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Bayesian Quadrature (BQ) is a 
model-based approach to resolving 
non-analytic integrals, a common 
and important problem. The 
integrand is modelled using a 
Gaussian process (GP), such that 
samples o the integrand can be used 
to infer the value o the integral. 
Relative to common Monte Carlo 
(MC) approaches, this probabilistic 
approach permits more information 
to be gained from each integrand 
sample. This is useful when 
evaluating a sample is expensive, 
such as for large datasets. Figure 1*: A cartoon o Bayesian Quadrature. 

However, a Gaussian process is a 
poor model for a probability 
distribution, as it is unable to enforce 
non-negativity. Additionally, the 
niceties that enable analytic inference 
for BQ break down i we try to 
estimate the ratio o two integrals 
with common terms, such as 
 
 
 
where we wish to model the 
correlations due to the shared                                   
term,              .         .  Such ratios 
often occur when marginalising (or 
integrat ing over) the hyper-
parameters o a probabilistic model. 
 
We propose a modiication o BQ, 
called Bayesian Quadrature for Ratios 
(BQR). We model the logarithm o 
the terms in our integrand using a 
GP, a more natural model that 
relects the non-negativity o 
probability distributions. In order to 
effect approximate inference for a 
ratio o probabilistic integrals, we 
introduce a linearisation o the ratio, 
which we treat as a functional o the 
terms in the integrand. 
 

Figure 2*: Our approximate use o 
a GP over the logarithm o a 
probability density function     
better captures the large dynamic 
range and non-negativity o such 
quantities than a GP over  
itself.  
 
 
 
 
 
 
(*) We thank David Duvenaud for the use o these igures. 

Figure 3: The RMSE between the true value o a ratio o analytic integrals (over mixtures o one-d 
Gaussians) and the estimates returned by different methods. All methods were given the same 
chains o samples, generated by both hybrid Monte Carlo (HMC) (left) and slice (right) samplers.  

Figure 4: We attempted to regress lux from a star, using data from the Kepler mission. Above, 
the log-likelihood (LL) o held-out test data for predictions made by a GP, whose hyperparameters 
were marginalised using the methods shown. Samples were obtained using slice sampling. 

Brief Article

The Author

April 16, 2012

p(f | y) =
∫
p(f | y, x) p(y | x) p(x) dx∫

p(y | x) p(x) dx
(1)

!(x) := p(y | x)

logm
(
!(x)

)

0.1 A subsection

More text.

1

Brief Article

The Author

April 16, 2012

p(f | y) =
∫
p(f | y, x) p(y | x) p(x) dx∫

p(y | x) p(x) dx
(1)

!(x) := p(y | x)

logm
(
!(x)

)

0.1 A subsection

More text.

1

W e t e s t e d o u r a p p r o a c h t o 
estimating the ratio o integrals, 
B Q R , a g a i n s t a n u m b e r o  
alternatives. Firstly, traditional MC; 
secondly, maximum likelihood (ML), 
which approximates our integrands 
as delta functions; thirdly, naïve BQ, 
NBQ, which acknowledges neither 
the correlation between integrands 
nor their non-negativity; and inally, 
c o r r e l a t e d B Q , B Q Z , w h i c h 
acknowledges such correlations but 
not non-negativity. Results show 
that MC estimates converge more 
slowly than BQ approaches and that 
ML produces good predictive means 
but is prone to under-estimating 
predictive variances. Constraining 
functions to be positive was less 
s i g n i  i c a n t t h a n m o d e l l i n g 
correlations, although both improved 
performance. BQR was the most 
broadly successful o tested methods. 
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and for a zero mean, unit variance Gaussian prior p(φ).
These functions were created using a mixture of Gaus-
sians, such that we could determine the exact result
(0.5709) for our ratio of integrals (10). We then com-
pared the root mean squared error (rmse) between
the estimates produced by our various methods and
this exact result. Table 1 tabulates the scores over the
last 200 samples (thus permitting a 50 point ‘burn-in’)
and 100 trial sample chains, and Figure 4 the results
as a function of the number of samples. Our methods
comfortably outperform mc and nbq, and for the ma-
jority of the sample history our correction factors give
a small improvement. For clarity, ml results were not
plotted; its rmse plateaus once φm is found, typically
about 10 samples in. On the basis of these results,
we choose to perform solely slice sampling (of up to
500 samples) henceforth, to again favour mc relative
to our methods.

We now consider two examples of gp regression, in
which we must marginalise over hyperparameters φ.
For gps, computing a single likelihood r(φ) requires
the computationally onerous inversion (or finding the
Cholesky factor) of a covariance matrix of size equal to
the number of data, D. Hence evaluating N hyperpa-
rameter samples takes a considerable quantity of time:
O(D3N). In comparison, the cost of evaluating bqr
(dominated by the cost of finding the Cholesky factor
of a covariance matrix of size equal to N) is typically
modest, O(N3). Having at great expense evaluated all
our hyperparameter samples, it seems prudent to use
them in the most intelligent way possible.

