

NET VOR

Talal Rahwan¹, Tri-Dung Nguyen¹, Tomasz Michalak², Maria Polukarov¹, Madalina Croitoru³, Nick Jennings¹

¹ University of Southampton, UK

Use this to

represent

a game

² University of Oxford, UK

³ University of Montpelier, France

The **Maximum Flow** problem:

Southampton

Flow Conservation rule:

total flow entering a node = total flow going out of it

Approximation:

- 1. Solve a Lagrangian Dual Problem to obtain an upper bound
- 2. From the solution in Step 1, construct a feasible solution to the primal problem
- 3. Repeat 1 and 2 to tighten the bound and improve the solution

Future Work

Study different synergy functions

Study solution concepts (the Core, Shapley Value, Kernel, ...)

Introduce <u>new components</u> to the representation:

