph of a typical CollabMap task in the Open 
Provenance Model’s graphical notations.

A plot of the number of CollabMap provenance graphs that 
contained any given number of processes (micro-tasks).

• Graph diameter: the longest 
distance in the graph, where 

Degree distributions according to edge type, with the values of the degree-distribution power-law exponent (DPE)

A provenance graph, in which artefacts are red, 
processes are green, and agents are blue.

Current Work
• Classification of provenance graphs, to provide capabilities for 

capturing, querying, and reasoning over provenance/trust/

distance in the graph, where 
the distance between two 
vertices is the length of the 
shortest path between them

• Maximum Finite Distance 

Evolution of graph diameter with the number of processes (micro-tasks) 
for up to 5,128 CollabMap provenance graphs

capturing, querying, and reasoning over provenance/trust/
reputation of the information

• Inference about missing links and nodes, and tracking time-
evolving graphs, through these metrics and Kronecker graphs 

• Semantic interpretation of the metrics, including their link with 

• Maximum Finite Distance 
(MFD): the longest shortest 
path between two node types

• Semantic interpretation of the metrics, including their link with 
agent responsibilities and the degree of inter-dependency among 
the crowdsourcing activities

• Link to Agile Teaming: e.g. community-detection algorithms on a 
provenance graph might help to identify collusion among users

• Densification exponents: as a network evolves over time (in 
crowdsourcing, these changes are driven by the sequence of 
user contributions), it generally becomes denser.  The densif-
ication power law
is  E(t) ∝ N(t)a provenance graph might help to identify collusion among usersis  E(t) ∝ N(t)a

• Edge-to-node 
correlation (ENC)
coefficients
between the References

(a) A plot of the number of edges versus the number of nodes in the largest CollabMap
provenance graph. (b) A histogram of the densification exponent a.

between the
number of edges
and the number
of nodes in a
growing graph
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