For both examples, we took independent Gaussian pri-
ors (such that λφ is diagonal) for the various hyper-
parameters of the model, each with zero mean and a
variance of four. We first tested on a synthetic re-
gression example drawn from friedman (1991) and
rasmussen and ghahramani (2003), with eight hy-
perparameters to marginalise. Specifically, we used
the function

f(x1, x2, x3, x4, x5) :=

10 sin(πx1x2) + 20(x3 − 1/2) + 10x4 + 5x5

with zero mean, unit variance Gaussian noise. We per-
formed gp regression for 100 test points given 100 ob-
servations, all independently drawn from the uniform
[0, 1]5 distribution; we marginalised five input scales,
an output scale, a noise variance and a prior mean.
We evaluated the rmse of the predictive means pro-
duced by our various methods both as a function of
the number of samples, displayed in Figure 5a, and
over all but the first 50 samples, listed in table 2. It
can be seen that all non-mc methods perform roughly
equally, due to the presence of a strong dominant peak
in the likelihood function.
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Figure 4: Error in estimates for one-dimensional inte-
gral as a function of the number of samples.

We also tested on light curves from the first month
of operation of the Kepler mission (borucki, et al.,
2011). Here we are required to regress flux from a star,
as a function of time, in order to infer the rotation rate
and other properties of dark spots on the star’s surface.
For this, we used a gpmodel with a constant mean and
decaying-periodic covariance, giving six hyperparame-
ters in total to marginalise. The data is corrupted by
non-trivial noise mechanisms, and the final results are
sensitive to our regression, so it is important that cor-
rect inference about our model hyperparameters is per-
formed. A large number of datasets exist; we choose
one in particular for which the likelihood function is
highly multi-modal. Given the lack of ground truth
for this dataset, we evaluated predictive performance
by splitting the data into 151 point training (zd) and
testing (z" := {z1, . . . , z|"|}) vectors, and computed

ll =
∑|"|

i=1 logN (zi;mi, Ci) for the predictive means
m and variances C produced by each method. This
allows us to evaluate the the quality of our predictive
uncertainties. ll is plotted in Figure 5a as a function
of the number of samples, and over all but the first 50
samples, listed in Table 3. It can be seen that bqr
is best able to cope with the complicated, multimodal
likelihood surface.

bqr was the most broadly successful of those tested
in these experiments. Note that ml is completely un-
qualified to represent the full posterior: for gp predic-
tion, for example, it will always provide a unimodal
Gaussian posterior. In contrast, the other methods,
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Figure 5: Performance for gp regression on (a) synthetic and (b) Kepler data. bqz not plotted for clarity.

Table 2: rmse for gp prediction on synthetic data.

ml mc nbq bqz bqr

1.1722 1.5551 1.2246 1.1805 1.1805

Table 3: ll for gp prediction on Kepler data.

ml mc nbq bqz bqr

-10.448 -12.563 -12.948 -10.310 -10.262

by mixing the Gaussian predictions from samples with
different hyperparameters, can capture more compli-
cated distributions. This means that while ml is able
to produce effective mean predictions, it is prone to un-
derestimates of predictive variances, such as lead it to
a worse overall fit on the real Kepler data. mc’s waste-
ful use of samples means that its estimates converge
more slowly than Bayesian alternatives, despite our
use of sampling methods explicitly designed to meet
its needs. nbq estimates exhibit occasional wild fluc-
tations, largely due to the poor conditioning of a co-
variance matrix over hyperparameter samples that are
excessively similar. This leads its gp to assign exces-
sive probability mass to negative likelihoods. Due to
our approximations, bqr is not immune to this prob-
lem, but our approach does render it significantly more
robust: its correction factors ameliorate this effect in
trying to force the integrand to be positive. Our mod-
elling of the correlations between integrals over r(φ)
also grant bqr superior performance for multi-modal,
heavy-tailed likelihoods.

We conclude that constraining functions to be positive
was overall probably less significant than dealing with
the correlations in the numerator and denominator,
given the relative performances of nbq (which does
not model correlations), bqz (which does not make
use of the log transform) and bqr.

6 Conclusions

Our algorithm, bqr, outperformed competitors in real
and synthetic tasks requiring the numerical compu-
tation of posterior probabilities. We have success-
fully demonstrated that it is possible to use Bayesian
methods to resolve the questions of approximation re-
quired to perform Bayesian inference. In particular,
we have demonstrated the worth of acknowledging rel-
evant prior information: here, that our integrands are
non-negative and correlated.

In testing, we have focused on small numbers of sam-
ples, suitable for applications where evaluating the
integrand is computationally demanding. This is
due to the not-insignificant computational burden im-
posed by Bayesian quadrature’s requirement to find
the Cholesky factor of covariance matrices of size equal
to the number of samples. This difficulty can be
somewhat eased by integrating sparse gp methods
(quiñonero-candela and rasmussen, 2005; snel-
son and ghahramani, 2006; walder, et al., 2008;
lázaro-gredilla, et al., 2010), which approximate
the covariance matrix as sparse, an avenue we would
like to investigate. We could also investigate the minor
modification of our approach for general integration
tasks where the integrand is non-negative, to compute,
for example, marginal likelihoods.
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